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The greater male variability (GMV) hypothesis proposes that traits are more
variable among males than females, and is supported by numerous empirical
studies. Interestingly, GMV is also observed for human brain size and internal
brain structure, a pattern which may have implications for sex-biased
neurological and psychiatric conditions. A better understanding of neuroana-
tomical variability in non-human primates may illuminate whether certain
species are appropriate models for these conditions. Here, we tested for sex
differences in the variability of endocranial volume (ECV, a proxy for brain
size) in a sample of 542 rhesus macaques (Macaca mulatta) from a large pedi-
greed free-ranging population. We also examined the components of
phenotypic variance (additive genetic and residual variance) to tease apart
the potential drivers of sex differences in variability. Our results suggest that
males exhibit more variable ECVs, and that this pattern reflects either balan-
cing/disruptive selection on male behaviour (associated with alternative
malemating strategies) or sex chromosome effects (associatedwithmosaic pat-
terns of X chromosome gene expression in females), rather than extended
neurodevelopment among males. This represents evidence of GMV for brain
size in a non-human primate species and highlights the potential of rhesus
macaques as a model for sex-biased brain-based disorders.
1. Introduction
The ‘greater male variability (GMV) hypothesis’ posits that males tend to exhi-
bit more physical and behavioural variability than females. This pattern has
been observed in numerous mammalian species across many morphological
traits, and appears to be particularly apparent in sexually selected traits [1–7].
The phenomenon is likely to reflect some combination of evolutionary and
developmental mechanisms that produce and maintain greater inter-individual
variability among males, including: (i) balancing or disruptive selection, (ii) sex
differences in developmental schedules and (iii) sex chromosome effects.

While disruptive selection favours divergent (i.e. extreme) phenotypes, pro-
cesses of balancing selection maintain phenotypic diversity within populations
through various mechanisms. For instance, under negative frequency-dependent
selection (one form of balancing selection), the fitness of a phenotype decreases as
it becomes more common, which can lead to cyclical shifts in the frequency of
different phenotypes over time, thereby preventing one phenotype from reaching
fixation.When thesemechanisms act on a trait within one sex only, this can lead to
the exhibition of more variable phenotypes within that sex. Placental mammals
tend to exhibit sex differences in reproductive potential, since female reproduc-
tion is most directly linked to longevity while male reproduction is primarily
driven by fecundity [8–10]. Consequently, males often show greater reproductive
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variance between individuals [8] and are more likely to exhibit
alternative reproductive strategies that are subject to balan-
cing/disruptive selection [11]. Conversely, females may be
more likely to undergo stabilizing selection in traits directly
or indirectly related to reproduction, thereby reducing trait
variability in females relative to males [11]. Furthermore,
additional mechanisms of sexual selection (specifically, direct
male–male contest competition) often drive the evolution
of larger adult body sizes among male mammals. In these
cases, males experience longer developmental periods that
may leave them more susceptible to environmental effects on
trait expression, which may produce larger trait variability in
males. Finally, male mammals may be expected to exhibit
more variability for traits influenced by genes on the X chromo-
some, since males can only express their single set of X-linked
alleles, while females may express either of their two alterna-
tive sets (due to mosaic X chromosome inactivation (XCI)
across cells) or both sets (for genes that escape XCI within
cells). This may facilitate mosaic levels of trait expression and
produce lower phenotypic variability in females [5,12].

The GMV hypothesis has important implications for our
understanding of human variation, since numerous studies
have demonstrated that self-identified males are more variable
than self-identified females across several physical (including
neuroanatomical), behavioural, cognitive and personality-
related traits [13–26]. Studies demonstrating GMV in brain
size and structure are almost exclusively focused on humans
[20–26]. Attempts to identify this pattern among non-human
primate brains are particularly rare, and are thus far limited to
examinations of chimpanzee sulcal morphology [27] and strep-
sirrhine skull length [28],with the latter analysis limited byvery
low sample sizes. It therefore remains uncertain whether GMV
in human neuroanatomy represents an unusual characteristic
for the primate order, or whether it may represent amorewide-
spread pattern among primates.

Rhesus macaques are of particular interest in this regard, as
they are popularmodels for studying neurological and psychia-
tric conditions that may be linked to sex differences in human
neuroanatomical variability, including male-biased conditions
like autism spectrum disorder (ASD) [29] and schizophrenia
[30]. Specifically, individualswithASDor schizophrenia exhibit
higher brain structure variability than control cases [31,32],
suggesting a possible link between GMV and vulnerability for
these conditions. Additionally, ASD aetiology may be more
heterogeneous in males compared with females [31] and
male-specific increases in brain gene expression variability
throughout development have been linked to genetic risk for
schizophrenia [33]. Whether rhesus macaques also exhibit
greater male neuroanatomical variability is unknown.

To investigate potential sex differences in brain size varia-
bility (Aim 1), we analysed endocranial volumes (ECV) in a
large post-mortem sample of free-ranging rhesus macaques.
Previouswork has demonstrated that ECV is a reliable estimate
of brain size across species (e.g. primates [34], birds [35,36]) and
within species (e.g. budgerigars [35]) throughout development
(e.g. domestic chickens [37], American allegators [37]); how-
ever, the proportion of non-neural tissue within the adult
cranium may vary across individuals and increase with age
[38] (including inmacaquemales [39] and females [40]). Never-
theless, unless this proportion varies with age and ECV in a
sex-specific manner, a phenomenon not reported in previous
literature, then our analysis of ECVvariability is likely to reflect
brain size variability.
We predicted that male rhesus macaques would exhibit
greater variability for absolute ECV (Prediction 1a) and relative
ECV (Prediction 1b), in accordance with the GMV hypothesis,
and with previous reports of neuroanatomical GMV in
humans [20–26] and chimpanzees [27]. Male rhesus macaques
are subject to sex-specific selective pressures, including direct
male–male contest competition, as demonstrated by intermedi-
ate body and canine size dimorphism [41,42]. This moderate
level of sexual size dimorphism leads to extended develop-
ment, including neurodevelopment [43], among males, which
is similar to patterns observed in humans (years to peak cer-
ebral volume: rhesus macaque F = 4, M = 6; human F = 10.5,
M = 14.5; i.e. males develop about 50% slower) [43,44]. Given
that brain and body size are correlated within and across
species [45] (including rhesusmacaques [46]), anyobservations
of GMV in absolute ECVmay simply reflect GMV in body size;
however, since relative ECV (measuredwithECVandbodysize
proxies for each individual specimen) controls for inter-individ-
ual variation in body size, GMV in relative ECVmay implicate
mechanisms acting on this trait (or on the processes linking
ECV and body size) specifically. In addition, although higher
ranking males tend to have greater reproductive success than
low ranking males, this correlation is relatively low [47,48],
suggesting there may be multiple behavioural routes to repro-
ductive success in males that could potentially be under
balancing selection. Finally, genes expressed in the brain tend
to be located on the X chromosome in rodents and primates,
including macaques [49], and X chromosome genes affect the
development of brain and region size in humans [50,51] and
mice [52,53]. These characteristics of the rhesus macaque socio-
sexual system, in addition to the fact that rhesus macaques
exhibit a typical mammalian XY sex chromosome structure,
suggests that any of the aforementionedmechanisms may pro-
duce GMV in this species.

To investigate the potential drivers of sex differences in brain
size variability (Aim 2), we examined sex differences in the com-
ponents of phenotypic variance, namely additive genetic and
residual (environmental) variances. Previous work has demon-
strated that brain size and structure are heritable in humans [54]
and non-human primates, including rhesus macaques [55],
baboons [56] and chimpanzees [27,57]. If GMV is a result of
sex differences in developmental schedules, males should exhi-
bit higher environmental variance than females (Prediction 2a).
If GMV is a result of balancing or disruptive selection in males,
or sex chromosome effects, males should exhibit higher additive
genetic variance than females (Prediction 2b).
2. Material and methods
(a) Subjects
The data used in this study were presented in a previous study
[55]. Briefly, A.C. collected morphological measurements for 542
free-ranging rhesus macaques (300 F/242 M) from the Caribbean
Primate Research Center (CPRC) skeletal collections at the Univer-
sity of Puerto Rico (UPR) with permission granted through J.H.’s
long-term memorandum of understanding (MoU) with CPRC/
UPR. Individuals ranged in age at death from 6 to 31 years
(mean = 12.8, s.d. = 5.2; females: mean = 13.0, s.d. = 5.0; males:
mean = 12.7, s.d. = 5.4). We obtained age at death from the demo-
graphic database. Previous work on this population suggested
that adult ECV is reached at approximately 4 years in females
and approximately 6 years in males and does not change during
the adult lifespan [43]. In line with this, linear models suggested
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that age (scaled) was not correlated with ECV (scaled) in either sex
(males: slope = 0.059, p = 0.246; females: slope = 0.053, p = 0.221)
(electronic supplementary material, figure S1). However, age
(scaled) did predict body size (geometric mean, cubed and
scaled) in females (males: slope = 0.066, p = 0.095; females: slope =
0.130, p < 0.001) (electronic supplementary material, figure S1).
Given that body size (geometric mean, cubed and scaled) pre-
dicted ECV (scaled) in both sexes (males: slope = 0.269, p < 0.001;
females: slope = 0.357, p < 0.001) (electronic supplementary
material, figure S1) (consistent with previous work relating brain
and body weight in this species [46]), we included age at death
as a covariate to account for possible age-related changes in
body size and relative ECV (see below for model details).

(b) Morphological measurements
A.C. measured ECV by pouring 2 mm glass beads into the cranium
of each specimen via the foramen magnum. Subsequently, A.C.
poured beads into a graduated cylinder and recorded the volume
[58]. To estimate body size, we used two body size proxies [59]
(femoral length (FL) and femoral mediolateral breath (FMLB)
[60]), measured by A.C., to calculate a geometric mean
(GM ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

FL � FMLB
p

).Wealsoperformedan intraclass correlation
analysis to assess intra-rater reliability for all morphological
measurements (ICC > 0.95).

(c) Statistical analysis
We performed all statistical analyses in R 4.0.2 [61].

To examine potential sex differences in ECVphenotypic variance
(Aim 1; Predictions 1a,b) and its components (Aim 2; Predictions 2a,
b), we used generalized linear mixedmodels (GLMMs) which incor-
porate relatedness information in the form of a pedigree (i.e. a
quantitative genetic ‘animal’ model [62]). We obtained access to the
pedigree via J.H.’s long-term MoU with CPRC/UPR. The CPRC
maintainsapedigreedatabase,whichcontains informationonbehav-
ioural dams (identified via field observation and available for all
specimens in the study) and genetic dams and sires (identified via
microsatellitepanelandavailable for individualsbornafter1985) [63].

Owing to the inherently high correlations between the sex
chromosome relatedness structure and autosomal chromosomes
relatedness structure in natural populations, it can be difficult to
separately estimate autosomal chromosomal inheritance and sex
chromosomal inheritance of a single trait in quantitative genetic
models [64]. Simulation modelling has shown that estimation of
the additive autosomal genetic variance is a good approximation
of both forms of additive genetic variance (i.e. the cumulative var-
iance explained by autosomal and sex chromosomes) [64]. Here,
we use quantitative genetic modelling estimating autosomal
chromosome genetic variancewhich is likely to be an accurate esti-
mator of both autosomal and sex chromosome genetic variance.

Across all models described below, we followed other studies
[27,57] and used the default prior for the mean and variance of
fixed effects for Gaussian-family models in MCMCglmm, and
an inverse-Wishart prior for the random effects and residual var-
iances (V = 1, nu = 1). All continuous variables were scaled and
centred prior to further analysis (mean = 0; s.d. = 1). Models
were run for 1 000 000 iterations, sampling every 100 iterations
with a burn-in of 500 000. We ensured proper mixing occurred
by visually inspecting trace and density plots. Autocorrelation
was below 0.1 and effective sample sizes were greater than
1000 for all variables. We implemented Heidelberger and
Welch’s convergence diagnostic to test that the sampled values
came from a stationary distribution, and all variables passed
this stationary test. We also conducted half-width tests, which
remove up to half the chain to test that the means are estimated
from a chain that has converged and found that all variables
passed this test. Finally, we ran each chain twice and confirmed
convergence using the Gelman–Rubin statistic [65].
(i) Aim 1: investigating potential sex differences in brain size
variability

We first constructed the following three models to investigate sex
differences in the variability of absolute ECV (Model 1; Prediction
1a), relative ECV (Model 2; Prediction 1b) and body size (Model 3):

(1) ECV ~ age at death + sex (random=VA * sex; rcov = VR * sex)
(2) ECV ~ body size (GM3) + age at death + sex (random=VA *

sex; rcov = VR * sex)
(3) body size (GM3) ~ age at death + sex (random =VA * sex;

rcov = VR * sex)

In Models 2 and 3, the linear body size proxy (GM) was raised
to the third power to ensure the same dimensionality among ECV
and body size measures. In all models, the additive genetic var-
iance (estimated by the inverse relatedness matrix estimated by
the pedigree) was included as a random effect. Within each
model, both the additive genetic and residual terms were parti-
tioned into their effects for males and females separately. For
each model, we estimated sex-specific phenotypic variances as
the sums of the sex-specific genetic and residual variances for
each sample of the posterior distribution (VP =VA+VR;VP= pheno-
typic variance; VA= additive genetic variance; VR= residual
(environmental) variance), extractedmean estimates and 68%high-
est posterior density (HPD) intervals (i.e. the interval of values that
contains 68% of the posterior probability) from the sex-specific phe-
notypic variance distributions, and compared them to test if mean
phenotypic variance was higher in males (Predictions 1a,b).

As an additional test of sex differences in variability, we also
extracted residuals from Models 1–3 and tested for significant sex
differences in the variance of these residuals using permutation
tests, following previous work [21,23,27]. We calculated the log
male-to-female variance across the residuals (positive values =
greater male variability; negative values = greater female variabil-
ity), randomly permuted the sex variable among the residuals
10 000 times and calculated the proportion of permuted log male-
to-female variance ratios (absolute value) greater than the observed
ratio (absolutevalue). Thisproportion is referred tohere as ‘pPERM’
and represents a two-sided test of sex differences in variability.
A positive log male-to-female variance ratio and pPERM< 0.05
would indicate greater male variability (Predictions 1a,b).

In addition, within each sex, we calculated the average range
size for ECV across 1000 random samples for every possible
sample size (from n = 2 to the actual subset sample size). The aver-
age range sizes were plotted against sample size to demonstrate
that each distribution reached a horizontal asymptote.

(ii) Aim 2: investigating the potential drivers of sex differences in
brain size variability

To test whether residual (Prediction 2a) and/or additive genetic
variance (Prediction 2b) contributed to sex differences in pheno-
typic variance, we compared Models 1–3 to reduced models
which either: (1) did not partition additive genetic variance by
sex, (2) did not partition residual variance by sex or (3) did not
partition either additive genetic or residual variance by sex. We
compared model fits using the Deviance Information Criterion
(DIC). We also extracted mean estimates and 68% HPD intervals
from the sex-specific variance distributions for all models (where
applicable) and compared them.

3. Results
(a) Aim 1: investigating potential sex differences in

brain size variability
Consistent with Prediction 1a, males exhibited more variable
absolute ECVs, as demonstrated by their higher mean
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Figure 1. Males exhibit more variable relative ECVs than females. (a) Density plots of the posterior distributions of phenotypic variance for males (green) and
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phenotypic variances with non-overlapping 68%HPD intervals
between the sexes (phenotypic variance: males: mean = 0.670
[0.598, 0.717], females: mean = 0.533 [0.481, 0.568]), and signifi-
cantly more variable residual values (log M-to-F variance
ratio = 0.396; pPERM= 0.001) (electronic supplementary
material, figures S2, S3 and table S1). Since males also exhibited
more variable body sizes (phenotypic variance: males: mean =
0.501 [0.454, 0.544], females:mean = 0.296 [0.269, 0.318];M-to-F
variance ratio = 0.352; pPERM= 0.007) (electronic supplemen-
tary material, figures S2, S3 and table S1), GMV in absolute
ECV may reflect correlated development between ECV and
body size. However, consistent with Prediction 1b, males also
exhibited more variable relative ECVs (phenotypic variance:
males: mean = 0.646 [0.581, 0.696], females: mean = 0.505
[0.459, 0.542]; M-to-F variance ratio = 0.288; pPERM= 0.016)
(figure 1; electronic supplementary material, figures S2, S3
and table S1). Across all models, males were significantly
larger (pMCMC< 0.05) (electronic supplementary material,
table S1). In all models of relative ECV, body size was a signifi-
cant, positive predictor (pMCMC< 0.05) (electronic
supplementary material, table S1), and in all models of absol-
ute ECV and of body size, age at death was a significant,
positive predictor (pMCMC< 0.05) (electronic supplementary
material, table S1). ECV increasing with age is not consistent
with our exploratory linear model results (see Material and
methods) or with previous work on ECV variation in this
population [43], which may reflect differences in statistical
modelling approaches, sample sizes and age distributions.

Given that measurements are available for more females
than males, we expect that our estimates of GMV are conserva-
tive. Our resampling procedure confirmed that the sex-specific
distributions approached a horizontal asymptote, suggesting
our sample sizes were sufficient to capture population-level
variation (electronic supplementary material, figure S4).

(b) Aim 2: investigating the potential drivers of sex
differences in brain size variability

We did not find support for Prediction 2a (i.e. greater residual
(environmental) variance among males), but we did find
some support for Prediction 2b (i.e. greater additive genetic
variance among males). Specifically, contrary to Prediction
2a, models that estimated sex-specific residual variance per-
formed worse (i.e. had higher DIC values) than similar
models with unpartitioned residual variance (electronic sup-
plementary material, table S1). However, for all measures,
the best-fit models (i.e. with the lowest DIC values) included
sex-specific additive genetic variance (electronic supplemen-
tary material, table S1) and males exhibited higher mean
additive genetic variances in each of these models, with
non-overlapping 68% HPD intervals for relative ECV
and body size (relative ECV: males: mean = 0.483
[0.410, 0.561], females: mean = 0.347 [0.278, 0.406]; absolute
ECV: males: mean = 0.514 [0.432, 0.580], females: mean =
0.382 [0.319, 0.445]; body size: males: mean = 0.367
[0.316, 0.420], females: mean = 0.168 [0.133, 0.206]).
4. Discussion
This work demonstrates GMV in ECV, a proxy for brain size,
in a non-human primate model species, the rhesus macaque.
Specifically, we found that males exhibit more variable absol-
ute ECVs than females (in support of Prediction 1a), which
may reflect that males also exhibit more variable body
sizes. However, males also exhibit more variable relative
ECVs (in support of Prediction 1b), suggesting there is
GMV in ECV above and beyond that observed for body
size. We did not find evidence that males exhibit greater
environmental (residual) variance, suggesting that the pat-
terns of GMV observed here may not reflect sex differences
in developmental schedules (contra Prediction 2a). Rather,
greater additive genetic variance among males suggests that
GMV in rhesus macaque ECV is likely to reflect some combi-
nation of sexual selection mechanisms and sex chromosome
effects (in support of Prediction 2b). Although ECV is a
reliable estimate of brain size and shape across species
[34–36] and within species throughout development [35,37],
our analyses cannot account for the effects of inter-individual
and age-related variation in the proportion of non-neural
tissue. This proportion is likely to increase with age in
rhesus macaques, since previous work suggests that brain
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volume decreases with age in this species [39,40]. Neverthe-
less, unless this measure varies across this population in a
manner that would produce more similar brain sizes
among males compared with females (despite males having
more variable ECVs), then our observation of GMV in ECV
is likely to reflect GMV in brain size.

As mentioned above, development is relatively longer in
male (versus female) rhesus macaques [43]. Given that
longer cranial ontogeny could potentially expose males to
more environmental factors that influence cranial size devel-
opment, we predicted that these factors may lead male rhesus
macaques to display greater ECV variability (Prediction 2a).
However, we did not find support for this, as models that
estimated sex-specific residual variances performed worse
than similar models with unpartitioned residual variance.
This suggests that sex differences in exposure to physical
and/or social environments during development cannot
account for observed sex differences in ECV variability.
Rather, our results suggest that sexual selection mechanisms
and/or sex chromosome effects are likely to explain our
observation of GMV in rhesus macaque ECV (Prediction
2b). Specifically, we found that the best-fit models for all
measures included sex-specific additive genetic variance,
and males exhibited higher mean additive genetic variances
in these models (although the HPD intervals did marginally
overlap for absolute ECV).

Given that both absolute and relative ECV are heritable
[55,66], greater variability in ECV among males may, in
theory, reflect selection on cognition and behaviour—specifi-
cally, disruptive or balancing selection on male reproductive
strategies. Male rhesus macaques are subject to an interesting
mix of sexual selection pressures, including direct male–male
competition, reflected by intermediate body and canine size
dimorphism [67], indirect male–male competition, reflected
by large relative testis volume [68] and mechanisms of indir-
ect female mate choice, such as female preference for males
with darker red faces [69]. Accordingly, although dominance
rank predicts male rhesus macaque reproductive success,
male reproductive skew is relatively low and may reflect
that males tend to queue for dominance rank instead of fight-
ing directly [48]. Together, these mechanisms are expected to
create several routes to reproductive success in males, which
would produce and maintain variation in male behavioural
phenotypes instead of generating one male phenotype that
is under directional selection. Previous comparative work
suggests that either of these alternative routes (e.g. greater
investment in direct or indirect male–male competition)
may be facilitated by increased brain size [70,71] and/or
introduce constraints on brain size (in the form of, e.g.
tissue/energetic trade-offs) [72,73]. Accordingly, if alternative
male reproductive tactics are differentially coupled to brain
size in this species, this may lead to more variable ECVs
among males. Alternatively, the female fitness optimum for
ECV may be narrower than the fitness optimum in males,
which would suggest that our results reflect stronger stabiliz-
ing selection in females. Colby et al. [55] used linear and
quadratic selection gradients to investigate selection in this
sample and did not find evidence of selection on absolute
or relative ECV in either sex, which suggests that stabilizing
selection on females may not underlie the sex differences in
ECV variability observed in this study. However, a lack of evi-
dence for selection may reflect that: (1) this population is not
currently under selection for ECV or (2) selection is occurring
in this population, but larger sample sizes would be required
to detect it. Furthermore, if balancing or disruptive selection
are occurring in this population, they would not be detectable
using linear or quadratic models. Accordingly, we cannot rule
out selection as a potential explanation for greater ECV
variability among male rhesus macaques.

Finally, our results may reflect sex chromosome effects.
While males can only express a single set of X-linked alleles
throughout all of their somatic cells, females may exhibit vari-
able X chromosome gene expression across cells (due to
mosaic XCI) or within cells (due to XCI escapees), leading
to more intermediate levels of trait expression and lower
population variability in females [5,12]. These effects may
be particularly strong on neurodevelopment since brain-
expressed genes and genes associated with brain size tend
to be located on the X chromosome [49–53]. This may reflect
evolutionary dynamics unique to the X chromosome, includ-
ing the ‘faster-X effect’ (i.e. more rapid evolution of X
chromosome genes due to a relatively lower effective popu-
lation size than autosomes) and the accumulation of sex-
biased genes on the X chromosome (potentially reflecting
resolved sexual antagonism) [74,75]. Owing to limited data
availability, the current dataset did not provide the power
to separately estimate autosomal versus sex chromosomal
additive genetic effects (see Material and methods) [64].
Nevertheless, previous work has also provided indirect evi-
dence for sex chromosome effects on sex differences in trait
variability, including greater size correlations between brain
areas in human and chimpanzee males (versus females)
[21,23,27] and higher phenotypic variability among females
in species with homogametic (e.g. ZZ) males [5].

While sex differences in phenotypic variability have been
demonstrated in many taxa and across numerous traits,
almost all studies demonstrating sex differences in neuroanato-
mical or behavioural variability have focused on humans.
Here, we show that greater neuroanatomical variability
among males is not only present in humans [26], but also
another primate species, the rhesus macaque. Accordingly,
this work supports the use of rhesus macaques as an animal
model for sex-biased human neurological and psychiatric con-
ditions. To tease apart which factors predominantly account
for observed sex differences in neuroanatomical variability,
future studies should focus on taxa that exhibit a diverse
array of mating systems, sex-specific developmental schedules
and sex chromosome compositions.
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