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Fossil tracks are important palaeobiological data sources. The quantitative
analysis of their shape, however, has been hampered by their high variability
and lack of discrete margins and landmarks. We here present the first
approach using deep convolutional neural networks (DCNNs) to study
fossil tracks, overcoming the limitations of previous statistical approaches.
We employ a DCNN to discriminate between theropod and ornithischian
dinosaur tracks based on a total of 1372 outline silhouettes. The DCNN con-
sistently outperformed human experts on an independent test set. We also
used the DCNN to classify tracks of a large tridactyl trackmaker from
Lark Quarry, Australia, the identity of which has been subject to intense
debate. The presented approach can only be considered a first step towards
the wider application of machine learning in fossil track research, which
is not limited to classification problems. Current limitations, such as the
subjectivity and information loss inherent in interpretive outlines, may be
overcome in the future by training neural networks on three-dimensional
models directly, though this will require an increased uptake in digitization
among workers in the field.
1. Introduction
Distinguishing between tridactyl (three-toed) dinosaur tracks of the herbivorous
ornithischians and the predominantly carnivorous theropods is a complex and
long-standing problem [1–9]. Broadly, ornithischian tracks are expected to be
wider andmore symmetric than theropod tracks, with digit impression III less pro-
jecting beyonddigit impressions II and IV, andwithdigit impressions beingbroader,
more splayed apart, and terminating in blunt hoof marks instead of sharp claw
marks. However, any of these characteristics can be found in both groups, and
which are themost important depends on the particular track type in question.Mor-
atalla et al. [1] presented a quantitative approach to discriminate these groups, albeit
limited to larger theropod and ornithopod tracks. Limitations of this approach
include the small sample size, issues with the measurement scheme and omission
of relevant shape characteristics [1,5,6]; despite this, the method has found wide
application [3,9–12].

To overcome the limitations of previous statistical approaches, and to remove
as much subjectivity as possible, we trained and then employed an artificial
neural network to categorize outlines of tridactyl dinosaur footprints as theropod
or ornithischian. Artificial neural networks are a type of nonlinear model that can
learn from data, and a principal component of machine learning and artificial
intelligence. Inspired by the structure of the human brain, such neural networks
comprise interconnected nodes (or neurons), with each connection represented by
a number (weight). The artificial neural network learns from its mistakes during
multiple training iterations in which the weights are optimized to achieve an
increasingly good fit to the data structure [13]. We here employ a deep convolu-
tional neural network (DCNN) composed of multiple layers of neurons (deep
learning).

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2022.0588&domain=pdf&date_stamp=2022-11-09
mailto:jens.lallensack@gmail.com
https://doi.org/10.6084/m9.figshare.c.6272858
https://doi.org/10.6084/m9.figshare.c.6272858
http://orcid.org/
http://orcid.org/0000-0003-4104-5232
https://orcid.org/0000-0002-1218-3567
https://orcid.org/0000-0003-1856-8377


royalsocietypublishing.org/journal/rs

2
We applied our model to an independent test set and com-
pared its identifications with those of five human experts. We
then used the neural network to assess outlines from a large
trackway from Lark Quarry, Australia; a tracksite also known
as the Dinosaur Stampede National Monument (Australian
Natural Heritage List Place ID 105664). The identity of the lar-
gest trackmaker has been the subject of intense discussion,
particularly in the past decade, namely as having been either
a predatory theropod dinosaur or a herbivorous ornithischian
[3,5,14–20]. The ambiguity of the footprint shapes and lack of
agreement among track-workers make this trackway an ideal
case study for our machine learning approach.
 if
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2. Materials and methods
2.1. Standardized track silhouettes
Neural networks can work with a variety of input data, such
as simple measurements, categorical data, two-dimensional
images and even three-dimensional models. For best performance,
however, it is crucial to maximize relevant information while
minimizing irrelevant information.

Moratalla et al. [1] present both a quantitative approach and a
list of qualitative criteria to discriminate theropod and ornithischian
tracks. Linear and angular measurements, as used by Moratalla
et al. [1], may be selected to capture what are believed to be the
most relevant shape features of a track. However, such measure-
ments may not capture all relevant details, such as the shape of
claw marks. Furthermore, such measurements can be difficult
to apply consistently to a large number of tracks of varying
shapes [21].

On the other extreme to linear measurements, three-dimen-
sional models capture a maximum of shape information [22],
but are highly complex and include much information that is
not relevant to the identification of the tracks (e.g. the presence
of cracks or ripple marks; what some authors term ‘extramorpho-
logical’ features). Although neural networks are able to become
invariant to such irrelevant information, they require a larger
sample size to do so.

In order to minimize irrelevant information and maximize
sample size, we use black-and-white silhouettes of interpretive
track outlines. Using silhouettes as input data avoids the need
for measuring particular anatomical features, allowing for
inclusion of any track shape. Furthermore, silhouettesmay capture
most of the information that is considered relevant for the identifi-
cation of tracks, including features such as digit terminations and
the number and shape of phalangeal pads. However, such outlines
have been repeatedly criticized because of their inherent subjectiv-
ity and simplification of complex three-dimensional morphologies
(e.g. [19,23]).

Published outline drawings can be complex and may consist
of multiple and/or discontinuous lines, dotted lines to indicate
uncertainty, internal shadings and other features. Such complexity
does often bear the artistic signature of the individual ichnologist.
By converging such drawings into simpler black-and-white silhou-
ettes, the artistic signature is mostly removed, avoiding irrelevant
detail that may deteriorate the performance of the model. Silhou-
ettes may be represented as a continuous outline or as a set of
separate outlines that may show individual pad impressions.

The conversion of published outlines into our standard silhou-
ette format often required some degree of interpolation; e.g. dotted
lineswere treated as solid lines, andgaps in the outlinewere closed.
We included tracks of functionally tridactyl ornithischian (basal
ornithischians, ornithopods and stegosaurs) and non-avian thero-
pod dinosaurs spanning from the Upper Triassic to the Upper
Cretaceous. This included tracks that show the impression of
digit I in addition to digits II–IV, as long as this digit is unlikely
to have played a major role in locomotion in the trackmaker. We
did not include tracks interpreted to have been made by partially
buoyant animals, nor did we include tracks that show substantial
incompleteness, but we include cases in which the track walls
have collapsed, as in penetrative tracks [24–26]. Some of the
included tracks contain little relevant anatomical detail, or even
contain misleading features, due to unfavourable substrate con-
ditions, trackmaker behaviour or post-formational alteration of
the tracks. By training the model on a sufficiently large sample
size, this ambiguity is hoped to be reflected by a decreased confi-
dence of the model when classifying such tracks.

The majority of outlines were collected from the literature,
building on a dataset previously collected by Lallensack et al.
[7]. Multiple outlines from single trackways were included
where available, and, in some cases, different interpretations of
the same track were included. These data are supplemented
with outlines drawn by one of us (J.N.L.) from three-dimensional
models that are published as part of this contribution or have
been published elsewhere. The silhouettes are rotated upright
(relative to digit impression III) before analysis and downscaled
to 100 × 100 pixels, with the shape centred in the image. The
model was made invariant to subtle variations in rotation and
position (see below).

Our original dataset consisted of 677 ornithischian and 959
theropodan examples (see electronic supplementary material).
This imbalance between the categories is caused by the much
greater abundance of theropod tracks in the fossil record, even
though attempts were made to include as many ornithischian
tracks as possible. Models trained on the full imbalanced dataset
tended to perform well on large tracks, but appeared to be biased
towards theropods when testing ambiguous small tracks similar
to the ichnotaxon Anomoepus. We consequently applied under-
sampling (see e.g. [27]) to arrive at a balanced dataset by
randomly removing theropodan examples until their number
was equal to that of ornithischian examples.
2.2. Model training
The model training was done using the open-source machine
learning library TensorFlow (www.tensorflow.org; version 2.9),
which was controlled through the Keras interface (https://
keras.io) using Python scripting.

The model architecture employed, and the parameters used,
may drastically influence the performance of a model. Precise
optimization of models by finding the best parameters is often
impractical given the number of possibilities that can be set.
We tested separate model architectures of increasing complexity,
different numbers of epochs (training iterations during which the
model sees all data in the training set) and batch sizes (the
number of silhouettes the model will see at the same time) on
test sets that were randomly separated from the training set.
We used loss rather than accuracy to select models [28] and dis-
carded those that showed a problematic degree of overfitting.
Following these tests, we selected a modification of the VGG16
architecture with four convolutional layers of 32, 64, 128 and
128 neurons, respectively. Pooling layers were used in-between
these layers, and a dense layer of 256 neurons was used for flat-
tening. After each pooling layer and after the 256 neuron dense
layer, we used a dropout of 0.2 [29]. We selected ‘Adams’ as opti-
mizer and a batch size of 30. We used early stopping to select the
model version at the epoch where loss was minimal [30]. For our
selected model, this mechanism led to a training period of 74
epochs, after which the validation loss was at 0.37 and the
validation accuracy at 0.83.

We used online data augmentation in order tomake themodel
more invariant against slight variations in rotation, position and
the exact configuration of pixels of the shape margins, all of
which are not informative for classification purposes. This was
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Figure 1. The test set was used to compare the performance of the neural network model with that of five human experts. The neural network returned values
between 0 and 1, with values less than 0.5 indicating more ornithischian-like shapes and values greater than 0.5 indicating theropod-like shapes. Values between
0.4 and 0.6 are here considered as ‘ambiguous’. Human experts marked each track as either ‘ornithischian’, ‘ambiguous’ or ‘theropodan’. The ratio between correct,
ambiguous and incorrect identifications of these five experts is shown for each track.

Table 1. Performance of the individual human experts and the neural
network on the test set. Note that high percentages of correct
identifications are associated with high percentages of incorrect
identifications, and vice versa.

identifier
%
correct

%
ambiguous

%
incorrect

Expert 1 67 3 31

Expert 2 58 25 17

Expert 3 58 25 17

Expert 4 42 44 14

Expert 5 58 22 19

neural network (no

ambiguous cases)

86 0 14

neural network

(0.4–0.6 treated as

ambiguous)

67 22 11
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achieved by random horizontal flipping; rotation by a random
value between −30 and +30 degrees; and a slight random shift
in x and y directions. These operations were performed on each
image before each epoch—as our model was trained with 74
epochs, 74 versions per image were created.

For each tested silhouette, the neural network returns a
numerical value that ranged between 0 and 1, to denote confi-
dence of track affinities as ornithischian and theropodan,
respectively. A value of 0.5 indicates an ambiguous outcome
without any tendency towards either category. The neural net-
work model, along with detailed step-by-step instructions, is
provided in the electronic supplementary material.

The final model was validated on a test set of 36 tracks that
were collected by J.N.L. from the literature (see electronic sup-
plementary material). Tracks were selected to obtain a varied
sample that includes both relatively obvious candidates and chal-
lenging ones. In a few cases, the silhouettes do seem difficult or
even impossible to assign to their correct label, as they show
characteristics of both groups. The same test set was given to five
researchers who all are established experts on tridactyl dinosaur
tracks. These researchers were asked to identify each track either
as ornithischian (0), theropod (1) or ambiguous (0.5).
3. Results and discussion
3.1. Performance on test set and comparison with

human performance
On the test set, the neural network outperformed human
experts by a constant margin (figure 1, table 1). Eighty-six
per cent of tracks were correctly classified while 14% were
incorrectly classified. If all neural network decisions above
0.4 and below 0.6 are treated as ambiguous (22% of tracks),
the neural network classified 67% of tracks correctly and 11%
incorrectly. The human experts, on average, classified 57%
correctly, 20% incorrectly and 24% as ambiguous. These results
demonstrate the ability of big data applications to outperform
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human experiencewhen trained on a sufficiently large sample.
Most of the test set examples are significantly different from
any of those the model was trained on, demonstrating the
ability of the model to classify new distinct shapes.
ietypublishing.org/journal/rsif
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3.2. Limitations and strengths
Our neural network was trained to classify shapes without any
context information. When an ichnologist decides how to
assign a track, such context information (e.g. size, stratigraphy
and shape of other tracks of the same trackway) plays an
important role. While it is generally possible to provide
a neural network such context information, this comes at a
cost: the model will be more likely to overfit, or, in other
words, may fail to make a correct assignment when the track
in question was found outside of its expected context. This
may lead to circular arguments: if, for example, information
on size and geological age is provided to the model, large tri-
dactyl tracks from the Upper Jurassic are more unlikely to be
classified as ornithischians because no such examples are pres-
ent in the training set. This may easily lead to false conclusions
if the a priori assumption (no large ornithischians in the Upper
Jurassic) is wrong. In this light, this apparent shortcoming of
our neural network may therefore be its greatest strength: pro-
viding objective assessments of shape independent of context.
Consequently, it has to be the job of the ichnologist to combine
the neural network evaluation of the shape with all relevant
context information to arrive at a meaningful interpretation
of the track.

In the initial stages of the present project, the authors were
undecided on whether to include size information. Size is
undeniably important in some cases—e.g. a 50 cm long
slender-toed track can confidently be assigned to a theropod
trackmaker, even though the same shape at a much smaller
scale might well be produced by an ornithischian trackmaker.
On the other hand, we may argue that tracks that are unam-
biguously classifiable based on size do not require the
judgement of our neural network to start with. In all ambigu-
ous cases, evaluating shape independent of size can yet again
be considered a strength, as it brackets off a priori assumptions
about the possible size range of a trackmaker, which may be
based on incomplete knowledge. This reasoning notwithstand-
ing, we did collect size information along with all outlines of
our dataset. Tests using an earlier model version that included
scale information did not appear to produce better results than
other models that did not include such information, and
we consequently abstained from including this information.
Another difficult decision is the identification of a track as
belonging to the left or right foot. Tests using early model
versions did not show clear improvements in performance
when presented with uniform right shapes versus randomly
mirrored shapes, and most tracks of unknown trackmaker
identification cannot be unambiguously attributed to left or
right to start with. Consequently, we decided to augment the
data to randomly mirror the shapes, making the model
invariant against left or right.

Another inevitable limitation is our reliance on previous
identifications of tracks as either ‘theropod’ or ‘ornithischian’
to train the models. We assume that the vast majority of these
a priori identifications are probably correct even when the
shapes themselves are ambiguous, since the context usually
offers valuable clues (most unambiguously the presence of
manus impressions, which only occur in ornithischians).
However, misidentifications cannot be ruled out especially
for smaller tracks which are particularly ambiguous.

Finally, thegreatest limitationsof thepresentedapproachare
the interpretive outline silhouettes themselves. Advantages of
using such silhouettes, namely their simplicity and wide avail-
ability, are compromised by their inherent subjectivity [19,22].
This subjectivity is highlighted by figure 2, where outlines pro-
duced by different researchers may be different in shape to a
problematical degree [23,31]. Besides adding substantial noise,
this subjectivity may shift the neural network evaluation
towards one or the other category, as is the case with track 3
(figure 2, outline of P.L.F. and J.N.L. versus that of A.R.). Fur-
thermore, given the loss of potentially valuable information,
the reduction of information content can be considered an
advantage and a drawback at the same time. Although extra-
morphological features tend to be excluded from interpretive
outline drawings to arrive at a meaningful hypothesis about
the shape of the foot, this is not always possible, and the
degree to which outlines are ‘idealized’ varies greatly between
separate ichnologists. Indeed, some authors (e.g. [32]) have
argued that ‘extramorphological’ features should be considered
part of the track itself (e.g. displacement rims and collapse struc-
tures), and that these features may contain information about
the trackmaker that should not be excluded.

As we authors experienced with the Lark Quarry trackway
(see below), the production of meaningful outlines was not
always possible, and identifying which features were related
to the foot morphology, and which to sediment movement,
and later erosion, was difficult. Given these drawbacks, our
approach using interpretive outlines can only be considered
the first step, and more objective and comprehensive data for-
mats, such as three-dimensional shapes, need to be considered
for future applications of neural networks (see below).
3.3. Analysis of Lark Quarry tracks
Previous debate on the identification of the large tridactyl
trackway Q1 from Lark Quarry was complicated by two
points of disagreement: (i) which tracks best reflect the anat-
omy of the foot and (ii) how the outline of the individual
track should be drawn. The interpretation of outlines of indi-
vidual tracks has been even more controversial and has been
argued to be significantly influenced by the researcher’s
opinion about the trackmaker responsible [3,5,16–20,23].

We here consider all tracks of the Lark Quarry trackway
except for tracks 7, 9 and 11, as these tracks lack an obvious tri-
dactyl morphology. Outlines were drawn by all three of us
based on digital models made from the archival cast material,
before damage and reconstruction occurred to many of the
tracks in situ. It should be noted that in previous work, P.L.F.
favoured a theropod affinity [19] andA.R. favoured an ornitho-
pod affinity [3,16], while J.N.L. considered the tracks to be
ambiguous. In addition, we produced objective outlines of all
tracks using the algorithm of Lallensack [23], run with default
settings. These objective outlines mimic the way humans inter-
pret outlines but are by design devoid of a priori assumptions
about the trackmaker.

For six of the eight tracks, the neural network tended to be
in favour of an ornithischian affinity (figure 2). The mean score
of P.L.F., who favoured a theropod affinity of the tracks, was
slightly higher (0.32) than that of A.R. (0.26), J.N.L. (0.24) and
the objective outlines (0.24). More substantial differences
were found for track 3, which Thulborn & Wade [14]
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considered the best-preserved track: outlines by P.L.F. (0.99)
and J.N.L. (0.93) where found to be very theropod-like, while
outlines by A.R. (0.48) and the objective outlines (0.52) were
ambiguous. This indicates that although a priori assumptions
about the responsible trackmaker may indeed influence
the result in some cases, general trends seem to be robust
(i.e. this track was the most theropod-like regardless of bias).
However, the mean of scores of all considered tracks is not
necessarily an informative measure, as in many cases only one
or few tracks will convey the anatomy of the foot accurately.
We therefore continue by taking a closer look at those tracks
that have been identified as the best preserved by previous
workers: tracks 3, 5 and 6. Track 3 is clearly different in appear-
ance from all other tracks and is consistently recovered as the
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line gives neural network scores close to 1, suggesting a theropod trackmaker, while the maximum contour gives an ambiguous score, suggesting that contours
become more theropod-like with increasing depth. (c) Interpretive outline of track 5 superimposed on that of track 3, showing marked differences in width but not
in length.
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most theropod-like. Analysis with gradcam [33] of the outline
by J.N.L. of track 3 (figure 3a) suggests that the curvature of
digit impression III and the shape of the heel are the important
features that led to its classification as theropod. The curvature
of digit III is also indicated by longitudinal ridges at the floor
and wall of the track that might represent pull-up structures,
indicating that this curvature is original and not the result of
erosion [16].

Tracks 5 and 6, which are unambiguously ornithopod-like,
are similar to some of the other, more fragmented tracks. A
direct overlay of interpretive ‘maximum’ outlines of tracks 3
and 5 (figure 3c) shows that the latter is distinctly wider with
larger interdigital angles and a generally more robust appear-
ance. Both tracks are, however, almost identical in length. If
track 3 does reflect the foot anatomy more closely, it must
follow that other tracks were broadened due to erosion or
rotation of the foot. If, on the other hand, tracks 5 and 6 more
closely match the foot anatomy, it follows that digits II and IV
of track 3 are partially collapsed during or after track formation.

While morphologies of most tracks other than track 3 tend
to suggest an ornithischian trackmaker, the long stride lengths
and low pace angulation values of around 180° [16] are more
typical for a theropod trackmaker. We may also be running
into the limitations of using outlines for relatively deep
tracks, where outlines created near the top of the track are
broader and more rounded (and hence more ornithopodan)
than outlines from deeper in the track, at the foot-sediment
interface, as demonstrated by Falkingham [19]. This is con-
firmed by testing (subjectively selected) ‘maximum’ and
‘minimum’ contour lines of track 3 (figure 3b), where themaxi-
mum outline was ambiguous (score of 0.51) and the minimum
outline very theropodan-like (score of 0.98). Future studies
involving neural networks trained on three-dimensional
models of tracks and/or trackway parameters may be able to
resolve this ambiguity, as we shall come to in our conclusions.

3.4. Re-evaluation of other tracks and implications for
trackmaker identification

Shapes attributed or similar to those of the ornithischian ichno-
genus Anomoepus are often recovered as ambiguous by our
model. Anomoepus tracks are typically identified based on the
presence of manus impressions, inward rotation of the pes,
and low relative projection of digit III beyond digits II and IV
[34]. The ambiguity expressed byourmodel, however, suggests
that Anomoepus cannot be reliably distinguished based on pes
track shape alone when context data are not available. Such
difficulties may be illustrated by an isolated track from the
Hettangian of Poland that was described as a particularly
large example of the ornithischian ichnogenusMoyenisauropus
(=Anomoepus) [35]. Our neural network, however, suggests that
a theropod affinity is more likely (0.72). A trackway of three
tracks from the Lower Jurassic (Sinemurian) Razorback beds
of Australia had been traditionally interpreted as theropodan
in origin [36,37], while a more recent evaluation identified
these tracks as ornithischian Anomoepus tracks [38]. Our
neural network confirms the latter interpretations (scores of
0.42, 0.44 and 0.32 for the three tracks, respectively).

Large tridactyl tracks, such as those of trackway 1 from
Lark Quarry, pose different problems. Large ornithopod
tracks are primarily differentiated from large theropod tracks
based on their overall wide shape and their broad and rounded
toe impressions that lack claw traces. Similar ornithopod-like
features can, however, occur due to unfavourable substrate
properties and/or within-sediment rotation of the foot, while
theropod-like features are more unlikely to result from such
factors. Consequently, large tridactyl tracks may be more
easily mis-identified as ornithopod than as theropod. Schulp
& Al-Wosabi [11] attributed a large tridactyl trackway from
the Upper Jurassic of Yemen to an ornithopod trackmaker,
although its large size (track length greater than 50 cm) is un-
usual for ornithopods of that age. This was subsequently
questioned by Piñuela et al. [8], who argued that features of
some of the tracks are theropod-like. Our neural network
indeed suggested an ornithopod affinity for most tracks but
two (tracks 5 and 13), which were more theropod-like (0.59
and 0.71, respectively). As in the case of Lark Quarry, the
identification of the trackway will ultimately depend on the
question which of these tracks does more closely match
the trackmaker’s foot, which cannot be fully addressed
without careful restudy of the tracks, or three-dimensional
models thereof.
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3.5. Future research
The value of fossil tracks as palaeontological data sources
cannot be overstated, yet their interpretation can be challen-
ging. The shape of tracks is influenced by multiple factors,
including anatomy, substrate properties and behaviour, but
also post-formational alteration [32,39]. Although tracks are
organized into separate ichnotaxa based on shape features
thought to reflect anatomy, these ichnotaxa in fact form a con-
tinuum of shapes rather than discrete classes [21]; such
continua must be analysed using rigorous quantitative
methods. Neural networks may overcome limitations of pre-
vious quantitative approaches and are able to adapt to the
immense complexity of the data. The application of neural
networks may go well beyond simple classification tasks as
carried out here. By learning to distinguish relevant from irre-
levant shape features, thesemethods could be used to constrain
foot shape, movement and sediment properties for a given
track or trackway, and even to produce outline drawings and
measurements from three-dimensional models that capture
the important shape features better than any current objective
outline technique [19,23]. Neural networks, in principle, and as
demonstrated here, have the ability to outperform human
experts in any of these tasks.

Traditional ichnology has been based on interpretive out-
line drawings in order to document and communicate track
morphologies. Such outline drawings are, however, deeply
problematic for quantitative analysis because of (i) their sub-
jectivity, (ii) the loss of three-dimensional information and
(iii) the abstraction of three-dimensional shapes to a set of
margins which often do not exist in reality. While outlines
drawn by a single well-versed researcher might be considered
to be consistent, outlines of separate researchers are certainly
not. Subjective decisions during drawing outlines include the
precise position of the track margin [19,23], but also the
degree of ‘improvement’ to interpolate outlines, remove
post-formational alterations, and to highlight anatomical fea-
tures of interest. These subjective decisions can result in
strikingly different outline tracings of a single track (e.g.
[19,23]). Because such decisions may be influenced by a
priori assumptions, in particular about the trackmaker taxon
responsible, the danger of circular arguments when analysing
these outlines is real. Despite this, there is still value in
outline drawings for quantitative analysis, if carried out care-
fully, as demonstrated in the present approach. Using such
drawings can only be the first step, and future work will
soon need to switch to three-dimensional models to train
such neural networks.

There has been a growing movement toward collecting
and publishing three-dimensional data, particularly as part
of a ‘standard ichnological protocol’ [22], using methods
such as laser scanning and particularly photogrammetry
[40–42]. Long-term digital preservation, however, requires
not only the capture of sets of photographs suitable
for photogrammetry, but also the storage of such data in
curated repositories such as Figshare and Morphosource, or
as supplemental data associated with published papers.
If kept outside of such repositories, data are likely to be lost
eventually after retirement of the researcher. Only if and
when three-dimensional data is more widely available, quan-
titative methods such as neural networks will be able to
fully unlock the potential of fossil tracks as palaeobiological
data sources.
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