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To curb the rising threat of antimicrobial resistance, we need to understand
the routes to antimicrobial treatment failure. Bacteria can survive treatment
by using both genetic and phenotypic mechanisms to diminish the effect of
antimicrobials. We assemble empirical data showing that, for example,
Pseudomonas aeruginosa infections frequently contain persisters, transiently
non-growing cells unaffected by antibiotics (AB) and hyper-mutators,
mutants with elevated mutation rates, and thus higher probability of genetic
resistance emergence. Resistance, persistence and hyper-mutation dynamics
are difficult to disentangle experimentally. Hence, we use stochastic popu-
lation modelling and deterministic fitness calculations to investigate the
relative importance of genetic and phenotypic mechanisms for immediate
treatment failure and establishment of prolonged, chronic infections. We
find that persistence causes ‘hidden’ treatment failure with very low cell
numbers if antimicrobial concentrations prevent growth of genetically resist-
ant cells. Persister cells can regrow after treatment is discontinued and allow
for resistance evolution in the absence of AB. This leads to different muta-
tional routes during treatment and relapse of an infection. By contrast,
hyper-mutation facilitates resistance evolution during treatment, but rarely
contributes to treatment failure. Our findings highlight the time and concen-
tration dependence of different bacterial mechanisms to escape AB killing,
which should be considered when designing ‘failure-proof’ treatments.
1. Introduction
The evolution of antimicrobial resistance is a global and growing threat to human
lives and contemporarymedicine [1]. Studies have shown that the efficacy of anti-
biotic (AB) treatments is threatened by genetic resistance as well as phenotypic
mechanisms, such as persistence and hyper-mutation, which can facilitate resist-
ance evolution or provide other means of escape from ABs [2–5]. To ensure
prolonged efficacy of current and future ABs, it is crucial to investigate how
genetic and phenotypic mechanisms can emerge and lead to treatment failure.

In long-lasting infections, such as those caused by Pseudomonas aeruginosa or
Mycobacterium tuberculosis, random chromosomal mutations can emerge over
the course of treatment and cause complications or treatment failure [6,7].
The speed by which mutations arise is crucial for pathogen survival. This
mutation rate can be increased about 100- to 1000-fold [8,9] through mutations
that lead to error-prone replication in so-called hyper-mutators. While most
mutations will be deleterious, hyper-mutators are known to flourish in highly
fluctuating environments by acquiring beneficial mutations, like AB resistance,
that outweigh the cost of deleterious mutations [8,10,11]. Empirical studies with
P. aeruginosa, Escherichia coli [12] and Staphylococcus aureus [13] suggest that
hyper-mutators are frequently found in clinical settings and increase in
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Figure 1. Hyper-mutator and persister frequencies increase over the duration of the infection. (a) Hyper-mutator frequencies of Pseudomonas aeruginosa (%)
compiled from empirical studies. Shown are frequencies for samples from the environment or from patients with early (acute) infection, epidemic infection,
onset of prolonged (chronic) infection and chronic infection. For studies marked with an asterisk (*) isolate level data are shown, as patient level data were
not available (electronic supplementary material, text S1). (b) Persister numbers of multiple species as surviving cells (in %) after exposure to different AB classes
(colour-coded according to the mode of action) from in vitro and in vivo studies assembled from the literature by Salcedo-Sora & Kell [14]. For comparison with
clinical data, in vivo persister numbers from isolates from early and later infection stages with P. aeruginosa are shown separately (data from [15]) (see electronic
supplementary material, text S1). (online version in colour.)
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number with the duration of an infection (figure 1a, electronic
supplementary material, text S1). As hyper-mutators signi-
ficantly increase the probability of resistance emergence
(electronic supplementary material, figure S1a), their frequent
occurrence threatens the efficacy of ABs.

While the emergence of genetic resistance is still considered
the main cause of treatment failure, it is becoming increasingly
clear that non-genetic mechanisms also enable bacteria to
survive AB treatment. One such mechanism is persistence,
which describes a phenotypic state, defined by the formation
of transiently non-growing bacterial subpopulations that are
refractory, i.e. unaffected by ABs [16]. This can be observed
as a biphasic killing curve in the presence of ABs (electronic
supplementary material, figure S1b), where the growing popu-
lation dies rapidly, leaving the smaller persister population,
which declines at a much slower rate.

Persistence has been reported for most AB classes at
substantialnumbers (figure1b; electronic supplementarymaterial,
text S1). Moreover, high-persister mutants can generate larger
persister subpopulations than thewild-type [17–19].High-persist-
ence, and persistence in general, is beneficial in highly fluctuating
environments [20,21] and frequently found in infections with E.
coli [22],Candida albicans [23] and P. aeruginosa [24]. Notably, simi-
lar tohyper-mutators, persister subpopulations andhigh-persister
mutants increase with the duration of infections (figure 1b, [15]).
Therefore, (high-)persisters could cause the ‘paradox of chronic
infections’,whichdescribespersistent infectionsof genetically sus-
ceptible pathogens [25]. The prolonged survival of susceptible
bacteria due to persistence could also facilitate resistance evol-
ution, by increasing the opportunities for mutations to occur [2],
without changing the mutation rate itself.

The frequent occurrence of hyper-mutators and high-
persisters in pathogen infections, even in the presence of
resistance evolution, suggests that genetic and phenotypicmech-
anisms are both beneficial for survival in changing environments
(such as AB treatment). Further, hyper-mutation and high-
persistencemutations might combine into onemutator–persister
genotype, ashasbeen found in clinical strainsofP. aeruginosa [15].
Interestingly, Mulcahy et al. [15] found mutator–persisters to be
also genetically resistant against ABs, indicating that resistance
can still be beneficial, and potentially facilitated by the presence
of both hyper-mutation and high-persistence.

Disentangling the contributions and timing of genetic and
phenotypic mechanisms leading to treatment failure poses sev-
eral challenges. Examining the dynamics of (high-)persistence is
inherently difficult experimentally due to the stochastic and
phenotypic nature of this trait [16,26]. Including hyper-
mutators will likely aggravate this problem, due to the high
diversity of mutations that can arise and the corresponding
necessity for more experimental replicates [27]. Instead, we
use a combined pharmacokinetic (describing AB concentration
changes over time) andpharmacodynamic (describing the effect
of the AB concentration on the pathogen population) model,
which is the main class of population models used to predict
drug action and pathogen response [28–30]. Previous studies
withpharmacokinetic–pharmacodynamicmodelshavedemon-
strated their success in predicting pathogen evolution and
therapy outcome [31–34]. Here, we use them to investigate (i)
how mutant populations of hyper-mutators (M), high-persis-
ters (P) and resistant (R) cells—as well as all their respective
combinations—evolve during or following AB treatment, (ii)
how they affect treatment outcome and explain the simulation
outputs by (iii) deriving analytical calculations for the fitness
of specific genotypes. We show that R, M and P populations
cause or facilitate treatment failure at distinctABconcentrations,
infection timescales and final cell numbers. Our goal is not to
make precise quantitative predictions, but rather
use mathematical modelling to explore under which treatment
conditions these populations can emerge and rise in frequency.
2. Materials and methods
(a) Stochastic population model
We investigate the relative importance of high-persistence,
hyper-mutation and resistance mutations (leading to P, M
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Figure 2. Illustration of the full mathematical model describing resistance, high-persistence and hyper-mutator dynamics. The eight genotypes consist of the wild-
type (N ), hyper-mutators (M ), high-persisters (P), mutator–persisters (U ) and their corresponding resistant mutants denoted by subscript R (electronic supplemen-
tary material, table S1). Persister phenotype states (hatched) are denoted by a subscript p. Switching between these two states (dashed arrows) happens at rates sF
and sB for N and M, and with hF- and hB-fold increase for P and U. Net growth rates as determined by AB sensitivity (equation (2.3), electronic supplementary
material, text S3) are given as ψN for susceptible (MIC = 1) and as ψR (MICR = 10 x MIC) for resistant genotypes, together with growth costs due to resistance, cR,
and due to hyper-mutation, cM. Solid arrows show mutational transitions between genotypes, which happen at rates µM, µP and µR. Mutators (M, U ) have hµ-fold
increased mutation rates. See electronic supplementary material, table S2 for parameter values.
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and R subpopulations, respectively)—and all their combi-
nations—over the course and after discontinuation of AB
treatment by using a stochastic population model (figure 2;
electronic supplementary material, table S1). Our model
incorporates pharmacokinetic and pharmacodynamic func-
tions to realistically simulate AB treatment (equation (2.1))
and the distinct effects of ABs on our respective subpopu-
lations. As proposed by Balaban et al. [17], we describe
phenotypic persistence as a two-subpopulation process. For
each of our AB-susceptible genotypes (the wild-type N, M,
P and mutator–persisters U ), we model a growing sub-
population, which is affected by ABs (equation (2.3)), and a
non-growing (i.e. cmax ¼ 0 ) persister subpopulation, that
is unaffected by ABs. The transitions between growing
and persister subpopulation happen stochastically at
rates sF (N ! Np) and sB (Np ! N) for N and M, or
hFsF (P ! Pp) and hBsB (Pp ! P) for P and U. In our model,
switching rates are constant (i.e. not environment-dependent)
and we assume that resistant subpopulations (NR, PR,MR and
UR) do not generate persisters, as we found that persistence
does not convey any additional benefit to already resistant
bacteria (electronic supplementary material, figure S2).

For our starting conditions, we assume that only the sus-
ceptible wild-type genotype, consisting of its two phenotypic
states, N and Np, is present at 1 × 109 colony forming units
(CFU) total (N +Np), with N and Np being in equilibrium,
according to their respective switching rates. The ratio N=Np

at equilibrium is obtained by determining the dominant eigen-
vector of the analytical solution of the two-population persister
model from Balaban et al. [17] in the absence of ABs and with
our respective parameters (see also [5]).

Growth of the non-persister populations is limited by the
overall carrying capacity K, which, together with a constant
natural death rate d, results in realistic competition between
genotypes. Since our mutations are coupled to growth, the
death rate also enables mutations to occur after capacity is
reached. P and M mutants can only arise by mutation from
the susceptible growing N population at rates mP and mM,
respectively, and U from the susceptible growing P and M
populations at rates mP and mM, respectively. To investigate
the relative contribution of M and P to the emergence of U,
we separately quantify mutation events fromM and P leading
to U when mutation to U is only possible from either M or P.

Resistant mutants NR and PR emerge via growth-
dependent mutation from N and P at mutation rate mR,
whereas MR and UR have elevated mutation rates and arise
from M and U at hmmR. The maximal growth rate of hyper-
mutator populations (M, MR, U and UR) is reduced by the
cost of hyper-mutation (cM): cmaxM ¼ cmax(1� cM) (electronic
supplementary material, text S2). Similarly, the growth of
resistant populations is reduced by the cost or resistance (cR):
cmaxR ¼ cmax(1� cR). Note that for MR and UR, these costs
are multiplicative. See electronic supplementary material, text
S3 for the corresponding system of ordinary differential
equations. We calculate the probability of genotype survival
at the end of the treatment as the fraction of simulation runs
per AB concentration where the genotype population size is
larger than zero. The average number of surviving cells
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(b) Pharmacokinetic and pharmacodynamic functions
We model AB treatment with periodic dosing intervals and
exponential AB decay, as shown in the electronic supplemen-
tary material, figure S3, by using the pharmacokinetic function

A(t) ¼
X

n
Amaxe�k(t�ðn�1)tÞ, ð2:1Þ

with n ¼ 1, . . . ,tmax=t representing the number of dosing
events. For our simulations, we model 8 days of daily AB treat-
ment (tmax = 192 h, t = 24 h) and examine a broad range of drug
concentrations Amax covering 0–50 × minimal inhibitory con-
centration (MIC) of the susceptible populations. Note that
due to drug decay, the concentration Amax denotes the peak
AB concentration, but will be generally referred to as drug
concentration in the main text. The decay parameter k is fixed
for all our simulations, except stated otherwise (electronic
supplementary material, table S2).

The effect of an AB on a bacterial population is defined by
the pharmacodynamic function [34,35]:

c(A(t)) ¼ cmax � E(A(t)) : ð2:2Þ
with

E(A(t)) ¼ (cmax � cmin)
(A(t)=MIC)k

(A(t)=MIC)k � ðcmin=cmaxÞ
: ð2:3Þ

The parameters cmax and cmin describe the maximal and
minimal net growth rates in the absence (cmax ¼ c(A ¼ 0)) or
the presence of high amounts of ABs (cmin ¼ c(A ! 1)). At
AB concentrations equal to their MIC, bacterial populations do
not grow (c(A ¼ MIC) ¼ 0). Resistant populations are assumed
to have MICR = 10 ×MIC, meaning that their growth stops at a
10-fold higher AB concentration than for susceptibles. The Hill
parameter κ determines the steepness of the pharmacodynamic
curve described by equation (2.3), which reflects the sensitivity
of bacterial growth to AB concentration changes.

Unless stated otherwise, simulations and calculations are
for bactericidal AB treatment. Additionally, we assess how
evolutionary dynamics change for bacteriostatic ABs, i.e.
ABs that arrest cellular growth, which can inhibit mutational
emergence. See electronic supplementary material, text S4 for
details. See electronic supplementary material, table S2 for all
parameter values of bactericidal and bacteriostatic AB simu-
lation treatments as well as for antimicrobial peptide (AMP)
pharmacodynamics.
(c) Deterministic fitness measures
To investigate which populations should be fittest for different
values of Amax, we separately calculate long-term growth rates
for each genetically unique population as approximate fitness
measures. For all resistant populations (NR, MR, PR and UR),
this is achieved by integrating the pharmacodynamic functions
(equation (2.3)), which describe the net growth rate plus the
natural death rate d (electronic supplementary material,
equation S6, S9, S12), over one treatment period ð0� tÞ and
dividing by t to derive the mean growth rate per hour (see
electronic supplementary material, text S5 for detailed expla-
nations and electronic supplementary material, text S6 for
closed integrals). Note that we assume that population sizes
are far from the carrying capacity, which allows us to only con-
sider exponential growth.

(d) Relapse simulations
High-persisters and hyper-mutators are both prevalent in
chronic infections and persisters have been proposed to cause
relapse of infection even in the absence of resistance [25].
Hence, in addition to the 8-day AB treatment described
above, we also simulate how and when surviving bacterial
populations can cause an infection to relapse after AB treatment
ends. For these relapse simulations, we only consider treatment
outcomes, where treatment failure is not apparent, which we
define by the total surviving population size being less than
105 CFU. If greater than 105 cells survive the treatment, we con-
sider that as an apparent, acute treatment failure and do not run
a relapse simulation. In clinic reality, due to individual differ-
ences in patients and infections, determining such a cut-off is
much more complicated and as such beyond the scope of this
work. However, 105 CFU is in line with clinical detection
limits, for example for the diagnosis of urinary tract infections
[36]. The regrowth of these small surviving populations is simu-
lated according to the equations outlined above, but in the
absence of AB administration (only considering the decaying,
leftover AB from the treatment), until a total bacterial popu-
lation size of 106 CFU is reached, or alternatively for a
maximum time of 10 years. We assume that relapse will only
be noticeable at pathogen loads that are an order of magnitude
higher than our detection limit of 105 CFU as monitoring of an
ongoing infection likely leads to detection of lower bacterial
numbers than for a new or relapse infection.

(e) Implementation
All simulations, analysis and plots were done in R v3.6.0 [37].
Stochastic simulations were implemented via the Gillespie
algorithm using the R-package adaptivetau [38]. To test the accu-
racy of our simulation results, we used different tolerance levels
for the relative rate changes in step size selection, which did
not change our results notably. The stochastic simulations
were run 1000 times for each AB concentration (0–50 ×MIC
at 0.1 steps) for 8 days for acute treatment and 10 years for
relapse. The corresponding R scripts are publicly available
at https://github.com/ChrisWitzany/mutator-persister-evol-
ution. Analytical solutions of the population models were
determined by using Matlab version R2020b [39].

3. Results
(a) Modelling of persistence, mutator and resistance

dynamics
To investigate the relative importance of phenotypic and gen-
etic mechanisms of bacterial cells to escape AB killing, we
use a stochastic pharmacodynamicmodel (figure 2) to simulate
population dynamics during AB treatment (Methods, elec-
tronic supplementary material, table S1, text S3). Bacterial
persistence can complicate treatment by allowing susceptible
bacteria to survive inhibitory AB concentrations, without
having to acquire genetic changes [25]. To capture this, we
first focus on a submodel that describes the susceptible geno-
type (N), its persister subpopulation (Np) and a resistant
mutant (NR), which cannot switch into a persister state
(figures 2 and 3a). N and Np stochastically switch back and

https://github.com/ChrisWitzany/mutator-persister-evolution
https://github.com/ChrisWitzany/mutator-persister-evolution
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forth at rates sB and sF (electronic supplementary material,
figure S1b). We start with N and Np in equilibrium according
to the stochastic switching in the absence of AB treatment
(Methods), i.e. the growing, AB-sensitive subpopulation N at
approximately 109 CFU and the non-growing, AB-
refractory persisters Np at approximately 5 × 102 CFU. From
the growing subpopulation (N), a de novo resistant genotype
(NR) with MICR = 10 ×MIC of susceptible cells can arise
via random mutation (electronic supplementary material,
figure S1a). Since we assume that mutations are linked to
cellular growth the non-growing persister subpopulation
cannot mutate. Hence, Np can only facilitate resistance emer-
gence through prolonging the survival of the N population
(electronic supplementary material, figure S3). Note that resist-
ance is, by definition, an increase in MIC, and we assume here
that this increase (10 ×MIC) is not as large as the highest poss-
ible treatment dose (up to 50 ×MIC). This is crucial as many
single mutations were empirically found to provide relatively
small (less than 10 x) increases in MIC (see [33] for references),
which is considerably smaller than the maximal clinical dose
for many AB types (see https://www.eucast.org/rd).

We simulate 8 days of treatment with an AB dosage equal
to MICR given once every 24 h, which decays over time (elec-
tronic supplementary material, table S2). As expected, N
declines rapidly under treatment and Np declines at a much
slower rate, which is determined by the rate of switching
back to N, displaying the characteristic biphasic killing
curve of persisters ([17], figure 3a; electronic supplementary
material, figure S1a). NR evolves rapidly from the N popu-
lation and reaches carrying capacity after approximately 2
days. Note that the time until NR reaches carrying capacity
is dependent on the cost of resistance. By contrast, N and
Np are fully eradicated after about 4 days. This demonstrates
that while persistence prolongs clearance of the susceptible
genotype, the emergence of resistance seems to be the sole
cause of treatment failure under the simulated regimen. In
contrast with our persister simulations (figure 3a), treatment
failure due to persistence is prevalent in prolonged infections,
even in the absence of resistance, but is often linked to the
emergence of high-persisters (P) [15,21,23,24]. Compared to
N, P cells are mutants which have a higher rate of switching
to persistence (hF-fold) and a lower rate of switching back (hB-
fold≪ 1), resulting in larger persister fractions with a longer
‘lifespan’. And indeed, if N can acquire a high-persistence
mutation, the emerging P genotype (P + Pp) is present at treat-
ment failure at low numbers (figure 3b). Specifically, our
simulations show that P rapidly emerges from N, reaches
approximately 103 CFU, but then rapidly gets killed by the
AB. However, in about half of the cases, a very small fraction
of P enters the persister state (Pp) before eradication and
persists through the whole AB treatment due to the low
back-switching rate from Pp (figure 3b). Note that resistance
could emerge from P (PR), but in most cases, P is eradicated
before that happens.

High-persisters are not the only problematic mutants
increasing in prevalence over the duration of infections [15].

https://www.eucast.org/rd
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There are also hyper-mutators (M), mutants which have an
elevatedmutation rate, and are associatedwith facilitated evol-
ution of resistance. However, higher mutation rates come at a
growth cost (cM), due to the accumulation of detrimental
mutations [40]. Like with P, we can observe the emergence of
theM genotype (M +Mp) fromN at the beginning of treatment
at low frequencies (approx. 103 CFU), but it rapidly gets eradi-
cated (figure 3c). In rare cases, MR evolves before M is fully
eradicated (approx. 4%). Although MR and NR are both able
to grow under the applied AB dose, due to MR emerging at a
later point in the treatment and growing slower than NR by
the cost cM, MR only reaches population sizes of around 109

CFU, whereas NR reaches capacity (1012 CFU).
Overall, we find that the emergence of the NR genotype is

the predominant cause of treatment failure in this regimen,
but that the P or MR genotypes can also survive treatment
in approximately 43% and approximately 4% of the cases,
respectively. This shows that both P and M genotypes can
confer fitness advantages to N cells and complicate treatment.
These results are in line with hyper-mutator frequencies in
early (acute) infections, which we compiled from the litera-
ture (figure 1a; electronic supplementary material, text S1),
but there is—to our knowledge—no data on high-persister
frequencies for acute infections.

Mutations conferring M and P phenotypes do not have to
occur independently. As hyper-mutation is by itself detri-
mental, but is known to facilitate beneficial mutations other
than AB resistance [41], they could acquire the beneficial
high-persistence mutation, which would lead to a higher
frequency of the combined genotype than that of hyper-
mutators alone. Consequently, we allow for the emergence
of a combined mutator–persister genotype (U +Up),
which has both an increased mutation rate as well as high-
persistence switching rates and can evolve from P or M
populations through mutation (figure 2). Further, U can
acquire a resistance mutation leading to UR. Interestingly,
the population dynamics of the full model (figure 3d ) reflect
the results of the partial models described above: M and P
come up early in the treatment but are quickly eradicated
by the AB. U also emerges at the beginning of treatment
but reaches even lower population sizes than M or P and is
quickly wiped out. The only viable cells left at the end of
the 8-day treatment period belong mainly to NR, with low
numbers of MR and Pp populations surviving as well.

(b) Resistance and high-persistence cause treatment
failure at distinct antibiotic concentrations

So far, we only considered one AB concentration (10 ×MIC),
which corresponds to the MIC of the R populations (MICR),
but the fitness of the various subpopulations depends on
the strength of the selection pressure due to AB. Hence, we
investigated which mutant genotype is expected to emerge
and establish itself under different AB concentrations. To
examine this, we used the full model to determine the prob-
ability of a genotype to survive 8 days of treatment for a
range of AB concentrations (0–50 ×MIC). Our simulations
show that for sub-MIC survival of all genotypes is possible
but starts declining at different concentrations greater than
MIC (figure 4a; electronic supplementary material,
figure S4). The first genotype to reach zero probability of sur-
vival is M, reflecting that hypermutability is costly and
without immediate benefit. Then the probability for N survi-
val drops to zero, followed by that of the resistant genotypes
PR and UR, which already declines for AB concentrations
greater than 0.5 ×MICR, whereas MR survival only reaches
zero at about twice the MICR. These differences between
resistant genotype survival show that resistance evolution is
limited by emergence from the source population (i.e. P, U
and M ) and that hypermutability can ameliorate this, if
only few mutations are necessary. For AB concentrations
below approximately 2 ×MICR survival of NR is almost
100% but drops steeply for concentrations higher than 20 ×
MIC where NR is replaced as the dominant genotype by the
high-persister population (P), which stabilizes at around
35% survival for up to 50 ×MIC. Other subpopulations
than NR and P can only be found very rarely at the end of
treatment, with e.g. MR surviving in approximately 2% of
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the treatment simulations below MIC and U in less than 1%
in ranges where P populations dominate.

(c) In contrast to resistance, persistence causes
treatment failure with low numbers of surviving
cells

The survival probability does not reflect the absolute patho-
gen load (mean number of surviving cells) of a certain
genotype. For subinhibitory AB concentrations less than
0.5 ×MIC, the subpopulations surviving at substantial
absolute numbers are diverse (PR= 105–108, MR= 107–1010,
UR= 106–108 CFU, electronic supplementary material, figure
S5). When NR populations dominate survival, they generally
reach carrying capacity (1012 CFU). Though differing by
orders of magnitude from that, the other resistant genotypes
also appear at substantial numbers for AB concentrations up
to MICR (PR and UR at 106–107 CFU) or up to 2 ×MICR (MR at
109 CFU) (figure 4b). By contrast, when P is the dominating
population, the total population size drops drastically to
less than 10 cells (figure 4b). These tiny populations largely
consist of P and U cells (figure 4b), and while U survives con-
siderably less frequently than P (figure 4a), in the cases where
U survives, its cell numbers are similar to P. Overall, treat-
ment failure probability above MIC is dominated by NR,
with bacterial cells reaching carrying capacity, until AB
doses exceed MICR substantially and only persistent, non-
growing cells survive at very low numbers. These results
do not change if resistant cells are allowed to switch into a
persister state as well (electronic supplementary material,
figure S2).

(d) Differential genotype fitness during treatment is
explained by mutational costs and persistence
switching rates

To formally understand the change from NR to P as the domi-
nant genotype at high AB concentrations, as well as the low
probability of survival of other genotypes, we determine
approximate fitness measures for all genotypes as the net
growth rate far from carrying capacity (Methods). Since persis-
ters do not grow and arise from a phenotypic—not a genetic—
state change, we consider the growing and the non-growing
state of a genotype together to calculate its fitness (Methods;
electronic supplementarymaterial, text S5 and S6). For AB con-
centrations less than 0.5 ×MIC, we find the highest fitness for
the susceptible genotypes N and P (figure 4c), as the fitness
of all other genotypes is reduced by mutational costs, which
outweigh the mutational benefits. However, for AB concen-
trations between 0.5 ×MIC and 2.5 ×MICR, the resistant
genotypes NR and PR display the highest fitness, while MR

and UR grow slightly slower, due to the cost of hypermutabil-
ity. Notably, fitness of all genotypes declines with increasing
AB concentration, but more slowly for resistant ones. From
approximately 3 ×MIC onwards the rate of switching back
from persistence determines the fitness of non-resistant geno-
types (and hence remains constant at a negative value), with
P and U having higher fitness than N and M, due to
their lower back-switching rates. By contrast, the resistant gen-
otypes continue to decline with increasing AB concentration
until P and U have the highest fitness (which is equal to
� hBsB ¼ �10�4) for AB concentrations greater than 2.5 ×
MICR. These findings agree with the stochastic simulations of
genotype survival and abundance (figure 4a,c), and arise
from the costs of specific mutations as well as the switching
rates of persister phenotypes. The residual discrepancy is
explained by differences in mutation rates and in the number
of mutations necessary for genotypes to emerge, i.e. how fast
a genotype can emerge from N (N!M!MR versus N→M/
P→U→UR, etc.; figure 2). The importance of mutation rates
is highlighted when we consider bacteriostatic ABs, which
inhibit bacterial growth and therefore mutational emergence
(electronic supplementary material, text S4). We find that
under treatment with bacteriostatic drugs the window where
resistance is the dominant survival mechanism and the
survival probability of high-persisters is drastically reduced
(electronic supplementary material, figure S6).
(e) Mutator–persisters arise from hyper-mutators
during treatment and from high-persisters during
relapse

Even though with very low probability and numbers,
cells combining hyper-mutation and high-persistence pheno-
types (U ) can survive at the end of the treatment. This could
result in subsequent treatments being ineffective due to (i) the
larger fraction of persistent subpopulations, or (ii) the higher
mutation rates facilitating the emergence of problematic
mutations like resistance, or (iii) a combination of both.
Hence, the emergence of U deserves closer inspection, specifi-
cally, which population do they originate from, i.e. do they
emerge from the fitter P cells or do M cells acquire the ben-
eficial high-persistence mutation? By tracking the mean
cumulative mutation events of either M or P populations pro-
ducing U cells over the course of treatment, we find that,
surprisingly, despite the high survival rate of P, contributions
from M to U are higher than the contributions from P for
all AB concentrations (electronic supplementary material,
figure S7). As the cumulative contributions to U do not
necessarily reflect the establishment of the resulting U popu-
lation (electronic supplementary material, text S7), we ran
simulations where either only M or only P could mutate to
U. We found that the U population only emerges in a similar
manner as before (figure 4b), ifM-to-U mutations are allowed
(electronic supplementary material, figure S8), which makes
M cells the main source population for U over the course of
AB treatments.

However, P subpopulations are likely to become proble-
matic after AB treatment subsides, as they provide a pool of
viable cells, which can regrow in the absence of ABs and
cause relapse of the infection [25]. To capture this, we model
the regrowth of populations surviving 8-day AB treatment at
less than 105 CFU, which only occurs at AB concentrations
higher than 1.5 ×MICR (figure 4). Here, we assume that greater
than 105 cells are clinically detectable andwould result in treat-
ment continuation (figure 5a). More than 90% of the ‘non-
detectable’ surviving populations can regrow to at least 106

CFU within 10 years, causing a relapse of infection (electronic
supplementary material, figure S9). The cell numbers of differ-
ent genotypes at relapse, mainly correspond to P andU, as well
as small PR and UR populations (figure 5b), suggesting that P
and U subpopulations increasingly play a role in recurring
infections as indicated by clinical studies [15,24]. Notably, the
NR genotype only causes relapse at relatively low frequencies
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and for a very narrow range of AB concentrations (figure 5b).
These populations, however, result in relapsewithin days (elec-
tronic supplementary material, figure S10). This is in stark
contrast with the time until relapse caused by P and U,
which are in a persister state at the end of treatment and
must first switch back to a growing state—which on average
happens within a year (median = 37 weeks; electronic sup-
plementary material, figure S10). When considering AB
treatment and relapse combined, the total contributions of P
to U are higher than those from M (electronic supplementary
material, figure S7) asM does not survive treatment at AB con-
centrations relevant for relapse simulations (figure 4a). Hence,
whileM is the main source population ofU during acute infec-
tion treatment, after AB treatment ends, P becomes the main
source population.
4. Discussion
Early (acute) and especially prolonged (chronic) infections with
bacterial pathogens like P. aeruginosa or E. coli show a concern-
ing frequency of mutator and high-persistence phenotypes,
both of which can interfere with AB treatment success, for
example by facilitating the evolution of resistance [2,5,41]. In
this study, we used a stochastic population model to disentan-
gle the complicated emergence and interplay of phenotypic
and genotypic bacterial strategies that allow them to survive
bactericidal AB treatment during acute infections and to
establish chronic infections, i.e. relapse after treatment ends.

We find that for relatively low (but higher than MIC) AB
concentrations treatment failure is certain and caused by resist-
ant genotypes (R) which grow to carrying capacity by the end
of the treatment (figure 4a,b). By contrast, for AB concen-
trations much higher than MICR treatment failure happens
only in about a third of the cases and is caused by high-
persistence genotypes in persister state at very low population
sizes. This behaviour is explained by our deterministic fitness
calculations, which show that for AB concentrations greater
than 2.5 ×MICR fitness of the high-persistence genotypes,
P andU, is larger than that of the resistant genotypes as persis-
ters are unaffected by high AB concentrations (figure 4c). P and
U as the main cause for treatment failure at high AB concen-
trations fits with the clinically observed ‘paradox of chronic
infections’ [15,25], especially as peak AB concentrations
reached in the treatment of cystic fibrosis (CF) patients with
inhaled, nebulized ABs are high and on average greater than
2.5 ×MICR [42]. Our findings suggest that treatment failure
via high-persistence is most likely to occur if sufficient resist-
ance cannot easily evolve. This means that AB concentrations
targeted at exceeding MICR might instead select for ‘hidden’
infections with persisters, which can then establish chronic
infections. Hence, persisters could specifically be targeted at
later time points of the treatment with anti-persister drugs
[43]. This strategy could be tested under laboratory conditions
by treating bacterial populations with high AB doses followed
by anti-persister drugs and comparing it to potential regrowth
from cultures without anti-persister treatment.

In contrast with bactericidal ABs, treatment with bacterio-
static ABs inhibits cell growth but does not increase cell death.
This could decelerate the emergence of resistance mutations as
their emergence is contingent on bacterial growth. Indeed,
when running our simulations with a bacteriostatic AB
(Methods), we find that the range of AB concentrations for
which resistantmutants are the predominant cause of treatment
failure is smaller than for bactericidal ABs (electronic sup-
plementary material, figure S6). Similarly, the probability of
survival due to high-persisters at higher AB concentrations
also decreases in comparison to treatment with bactericidal
ABs due to the lower mutational emergence of P cells. While
these results seem to suggest that bacteriostatic ABs are better
at limiting bacterial survival due to resistance or persistence,
they relyon the immune system to clear bacterial cells.However,
many pathogens, like P. aeruginosa, are capable of evading the
immune system, for example through quiescent cell states
as those of persister cells [44,45], but also via several other
mechanisms [46].

The total population size of P and U during AB treatment
can only decline if the persisters switch back to the growing
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state, which for high-persistence mutants occurs very slowly
(electronic supplementary material, figure S10), meaning that
they die more slowly than other genotypes. Accordingly, we
see that persister subpopulations primarily prolong the time
to clearance and constitute a substantial fraction of the bacterial
population only at later stages of treatment when all (or most)
non-persisters have died (figure 3). The wild-type switching
rates used here [17]might even underestimate persister survival
as they lead to shorter lifetimes of persister subpopulations than
found by Svenningsen et al. [47], who reported that E. coli pers-
isters can survive at least 7 days of AB exposure. Using random
parameter sampling and linear discriminant analysis (LDA, see
electronic supplementary material, text S8 for details) to inves-
tigate the influence of transition rates between genotypic and
phenotypic subpopulations (i.e. mutations and switching
rates; Methods), we find that wild-type (N) switching rates to
(sF) and from (sB) persistence influence treatment outcome sub-
stantially (electronic supplementary material, figure S11).
Particularly, sB has a large impact, with higher back-switching
rates leading to more clearance, which fits well with the role
of sB in determining the fitness of high-persisters (figure 4c).
This should be even more important in clinical infections,
where multiple stressors are present and bacterial doubling
times are generally much slower than under laboratory con-
ditions. Yet, empirical determination of back-switching rates
from persistence under different conditions and for different
genotypes is scarce so far. Further, the commonly used time
frames of 8–24 h might not be sufficient to empirically investi-
gate persistence—and especially high-persistence—dynamics
appropriately.

Similar to back-switching of persisters, resistance could be
reversed or at least its cost compensated by additional
mutations. Higher mutation rates, like in hyper-mutators, for
example increase the probability for reversal of mutations,
whereas compensation is more likely in wild-type cells [48].
Our simulations show, however, that the cost of resistance
does not significantly influence our results and persistence
remains the only escape mechanism at high AB concentrations
(electronic supplementary material, figure S12).

Persistence and high-persistence have been shown to
facilitate the evolution of resistance over the course of AB
exposure under laboratory conditions [2,5]. Interestingly, in
our simulations, P does not facilitate the evolution of resist-
ance during the treatment of acute infections as illustrated
by the low probability of survival of the PR genotype at the
end of treatment (figure 4a,b). This is reflected in our LDA,
where an extremely low percentage of simulations with
random parameters result in PR as the dominant genotype
(electronic supplementary material, figure S11a). Instead, P
enables survival at AB concentrations where AB resistance
is not viable anymore in our regimen (figure 4c). We find
that this reasoning is robust for a wide range of parameter
sets (electronic supplementary material, figure S11c) as
higher mutation rates to resistance (µR) and higher AB con-
centrations (Amax) have the largest influence on pushing
treatment outcome towards failure due to resistance or failure
due to persistence respectively. Empirical evidence for the
distinction between persistence and resistance in causing
treatment failure comes from chronic P. aeruginosa infection
in CF patients, where high-persistence phenotypes were
prevalent, but only some were additionally resistant [15].
This potentially indicates that resistance via chromosomal
mutations, as simulated here, might be less easily attainable
or less beneficial in disease settings than in the laboratory.
Additionally, the discrepancy between clinical findings and
laboratory experiments regarding resistance-facilitation
by persisters can partially be explained by experimental
limitations: directed evolution experiments [2] use only com-
paratively low AB concentrations for relatively short time
frames while simultaneously allowing for long AB free
regrowth periods. Accordingly, while we do not find that per-
sistence facilitates resistance evolution over the course of
acute treatment, when we consider relapse after AB treatment
ends, we indeed see PR cells coming up (figure 5b). However,
our assumption that persisters cannot mutate is likely over-
simplistic and currently remains an open question in the
field, but there are empirical studies indicating that persisters
can still be metabolically active (reviewed in [26]) and might
even increase mutation rates [49]. Further, we are not consid-
ering plasmid-borne resistance in this study, which could
speed up resistance emergence, but it is unclear if plasmid
conjugation occurs in persister subpopulations.

Our simulations show that, in comparison to P,M is much
more likely to facilitate the evolution of resistance (figure 4),
which agrees with theoretical [10] and experimental studies
[11]. However, while MR readily evolves, it emerges later
than NR (figure 3c) and grows at a slower rate due to fitness
costs of hyper-mutation, which results in MR reaching lower
population sizes than NR. Hence, if resistance evolves readily
enough from N, hyper-mutators cannot dominate the popu-
lation due to resistance-facilitation. However, it is still
possible that M could acquire other beneficial mutations miti-
gating its cost, which are not accounted for in our model [41].
Further, in clinical conditions, M subpopulations might
already be present at the onset of AB treatment, speeding
up the emergence of MR. Nonetheless, our simulation results
for M survival of acute treatment (figures 3 and 4a) are in
line with hyper-mutator frequencies found in acute infec-
tions, but significantly lower than those found in chronic
infections, indicating a potential role of acquiring beneficial
non-resistance mutations (figure 1a).

In addition to the individual impact of high-persistence
and hyper-mutation on the potential for treatment failure, we
investigated the emergence of a combined genotype (U). Gen-
erally, the dynamics of the full model (figure 3d ) mirror the
dynamics of the individual sub-models forM and P regarding
their survival probability and end population size (figure 3b,c).
This is a priori not obvious for such a complicated system invol-
ving various genotypes and phenotypes and gives hope that
studies of isolated systems can provide information about
more complex combinations. Further, we find that U cells
mainly emerge from the M population (figure 4a,b; electronic
supplementary material, figure S6). Hence, in accordance
with empirical studies [41], we find that M could hitch-hike a
beneficial mutation, here the high-persistence mutation, to
offset the cost of hyper-mutation. Interestingly, since the adap-
tive value of high-persistence comes from the non-growing
persister state, the growth cost of hyper-mutation could
matter less in U. Thus, M could facilitate rapid emergence of
U early during treatment, which would allow the hyper-
mutation to get fixed at minimal cost via U—as opposed
to the situation where M acquires R and enters growth
competition with other R genotypes (figure 3c).

Notably, we find that the subpopulation dynamics change
between treatment failure of acute infection and relapse after
treatment is discontinued. While U is most likely to arise
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from M during the treatment of acute infections, we find that
during regrowth of small surviving populations, more U
emerge from P than from M (electronic supplementary
material, figure S7). Therefore, high-persistence mutants,
such as HipQ [17,19], might not facilitate evolution on a short
timescale, but rather on a longer timescale after stress subsides.
Since both hyper-mutators and high-persisters are more fre-
quent in prolonged infections, it is crucial to understand their
dynamics during and following treatment (figure 5). Specifi-
cally, high-persisters have been proposed to cause recurring
infections by providing a small pool of surviving cells, which
start to regrow once AB concentrations subside [25]. This
agrees with our findings, where relapse from small surviving
populations is common (electronic supplementary material,
figure S9) and predominantly caused by P (figures 4 and 5).
Additionally, we find PR, U and UR genotypes in small num-
bers (figure 5b), showing that P does not only survive high
AB concentrations to cause relapse, but also facilitates the
emergence of resistance in the absence of ABs, as has been
shown experimentally [2].

Our relapse model likely overestimates the time until pers-
isters wake up in the absence of ABs, and therefore the time
until relapse (electronic supplementary material, figure S10),
as we assume a constant (and especially for hyper-persisters
very slow) back-switching rate. This assumption corresponds
to so-called ‘spontaneous persistence’ but neglects ‘triggered
persistence’ [16,17], which is characterized by switching rates
that are dependent on ‘trigger’ stressors, such as starvation
[47] or ABs [50]. Therefore, considering triggered persistence
could lead to faster switching back from persistence in the
absence of ABs. Disentangling the effect and magnitude of
multiple stressors on triggered switching is complicated and
parameterization attempts suffer from danger of overfitting
[21,51], which is likely the reason why—to our knowledge—
no parameter estimates for triggered switching are available
for high-persisters. Overall, our model simulations provide a
conservative estimate of the probability of relapse, which
could be higher with triggered persistence.

Lastly, persister frequencies show a high amount of vari-
ation in empirical studies, even in the presence of the same
AB (figure 1b), which could be caused by stochasticity or
differences in cellular physiology and persistence-causing
mechanisms [52,53]. Notably, when grouped by mechanism
of action, antimicrobials which target the bacterial membrane
display the lowest persister frequencies [14]. All membrane-
targeting antimicrobials analysed by Salcedo-Sora & Kell
[14] were AMPs, which might indicate reduced persister for-
mation or survival with AMPs as compared to ABs. Running
our simulations with AMP-like pharmacodynamic par-
ameters (Methods, electronic supplementary material, table
S2), we find drastically lower survival of high-persistent
and resistant bacteria (electronic supplementary material,
figure S13) than for AB-like pharmacodynamics (figure 4).
This is due to AMPs killing bacteria faster than ABs, allowing
less opportunity for mutation emergence and switching into
the persister state. This suggests that AMPs can decrease the
chance of high-persister (and mutator–persister) emergence,
and thereby the probability of relapse, while at the same
time allowing for less resistance evolution [31].

In conclusion, we find that high-persistence and hyper-
mutant genotypes mainly act independently and enable
resistance evolution during different treatment stages, with
hyper-mutator cells facilitating the emergence of resistance
over the course of AB treatment and high-persistence after
treatment ends. Accordingly, we find that the emergence of
the combined mutator–persister genotype is driven by differ-
ent populations during acute treatment (M ) and during
relapse (P). Generally, the treatment AB dose relative to the
MIC of the resistant population is an important determinant
for the selection of different genotypes: while genetic resist-
ance leads to immediate treatment failure for AB levels up
to 2.5 ×MICR, high-persistence dominates at higher AB
levels, leading to relapse after drug removal. Hence, particu-
larly the interplay of genotypes and phenotypes needs to be
studied in environments with fluctuating stressors. More
broadly, our modelling framework is not limited to AB treat-
ment of bacterial infections but can be applied to other
diseases, where drug efficacy is inhibited by genotypic and
phenotypic mechanisms, such as in fungal infections [23,54]
or cancer [55,56]. Our results suggest that treatment strategies
should consider the different timescales at which various
drug-escape mechanisms operate to reduce the risk of
treatment failure and establishment of chronic infections.
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in the manuscript and its electronic supplementary material [57].
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