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A Midbrain Inspired Recurrent Neural Network Model for
Robust Change Detection
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We present a biologically inspired recurrent neural network (RNN) that efficiently detects changes in natural images. The
model features sparse, topographic connectivity (st-RNN), closely modeled on the circuit architecture of a “midbrain attention
network.” We deployed the st-RNN in a challenging change blindness task, in which changes must be detected in a discontin-
uous sequence of images. Compared with a conventional RNN, the st-RNN learned 9x faster and achieved state-of-the-art per-
formance with 15x fewer connections. An analysis of low-dimensional dynamics revealed putative circuit mechanisms,
including a critical role for a global inhibitory (GI) motif, for successful change detection. The model reproduced key experi-
mental phenomena, including midbrain neurons’ sensitivity to dynamic stimuli, neural signatures of stimulus competition, as
well as hallmark behavioral effects of midbrain microstimulation. Finally, the model accurately predicted human gaze fixa-
tions in a change blindness experiment, surpassing state-of-the-art saliency-based methods. The st-RNN provides a novel
deep learning model for linking neural computations underlying change detection with psychophysical mechanisms.
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ignificance Statement

For adaptive survival, our brains must be able to accurately and rapidly detect changing aspects of our visual world. We pres-
ent a novel deep learning model, a sparse, topographic recurrent neural network (st-RNN), that mimics the neuroanatomy of
an evolutionarily conserved “midbrain attention network.” The st-RNN achieved robust change detection in challenging
change blindness tasks, outperforming conventional RNN architectures. The model also reproduced hallmark experimental
phenomena, both neural and behavioral, reported in seminal midbrain studies. Lastly, the st-RNN outperformed state-of-the-
art models at predicting human gaze fixations in a laboratory change blindness experiment. Our deep learning model may
provide important clues about key mechanisms by which the brain efficiently detects changes.
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Introduction

Detecting critical changes in the environment is essential for
adaptive survival. Forebrain regions in the prefrontal and parie-
tal cortex, and the medial temporal lobe are all known to be
involved in change detection (Beck et al, 2001; Pessoa and
Ungerleider, 2004; Reddy et al., 2006). In comparison, the role
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of the midbrain in change detection is relatively unknown.
Here, we develop a model of change detection inspired by the
neural architecture of an evolutionarily conserved “midbrain
attention network,” which comprises the superior colliculus
(SC) and an associated inhibitory nucleus [isthmi pars magno-
cellularis (Imc); Knudsen, 2011].

Primarily studied for its role in the control of eye movements
(Paré and Wurtz, 2001; Port and Wurtz, 2003) the SC plays an
important role also in the detection of salient changes in sensory
stimuli (Krauzlis et al., 2013; Sridharan et al., 2014; Herman and
Krauzlis, 2017). For instance, neurons in the SC, and its exten-
sively characterized nonmammalian vertebrate homolog, the
optic tectum (OT), fire robustly in response to changes in lumi-
nance and size of stimuli (Knudsen, 2011; Liu et al., 2011; Barker
et al., 2021; Heap et al., 2018). Many studies have shown that the
SC/OT is involved in the detection of salient change events, in a
variety of species, including frogs (Gaillard, 1990), birds (Wu et
al., 2005), and rats (Comoli et al., 2003). More recent studies
have shown that neurons in the primate SC produce phasic
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bursts of activity in response to near-threshold changes in stimu-
lus color saturation (Herman and Krauzlis, 2017). Moreover,
reversibly inactivating the primate SC produces deficits with
detecting changes in motion-direction change detection tasks
(Zénon and Krauzlis, 2012), and microstimulating the SC enhan-
ces the ability to detect changes (Cavanaugh and Wurtz, 2004;
Cavanaugh et al,, 2006). The SC/OT along with the inhibitory
(GABAergic) nucleus Imc (Fig. 1A) are hypothesized to play a
key role in signaling of the highest priority stimulus in dynamic
environments (Knudsen, 2018).

We develop a midbrain inspired deep learning model of
change detection, specifically, for the challenging scenario of
“change blindness”: the surprising inability to detect salient
changes in visual scenes when attention is not deployed at the
location of change (Rensink et al., 1997; Gibbs et al., 2016).
Change blindness is assessed, in laboratory settings, by pre-
senting a pair of alternating images that differ in some impor-
tant detail, typically, with intervening blank frames (“flicker”
paradigm; Rensink et al.,, 1997). In such tasks, subjects are
instructed to scan the images by moving their eyes to different
parts of the image to identify the location of change. Both
human observers and models must address a key challenge
when detecting changes in such change blindness tasks. If
the pair of images were presented on consecutive frames, a
motion-like signal would occur at the location of change, ren-
dering it relatively easy for human observers to detect the
change (Tse, 2004). Similarly, a computational model can ac-
complish change detection with the relatively trivial operation of
computing a difference in input pixel values across successive
frames. On the other hand, in change blindness tasks changes
occur interspersed by a blank frame, which precludes the appear-
ance of motion signals localized to the change. Consequently,
simple operations, like pixel-level differencing of the input, do
not suffice to localize the change in change blindness tasks.

To model change detection in this challenging setting, we
turn to recurrent neural network (RNN) models. RNNs consti-
tute a versatile class of deep learning models that are routinely
deployed for modeling various cognitive behaviors (Sussillo
and Barak, 2013; Sussillo, 2014). These include cognitive tasks
involving perceptual decision-making, multisensory integra-
tion, working memory (Song et al., 2016), delayed estimation,
change detection, forced choice comparison (Orhan and Ma,
2019), signal detection and context dependent discrimination
(Mastrogiuseppe and Ostojic, 2018), among others. RNNs are
also increasingly used for accurate decoding of neural dynamics
in brain machine interfaces (Sussillo et al., 2012; Pandarinath et
al., 2018), suggesting their potential utility for understanding
the link between complex neural dynamics and cognitive states.

Here, we introduce a biologically constrained RNN, which we
call a sparse, topographic RNN (st-RNN). The st-RNN is closely
modeled on detailed neuroanatomy of the midbrain SC/OT and
the Imc (Knudsen, 2018; Fig. 1A). In addition to being trained
more rapidly, the st-RNN achieves change detection with far
fewer connections than conventional RNN models. Moreover,
low-dimensional dynamics of the st-RNN provide essential
insights into key neural computations underlying change detec-
tion in the midbrain. Lastly, by having the st-RNN model drive
an eye movement (saccade) algorithm, we predict human gaze
fixations in a laboratory change blindness experiment, surpassing
state-of-the-art. In sum, the st-RNN provides a novel deep learn-
ing framework that may enable linking neural computations
underlying change detection with their associated psychophysical
mechanisms (Krauzlis et al., 2013; Sridharan et al., 2014).
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Materials and Methods

Ethics declaration

Behavioral data from a change blindness experiment reported previously
(Jagatap et al., 2021) were re-analyzed for this study. For that study,
informed consent was obtained from all participants; other details are
reported elsewhere (Jagatap et al., 2021). Experimental protocols were
approved by the Institute of Human Ethics Review board at the Indian
Institute of Science (IISc), Bangalore.

st-RNN model

We designed an RNN model, incorporating neurobiological constraints,
by modifying the architecture of conventional RNNs. We implemented
sparse, topographic connectivity among neurons of every layer, while
also incorporating Dale’s law, which specifies that each neuron connects
with its downstream targets exclusively with either excitatory or inhibi-
tory synapses. Thus, the connection weight matrix between different
layers of the network was specified as:

W = SM(W) x CM(W) & [W],, M

where SM(.) is a sign matrix, whose elements (+1 or —1) determines E
versus I connectivity, respectively, among the different neurons, CM(.) is a
mask matrix that determines the connections permissible under topo-
graphic connectivity constraints (Fig. 1C), x denotes matrix multiplica-
tion, ® denotes element-wise multiplication, and [].+ denotes rectification
(Song et al.,, 2016). The topographic connection mask matrix (CM) was
specified as follows (Fig. 1C): each hidden layer neuron received input
from overlapping tiles of either 4 x 4 (input-hidden layer E and I, hidden
layer E-E, I-E, I-I) or 8 x 8 neurons (hidden layer E-I). Similarly, each hid-
den layer neuron (E and I) projected to tiles of 4 X 4 neurons in the output
layer. Neurons proximal to the corners of each layer received input from
and projected to only one such tile. Neurons proximal to the edges, either
horizontal or vertical, received input from and projected to two overlap-
ping tiles. Neurons in the center of each layer received input from, and
projected to, four overlapping tiles. Levels of overlap were different for dif-
ferent connections (one neuron for E-E connections, two neurons for
input-E, input-I, I-E, and I-I connections, and four neurons for E-I con-
nections). The mask matrix shown in Figure 1C represents unfolding of
the neurons in E and I layers in a column-first manner, with E neurons
first, followed by I neurons. Note that this pattern represents constraints
on connectivity in the network; the final connection weights were deter-
mined following network training (see below, st-RNN training and test-
ing). As the precise ratio of E:I neurons in the SC is not known, we
adopted the canonical 4:1 ratio, observed in the neocortex (Xue et al.,
2014). Thus, each st-RNN module comprised an input layer (8 x 8 =64)
with only excitatory neurons, a hidden layer comprising separate excita-
tory (16 x 16 =256) and inhibitory (8 x 8 = 64) neuron layers, and an out-
put layer (8 x 8=64) also comprising only excitatory neurons. Finally,
RNN dynamics were simulated with ordinary differential equations, with
dynamics discretized in time, as follows:

s = f(r - W+ x, - U
Iy = [St]+ > (2)
op = g(r, - VM + by)

where x,, 1, and o, are the activity of the input, recurrent layer, output
neurons at time ¢, respectively; s, represents a latent variable, that can be
construed as the net input into the recurrent layer; U, Vo, and we
are input-hidden, hidden-output and recurrent hidden layer connectiv-
ity matrices, b, is output bias, f{.) is the hyperbolic tangent function, and
g(.) is a sigmoid nonlinearity. The results presented here were fairly ro-
bust to the choice of these nonlinearities; for example, a sigmoid nonli-
nearity in the hidden layer also produced results similar to those
presented here. All simulations were performed with the Tensorflow
framework (Abadi et al., 2016).

In addition, we tested the effect of (1) varying the level of sparsity in
the connections, and (2) varying the receptive field (RF) size of local,
topographic connections, both among the hidden layer units. RF sizes
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were varied by interconnecting neighboring neurons in blocks of size
rx r (RF or r=2, 3, 4; Fig. 1G). Sparsity levels were controlled, inde-
pendently of RF sizes, by skipping connections (varying the stride)
across adjacent neurons in a block, so that the lowest sparsity level
(SL=1, densest connectivity) contained ~45% of all possible connec-
tions within a block, whereas the intermediate (SL=2) and highest
(SL = 3) sparsity levels contained ~40% and ~35% connections, respec-
tively (Fig. 1G).

Architecture incorporating a global inhibitory (GI) layer

In some simulations, we also modeled input to the hidden layer units of
each st-RNN module from a GI layer (10 x 8 =80 neurons; Fig. 4A). The
GI layer received strong convergent input from the input layer units,
and its output was obtained by topographic spatial convolution of the
input layer activity with a box-filter of size 11 x 11, followed by nearest-
neighbor downsampling to 10 x 8 resolution, and binarization by
rounding. These input weights to the GI layer were not trainable (fixed
weights). The resultant 10 x 8 binary-map was treated as the output of
GI layer. No recurrent connections occurred in the GI layer. The GI
layer projected to the hidden layer neurons (recurrent units) of the st-
RNN modules through inhibitory connection weights (Ug; Eq. 3, below).
These weights were trainable and were randomly initialized before train-
ing. The hidden layer unit activations were, then modeled as:

o= (1 - W+ x.- U + x8.U,), 3)

where x} is the output of the GI units, and Uy, is inhibitory connection
matrix from the GI units to the hidden layer units of the st-RNNs. Note
that only one st-RNN module was trained along with the GI layer. For
modeling images with tiled st-RNNs, GI layer weights were replicated
across all, tiled st-RNN modules. Simulations in Figures 4, 7, 8 were per-
formed with this version of the network incorporating the GI layer.

We also trained a variant of the network in which the GI layer neurons
received topographic excitatory input from the st-RNN hidden layer exci-
tatory (E) neurons; these weights (matrix W%; Eq. 4) were trainable. The
GI layer comprised of 100 neurons, organized in a 10 x 10 grid and also
contained all-to-all recurrent inhibitory connections (matrix Wg; Eq. 4).
As before, GI units inhibited the st-RNN hidden layer units using weight
matrix U, (Eq. 3). The GI layer unit activations were modeled as:

xp = f(if - Wi+ x - W§ + rile), (4)

where i represents the convergent input from the input layer (10 x 10),
WE is a trainable weight matrix that transforms the input to GI layer
dimensions. For modeling high-resolution images with tiled st-RNNs,
GI layer unit weights were shared across all tiled st-RNN modules, with
rf | representing averaged hidden excitatory unit activations across all
the tiled st-RNN modules. Simulations in Figures 5 and 6 were per-
formed with this version of the network.

st-RNN training and testing

Two st-RNN modules operated, in sequence, to solve the change blind-
ness task (Fig. 1D; see Results). Each st-RNN was trained by learning the
following parameters: W, U, Uy V, b,. Because mnemonic coding
(maintenance) and change detection are independent, separable, opera-
tions, each st-RNN could be trained independently of the other, and
with separate training datasets comprising 200,000 synthetic 8 x 8 binary
patches. Each binary patch (A) was generated to provide input patterns
of prespecified sparsity (proportion of active pixels) drawn from a uni-
form random distribution, ranging from 0.1 to 1. For each binary patch
A, an alternate (change) patch A™ was generated by setting pixels active
or inactive randomly with 50% probability, independently for each pixel.
During training, the input to each st-RNN comprised a sequence of 10
images, beginning with a binary patch (A), succeeded by a variable num-
ber of blanks (median = 2, range = 1-8), followed, finally, by the changed
binary image (A"). The distribution of variable blanks was determined
during training, by deciding with 50% probability, at each time step,
whether a blank or the changed image would be shown. We employed a
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variable number of blanks to ensure that the RNN learned a general
strategy of change detection, which did not depend on the precise
temporal interval between the original and changed image. The order
of presentation of A and A™ were counterbalanced to ensure that
the number of “onset” versus “offset” type changes (Fig. 1D) were
matched in the training dataset. Each st-RNN was trained, in a super-
vised manner, to minimize the average mean squared error (MSE)
between st-RNN output and expected (ground-truth) activation in
the output layer (optimizing the L2-loss function) across time steps.
Both st-RNNs were trained until the change in the loss function pla-
teaued (Fig. 1E), and subsequently tested on a validation corpus of 20,000
new image patches each.

st-RNN weights were initialized to ensure that they obeyed the con-
straints on topography and Dale’s law. For this, we adopted truncated
Gaussian initialization to initialize connectivity matrices with random
positive or negative values; the truncated distribution was chosen to
have a mean and standard deviation of 0.2 and 0.01, respectively. During
learning weights were masked with the sign mask matrix, SM, to segre-
gate E and I connection types, as described above. Unlike Song et al.
(2016), we did not adopt explicit regularization to encourage learning of
sparse connections. On the other hand, the topographic constraint,
defined by the matrix CM above, enforces sparsity by permitting only
spatially local connections to be learned (ie., to assume a non-zero
value). Bias parameters of the output connections were initialized with a
constant value of zero, throughout.

Training was performed with minibatches of size 128 using adaptive
moment estimation based stochastic gradient descent (i.e., Adam opti-
mizer) with a learning rate (L) of 10™% and exponential decay rates
B, =0.9, B, =099, € =10"% (Kingma and Ba, 2014; € is assigned a
small value to prevent division by zero). Training was performed by
treating the st-RNN as a deep feedforward architecture with identical
layers, and shared parameters, unrolled at each timestep (Pascanu et al.,
2013). We also performed backpropagation through time over mini-
batches of sequence length 10, which enabled the network to learn long-
term relationships between the input stimulus and the expected output.
Such an approach is particularly essential for the mnemonic coding st-
RNN, which needs to maintain its persistent representation in the ab-
sence of input, and over the variable durations of the blank epochs (one
to eight blanks).

For simulating the fully connected RNN (fc-RNN) network (Figs. 1E,F),
the connectivity equations were the same as above except that we removed
the constraint on sparse topographic connectivity (matrix CM; Eq. 1).
Other aspects of training and testing were identical to that of the st-RNN
network, described above. Both st-RNN and fc-RNN were trained with dif-
ferent learning rates (L =0.0001, 0.005, 0.001, 0.05, 0.01) and five ran-
dom weight initializations; the shading in Figure 1E reflects the
standard error across these different learning rates and initializations.

We also trained and tested the st-RNN modules with inhibitory
input from a global, inhibitory layer (GI layer; Fig. 4A). Training exem-
plars were chosen similarly as described above for training the model
without the GI layer, except that in this case we also included completely
blank images as potential change (A") images. To mimic change in
global context (e.g., the appearance of a new image), two 8 x 10 patterns,
each with randomly activated pixels (binary maps with sparsities ranging
from 0.4 to 0.6) provided GI input to all hidden layer units at two dis-
tinct time-steps, at the time of appearance of A and A", respectively,
with blanks in between. While we could have chosen to provide input
directly from the input image to the GI layer, random inputs sufficed to
illustrate the following idea: for flexible updating, GI layer neurons
needed to be activated during the presentation of new images but could
remain agnostic to the precise content of those images. All other training
and testing steps were the same as described above for the st-RNN mod-
ule. Again, as before, the st-RNN network with global inhibition was
trained with 200,000 training sequences and validated with 20,000 new
sequences. When tested with the full, high-resolution image, the 8 x 10
patterns that provided global context, were drawn from the output of the
GI layer (Fig. 4A). A similar procedure was used for training the st-RNN
modules with recurrent connections to the GI layer (Fig. 44, dashed
connections).



Sawant et al. ® A Midbrain Inspired RNN for Efficient Change Detection

Estimating the total number of connection weights and parameters
Based on the above architecture, we estimated the total number of
weights in an st-RNN module (8 x 8 input/output, hidden layer with
16 x 16 E neurons and 8 x 8 I neurons, and a 10 x 8 GI layer) to be
46 080; these included feedforward connections from neurons in every
layer to each successive layer (input, hidden, output), feedforward con-
nections from the GI layer, as well as recurrent connections between
neurons in the hidden layer. For designing an st-RNN to encode a
1024 x 768 high-resolution image with each neuron in the input layer
encoding one image pixel, the number of units in each layer would
have to be scaled up by ~10* times the current configuration. This
would yield a scaling up of the total number of weights in the network
to ~3.8 x 10'?, a prohibitively large number that is impractical for
training. As a result, we trained a single 8 x 8 module and tiled this
module (with shared weights) across both x- and y-directions to cover
the span of the 1024 x 768 high-resolution image (see Materials and
Methods, Modeling change detection with high-resolution images).

Computing the mnemonic subspace

We examined the representation of the st-RNN hidden layer unit dynamics
in a mnemonic subspace (Druckmann and Chklovskii, 2012; Murray et al.,
2017). Each unique input pattern is expected to have a corresponding
unique latent representation in this mnemonic subspace and trajectories of
the latent representation of each input pattern should be stable (and not
drift) in the absence of input (Druckmann and Chklovskii, 2012; Murray et
al, 2017).

To obtain this mnemonic subspace, we performed principal compo-
nents analysis (PCA) on the time-averaged activity of the of hidden layer
units of the mnemonic coding st-RNN, during the blank period; for this
analysis, activity in the first two time bins was excluded, to permit activ-
ity in the “stable” neurons to stabilize (Fig. 2B). Thus, PCA was per-
formed on an mxn matrix, where m is the number of unique input
patterns and »n =320, including 256 excitatory and 64 inhibitory hidden
layer neurons. The first two principal component (PC) vectors were des-
ignated as “Stimulus PC1” and “Stimulus PC2”; these vectors span the
two-dimensional mnemonic coding subspace (Fig. 2A). The activity of
the hidden layer neurons at each time-step was then projected onto this
subspace to obtain a two-dimensional trajectory during the maintenance
epoch, following each input patch presentation (Fig. 2C, left). Next, a
“Time PC” was obtained by computing first principal direction after sub-
tracting the time-averaged activity across each stimulus. Thus, PCA was
performed on a (m.t)xn matrix, where t=17 is the number of time bins
during the delay period (excluding the first three time bins). The Time
PC was then orthogonalized relative to the Stimulus PCs by finding
the closest orthogonal projection to the two-dimensional mnemonic
subspace. Finally, the hidden layer neuron activity was projected into
this Stimulus+Time PC representation to obtain three-dimensional trajec-
tories of the hidden layer units during the maintenance epoch. 95% of the
variance in the temporal dynamics could be explained by as few as 40 time
PCs; similarly, 95% of the variance in the stimulus patterns could be
explained by as few as 34 stimulus PCs. Given that the full dimensionality
of the hidden layer was 320 (256 excitatory and 64 inhibitory neurons),
nearly all of the variance (dynamics or patterns) could be accounted for,
therefore, with subspaces that were nearly 8- to 10-fold smaller in dimen-
sionality. Unit activities during specific epochs were then projected onto
this mnemonic subspace (Figs. 2A,C, 4E,D).

Stable network output despite unstable activity in individual units

We seek to show analytically how stable activity can emerge in our st-
RNN network despite unstable dynamics in individual neurons (Fig. 2B,
C). We derive below a sufficient condition for stability of the output rep-
resentation in our model and verify that this condition holds in our
simulated network, modifying a previous framework (Druckmann and
Chklovskii, 2012). For convenience, we rewrite the equations for the
8 x 8 st-RNN module dynamics (Eq. 2) as:

r,=1{ (WEffrl_l + Ue“xt)

o = g(V‘*ffrI +b(,) )
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where " is a nonlinearity that encapsulates both f and the rectification
([ ] +). To ensure that the output of the st-RNN network is stable, o, must

do,
be unchanging with time (d—tt =0 ). In Equation 5 above, biases b,, are
constants. Therefore, for stable output, (Veﬁrt) must be unchanging with
time. Because ours is a discrete time model, we represent this condition as
Veg(rt —1-1) = 0. We rewrite this condition, based on st-RNN module

dynamics equations as:
V(£ (Wr; +Ux) — 1) =0, (6)

where we have dropped the superscripts “eff” from the connectivity matri-
ces, for simplicity. During the maintenance epoch x; = 0. Setting this
value, and expanding the matrix multiplications above in terms of their
component terms:

ZVi <f' (Z Wijrj,t1> - ri,”> =0, (7)
j

i

where V; represents the vector of output connection weights from neu-
ron i in the hidden layer to all neurons in the output layer and W repre-
sents the recurrent connection weight from neuron j to neuron i, both in
the hidden layer. To simplify the analysis, we linearize the equation (by
removing the nonlinearity f') and write Equation 7 as:

E Vi( g Wijrj,l—l _1}11) =0
j

i

g Vi g Wijrj.t—l_ g Virie1 =0
i i

i

g Tit—1 g ViWij* g Virie1 =0

j

E Tit—1 g Vjoi_ g Viri; 1 =0, (8)
i i

i

where in the last step, we have exchanged dummy subscripts i and j in
the first term on the left-hand side. Simplifying further:

Z T (Z VW, — Vi> =0, 9)
i j

i

For this condition to be true for all pattern dynamics r;;_1, it is suffi-
cient that the term inside the parenthesis in the left-hand side of the
Equation 9 is zero, i.e,, it can be stated as:

Vi= g Vjon (10)
j

Equation 10 is, therefore, a sufficient condition for stable activity to
emerge in the network output in the absence of external input. We test
whether this condition was met in our trained st-RNN network. Because
of the simplification associated with linearization of the term (Eq. 8),
and because the tanh is a saturating nonlinearity, we normalized the vec-
tor on either side before comparing their similarities:

j

where the asterisk denotes unit normalization of the magnitude of the
respective vector. In the trained mnemonic coding network, we

s

Vi < , (11)
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quantified the similarity between the unit normalized st-RNN output
vectors (320 vectors of size 64 x 1) on the right-hand side and left-hand
side of Equation 11 with their, respective, dot products. A dot product of
1.0 indicates 100% overlap, and lower magnitudes of dot products indicate
progressively less overlap. In the case of our st-RNN mnemonic coding net-
work, we discovered that the dot-product magnitude was 0.98[0.94 — 0.99]
(median [95% confidence intervals]; across n=108 output vectors with
non-zero magnitudes). These results indicate the stability condition (Eq. 11)
was reasonably well met in our data, validating our analysis of output stabil-
ity in the st-RNN network.

Experiments with silencing specific connections, stable or unstable units
We evaluated change detection performance after silencing specific types
of recurrent, hidden-layer connections (E-E, E-1, I-E, or I-I), while holding
all of the other types of connections intact (Fig. 3D-G). This was achieved
by simply setting the respective weights in the W matrix to zero. In addi-
tion, we examined the relevance of units with different kinds of dynamics,
stable and unstable, for robust change detection. For this, we computed
the variance of neural activity during the maintenance period (blank
epoch) averaged over 500 random input stimulus patterns. Each hidden
neuron was then classified along an axis of most “stable” to most “unsta-
ble” by sorting them according to its respective averaged variances. We
grouped the top and bottom 5th percentile of these neurons into a “stable”
(n=16) and “unstable” (n=16) set, respectively. Finally, to evaluate the
relative importance of these “stable” versus “unstable” neurons for pattern
maintenance, we turned off the output activity of the “stable” and “unsta-
ble” subsets, separately, and tested the effect on maintenance. As a mea-
sure of the fidelity of maintenance, we computed the mean absolute
deviation between the expected output (ground truth) and model output
at each time-step (Fig. 3C). This analysis was done using st-RNN module
including the GI layer.

“Unstable” units are important for stable maintenance
We observed that silencing the activity of unstable units also disrupted
stable maintenance (Fig. 3C), in a manner that was comparable to silenc-
ing stable units. These results could be readily explained by examining
the null space of the output weight matrix (V; Eq. 5). For simplicity,
we are writing VI as V. In order for the activity of the unstable neurons
(Ttu) to not affect the network output, their dynamics should be confined
to the null space of V. In other words, if Vr,, = 0 then the network out-
put would remain unchanged despite silencing the unstable neurons.
Contrary to this hypothesis, we observed that, on average, the activity
of unstable neurons was not confined to the null space of V (Vry =
—0.11, averaged across 64 output units and 250 patterns tested) and was,
in fact, comparable to the projection of the stable unit activity onto V
(Vrege = 0.59; where 1, and r¢ s denote the activity of the hidden layer
“unstable” and “stable” units, respectively). The marginally negative pro-
jection of the unstable unit activity onto V was possibly a consequence
of the larger proportion of inhibitory neurons in the unstable unit subset
(11/16), as compared with the stable subset (0/16; see Results).

Tiled st-RNNs with local interactions

We tested whether local interactions among st-RNN modules sufficed to
achieve robust change detection (Fig. 4C, +Li, sixth and seventh rows).
For this we modeled a network by tiling nine st-RNN modules ina 3 x 3
array, and modeled local interactions between every pair of adjacent
modules. The equations for an st-RNN module in each of 3 x 3 modules,
describing these interactions are as follows:

o= flre; - W+ x - U 402, L)
o= [sd, _ (12)
oy = g(r, - VT + by)

where o?ijl is the output from adjacent st-RNN modules at time t — 1 and
LT is a local connectivity matrix which specifies the connection weights
between the output neurons of one st-RNN module to 10% of randomly
selected hidden neurons of the adjacent module. These st-RNN modules
were trained and tested in a manner identical to that described previously.
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Modeling change detection with high-resolution images

For change detection with natural, high-resolution images (1024 x 768),
we tiled 49152 (256 x 192) st-RNN module pairs, each comprising a
mnemonic-coding and change-detection st-RNN, to cover the entire
extent of the image. Tiling was performed with 50% overlap along both
horizontal and vertical directions (Fig. 4A), such that every 4 x 4 pixel
patch (barring those closest to the border) was processed by four differ-
ent st-RNN modules. The high-resolution image underwent three key
transformations before being presented as input to the st-RNN network:
(1) foveal magnification with the CVR transform (Wiebe and Basu,
1997); (2) saliency computation with the Itti-Koch saliency algorithm
(Itti et al., 1998); and (3) thresholding and binarization based on Otsu’s
algorithm (Otsu, 1979). These operations are elaborated, next.

First, we modeled a key feature of retinal representation: foveal magni-
fication. When a fixation occurs at a particular region of the image, the
representation of the fixated region is mapped onto the fovea with consid-
erably greater spatial resolution, as compared with the periphery. We
modeled foveal magnification using the Cartesian variable resolution
(CVR) transform (Wiebe and Basu, 1997). For a given fixation location
(X0, o) in the original image, the foveally magnified image was obtained
with a nonlinear transformation of original image pixel locations (x, y).
Let dx = x — xp and dy = y - y, be the distance of an arbitrary pixel at loca-
tion (x, y) from (X, Yo). Then the logarithmic nonlinear transformation is
defined as X’ = %o + dvy and y’ = yo + dvy, where dv, = Sf, * In(8 dx + 1)
and dvy = Sfy # In(B dy + 1). Here, the values of the parameters 3, Sf;,
and Sf; control the extent of central magnification, and the scaling of the
transformed image along the azimuth and elevation directions, respec-
tively. B was set to 0.02, whereas Sf, and Sfy were set so as to maintain the
foveally magnified image the same overall size as the original image. An
illustration of this foveated transformation is shown in Figure 7B.

Second, we modeled a key aspect of image representation in the SC:
visual saliency. Recent studies have shown that SC neurons respond to
visual saliency (Veale et al., 2017; White et al., 2017); in fact, saliency in-
formation appears to reach the SC even before it is available to the visual
cortex (White and Munoz, 2017). Thus, input to the network, at each
frame, was based on the saliency map for that frame computed with the
Itti-Koch algorithm. The Itti-Koch algorithm (Itti et al, 1998) is
inspired by neurobiological properties of the visual cortex. Briefly, the
map is computed by combining gradients of color, orientation and
intensity information at multiple different spatial scales to compute a
single, topographical salience map. The algorithm has been widely employed
in various studies that seek to model fixation patterns associated with
free-viewing of natural sciences (Adeli et al., 2017).

Third, we binarized the saliency map with an adaptive threshold-
ing algorithm (Otsu, 1979). The algorithm tests different threshold
values { by dividing the image into a background region and a fore-
ground region based on pixel intensities above and below {. Defining
o%({) and o3({) as the variance of background and foreground
region, the algorithm iteratively searches to find a { that minimizes
() = wo(&) o3({)+wi (L) 02(L), where wy(¢) and wy ({) are the
number of pixels in the background and foreground respectively.
This binarized saliency map, following thresholding, was provided as
input to the st-RNN network to detect changes. In neural terms, such
a binarizing operation corresponds to filtering the RNN output with a
step-like nonlinearity; a property observed in many output neurons in the
SC/OT that signal, categorically, the most salient stimuli in the visual envi-
ronment based on winner-take-all computations (Knudsen, 2018). The
foveally magnified, binarized saliency map of high-resolution, natural
images was provided as input to the st-RNN for simulations in Figures 4B
and 7B.

Modeling visually-evoked responses and stimulus competition
We computed the visually evoked responses of st-RNN model neurons
by simulating the presentation of four different kinds of visual stimuli:
static, moving, looming and receding. For all of these simulations we
tiled 50,000 st-RNN modules with 50% overlap along both x- and y-
directions to encode the entire image (1000 x 800).

A static stimulus was simulated as a circle of radius 125 pixels placed
at the center of the 1000 x 800 input image across nine frames (t=2 to
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t=10, in this, and all subsequent cases; Fig. 5A, inset). A moving stimu-
lus was simulated by presenting the same input patch as the static case
but by moving it by 10 pixels diagonally on each frame, from the center
toward the lower right corner of the image (Fig. 5B, inset). A looming
stimulus was simulated as an expanding circle of active pixels from a ra-
dius of 8 pixels to a radius of 125 pixels (rate of radius increase: 8 pixels
per frame) linearly (Fig. 5C, inset). A receding stimulus was simulated as
a contracting circle, with an identical set of frames as the looming stimu-
lus, but reversed in sequential order (Fig. 5D, inset). To avoid an onset
transient for the moving and receding stimulus cases, the input for first
frame (¢=1) was taken to be identical to that of the second frame (¢=2);
for the other two cases (static, looming), the first frame was a blank image.
The mean activity of a 250 x 250 central patch of output neurons of the
change detection st-RNN is plotted in Figure 5A-D. Figure 5E shows the
mean steady-state activity, across the final nine frames (¢ =3 to ¢t = 10).

To study the effect of stimulus competition in the network we simu-
lated paired looming stimuli (Fig. 5F,G, “paired”): a fast looming and a
slow looming stimulus in the lower right and upper left visual quadrants,
respectively. The fast and slow looming stimuli were simulated as
expanding circles of active pixels beginning with a circle of radius 8 pix-
els and expanding at a rate of either 8 pixels per frame (fast looming) or
four pixels per frame (slow looming). To compare the strength of activity
modulation because of stimulus competition, the same simulations were
performed with each stimulus presented alone at the same, respective,
location (Fig. 5F,G, “single”). To better visualize activity modulations
arising from stimulus competition, the output weights of the GI layer
units (Uy) were scaled up by a factor of 10 for these simulations. The
mean activity of the change detection output neurons representing a
250 x 250 patch, centered on the respective stimulus, is plotted in Figure
5F,G. All simulations in Figure 5 were performed with a partially trained
model (checkpoint saved at n=100 training iterations) to model the
comparatively volatile mnemonic representations observed in biology.

Mimicking experimental effects of causal manipulations of SC/OT

We simulated the effect of SC/OT microstimulation on a common psy-
chophysical change detection task (Cavanaugh and Wurtz, 2004; Zénon
and Krauzlis, 2012). First, to simulate the orientation change detection
task (Fig. 6A), we presented two gratings, one in each visual hemifield.
Again, we tiled 50,000 st-RNN modules with 50% overlap along both x-
and y-directions to encode the entire image (1000 x 800). Both gratings
were presented at full contrast. The gratings were presented at random
initial orientations (here, 20° and 135° clockwise of vertical for left hemi-
field and right hemifield stimuli respectively). This was followed by eight
blank frames, following which the gratings reappeared for one frame.
Upon reappearance the orientation of the grating in the left hemifiled
alone changed to 30° (Fig. 64, top right, red box). We expected the st-
RNN output to identify the grating at this location alone as the “change,”
whereas the actual output of the model produced false alarms at other
locations also (Fig. 6A, bottom right). To mimic focal microstimulation
of the SC/OT, we scaled up the recurrent and output weights (1.1 weffy
of the mnemonic coding st-RNN units encoding the grating in the either
the left (change) or right (no change) hemifield, respectively. Our default
model was trained to the point where change detection and mnemonic
coding were near perfect, and items were maintained for robustly for even
the longest epochs (>200 time points) tested. On the other hand, mne-
monic representations in biology are comparatively volatile (Goldman,
2009). To model this shortcoming, and to model its rescue with microsti-
mulation, simulations in Figure 6A-C were performed with a partially
trained model st-RNN model incorporating Eq. 4 (checkpoint saved at
n=100 training iterations) whose mnemonic representations decayed
more rapidly compared with the fully trained model.

Change blindness experiments with human participants

A total of n=44 participants (20 females; age range 18-55 years) with
normal or corrected-to-normal vision performed a change blindness
experiment (Jagatap et al,, 2021). Data from four participants, who were
unable to complete the task for various reasons, were excluded, as was
data from one participant that was not stored correctly because of logis-
tic errors. The final analyses were performed on data from 39
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participants (18 females). Details of the change blindness experiment
have been reported elsewhere (Jagatap et al., 2021).

Briefly, subjects viewed the images on a 19” Dell monitor (1024 x 768
resolution) seated with their heads resting on a chin rest, with their eyes
positioned 60cm from the monitor. Subjects’ eye movements were
tracked with an iViewX Hi-speed eye-tracker (SensoMotoric Instruments
Inc.) with a sampling rate of 500 Hz; the tracker was calibrated for each
subject, individually, before the start of the experiment. Each trial of the
change blindness task comprised a pair of alternating images, each of 250-
ms duration, separated by blank screens, also of 250-ms duration. Each
trial began with subjects fixating continuously for 3 s on a central cross;
this was done to ensure consistency in the first fixation across subjects. In
each experiment, we tested either 26 or 27 pairs of images (Jagatap et al.,
2021, their Fig. S1; Supplemental Data). Of these 20 image pairs contained
at least one object that differed in key respects across the image pairs, in
size, color or occurrence. The remaining six (n=9 subjects) or seven
(n=30 subjects) image pairs were catch images that consisted of identical
images with no distinction between them. Change and catch trials were
interleaved in a pseudorandom order across all the subjects. For the analy-
ses presented in this paper, we used only data from change image trials.
Subjects were allowed to freely move their eyes across the scene to locate
the change. They indicated correctly detecting the change by fixating on
the change region for at least 3 s, and such trials were considered a “hit.”
If the subjects failed to detect the change within 60 s, the trial timed-out
and was considered a “miss.” Each session lasted for roughly 45min,
including time for instruction and eye-tracker calibration.

Change blindness experiments with the st-RNN model

To simulate the change blindness flicker paradigm (Fig. 7A), each image
(A) and the corresponding altered version (A™) were displayed, along
with interleaved blank images (B), each for two frames. This cycle was
repeated until the model detected the change, or the maximum trial du-
ration elapsed. In our experimental data, the maximum permitted time
for human participants to detect the change was 60 s, and each image
and blank were presented for 250 ms. To match these statistics, the maxi-
mum trial length of our model simulations was set to 240 frames, with
each frame equivalent to an interval of 125ms in the original experi-
ment. The model was permitted to make saccades (gaze shifts, see next)
at the end of every set of four frames starting with the fifth frame, such
that saccades were made after every sequence of the form ABBA* or
A=#BBA; this intersaccade interval (fixation duration) of 500 ms approxi-
mately matches the mean fixation duration of ~400 ms that we observed
in data from human participants performing the change blindness task
(Jagatap et al., 2021).

To simulate saccades in the change blindness task, we adopted the
following procedure. First, we computed a priority map for saccades
based on three different factors: (1) bottom-up saliency; (2) top-down
task goals; (3) inhibition of return. The first and third components have
been extensively investigated in previous studies, and are known to be
important for determining free-viewing saccade strategies (Itti et al,
1998; Adeli et al., 2017). The second component (top-down goal) is spe-
cific to our task, in that participants must scan the image with the goal of
identifying changes. We computed each of these factors as follows. First,
the image A; in physical image coordinates at frame i was CVR trans-
formed to retinocentric coordinates, based on gaze fixation at location x
(see above, Modeling change detection with high-resolution images).
We term this transformed image as A;. Next, the bottom up saliency
map was computed from the Itti-Koch algorithm, also as described
above (Itti et al., 1998). We term this real-valued map B(A;,). Then, the
top-down goal map, or “change map,” was computed based on the acti-
vation of the output layer of the change-detection st-RNN; this corre-
sponds to a map of the likely location(s) of change, as determined by the
network. st-RNN modules were tiled to encode the entire image, and
activations were averaged over these overlapping tiles to yield the final
top-down map. This map was thresholded at 0.5 to yield a binary map.
We term this “change” map T(A;y). Finally, the inhibition-of-return
(IOR) map was computed by specifying a two-dimensional circularly
symmetric Gaussian centered at the point of fixation, with a variance of
40 pixels, and summed over the past m =50 fixations. This map was
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CVR transformed and normalized between 0 and 1 to yield the final IOR
map, I(A;y). These three maps [B(A;y), T(A;y), I(A;x)] were combined
to determine the final priority map, P(A;,), as follows:

S(Ai,x) = QD(B(AIX) + T(AIX)) (13)

P(Aix) = [S(Aix) (1 — I(Aix))] 5 (14)

where ¢ is a piecewise linear mapping, which saturates at a value of 1
for all arguments greater than 1.

As a final step, the priority map was normalized by its sum across all
image locations, so as to transform it into a spatial probability density.
The next fixation at each time point was sampled from this probability
density function. To execute the fixation, the priority map was reverted
to physical image coordinates using an “inverse CVR” transform, the
new fixation location was selected and the image was transformed again
into retinocentric coordinates with the CVR transform, based on the
new gaze fixation point (Fig. 7B).

Comparing human and model gaze metrics

To compare gaze metrics of human participants with the model (Fig.
8B), we computed, for each of the 20 change images, the mean number
of fixations, on “hit” trials, across n = 39 participants. We also computed
the total distance traveled as sum of Euclidean distance (in pixels)
between consecutive fixations. We then compared these human gaze
metrics with the same metrics computed from model simulations using
Pearson correlations; model metrics were computed by simulating the
model for n =80 iterations and computing the average over these itera-
tions. As a control analysis, we performed these same correlations except
that the st-RNN output, corresponding to the top-down component [T
(A;5); Eq. 13] was excluded when computing the priority map. All other
parameters were identical for these control simulations.

Comparing fixation predictions across models

We tested how our model would compare with other established algo-
rithms for predicting human gaze fixations. For this, we computed a fix-
ation map as a continuous map across the entire image from the
distribution of discrete fixations by convolution with a Gaussian filter
describe and applying a standard low-pass filter with cutoff frequency f.
= 8 cycles per image (Bylinskii et al., 2019). For comparing performance
across models, we tested various metrics, including those based on the
correlation coefficient (CC), similarity, Kullback-Leibler (KL)-diver-
gence and area under the curve (AUC). Previous studies on gaze predic-
tion have suggested that multiple metrics should be used for comparing
gaze prediction algorithms, because of different potential kinds of bias in
each metric (Bylinskii et al., 2019). We briefly describe, below, these eval-
uation metrics. In the following, G denotes the fixation map obtained
from human data, and S denotes the map estimated using a saliency pre-
diction model.

(i) Linear CC. The CC metric between G and S is given by: CC = cov
(G, S)/(og*0s), where og and o are the standard deviations of
vectorized maps G and S respectively. This metric provides a measure
of the linear relationship between the two maps, with a CC of +1 indi-
cating a perfect linear relationship between the maps.

(ii) Similarity. Similarity is computed as the sum of the minimum
values at each pixel location for the distributions of S and G.
Sim = EN min(Sx(i), Gn(i)), where Sy and Gy are normalized
to be probability distributions so that, for identical maps, the simi-
larity score is +1.

(iii) KL-divergence. KL-divergence measures the difference between the two
probability distributions S and G as KL = =N Giln(e+G;/(e+S5;)),
where € is a regularization constant with value = 2.22 x 107'°
(Bylinskii et al., 2019).

(iv) AUC. The area under the receiver-operating-characteristic curve
(AUC) is computed by thresholding the saliency map at varied val-
ues. The true positive (TP) and false positive (FP) proportions are
computed at each of these threshold values, and the AUC is calcu-
lated. The AUC-Borji (Borji et al.,, 2013) algorithm defines the
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proportion of TPs as the number of the saliency map (S) pixels
above threshold relative to the total number of fixated pixels in the
image, and defines the proportion of FPs as the number of saliency
map (S) pixels above threshold relative to a uniform random sam-
ple, equal to the number of nonfixated pixel locations.

The comparison of our eye movement model was performed against
Salicon with the images used in our human change blindness experi-
ment, and not with the MIT300 dataset. This is because we seek to test
our model against ground-truth human fixation data in a change blind-
ness task, whereas the MIT300 dataset is for free-viewing saliency
prediction.

Data and code availability

Data and code for reproducing the results in this paper are available in the
following repository: https://github.com/yashmrsawant/ChangeDetection_
StRNN.

Results

A midbrain-inspired st-RNN model

The SC, and the OT, its homolog in other vertebrates, receives
direct visual input from the retina and projects to cortical and sub-
cortical regions involved in controlling attention and eye-move-
ments (Knudsen, 2011; Krauzlis et al., 2013; Fig. 1A). Neurons in
the SC/OT exhibit spatially restricted visual receptive fields with
topographic connectivity: each neuron encodes only a portion of
visual space (typically 5-10°% Cynader and Berman, 1972), and
connects predominantly with downstream neurons that encode
overlapping regions of space (Knudsen, 2011; Sridharan et al.,
2014). In addition, the SC/OT is multilayered, comprising recur-
rently connected excitatory (E) and inhibitory (I) neural popula-
tions (Knudsen, 2018). In particular, layer 10 of the SC/OT
contains specialized recurrent E-I neurons that project to a mid-
brain inhibitory (GABAergic) isthmic nucleus, the Imc (Fig. 14;
Goddard et al., 2012, 2014), which is hypothesized to play a key
role in resolving stimulus competition across space (Knudsen,
2018; see next section).

We modeled the recurrent E-I circuit in SC/OT layer 10,
employing a RNN with key neurobiological constraints (Fig. 1B).
First, the input layer of the RNN was organized topographically,
such that each patch of the input, in this case a high-resolution
image, was represented by a localized patch of neurons, mimick-
ing spatially localized retinal input to the SC. Second, following
Dale’s law for biological neurons, each presynaptic neuron in the
model provided either excitatory or inhibitory inputs to all of
its postsynaptic partners. Recurrent connections occurred both
within and across E and I neural populations. Third, each neuron
(both E and I) was permitted to connect to only to a small group
of neurons in its neighborhood such that mutually connected
neurons encoded overlapping regions of the image (Materials
and Methods). This connectivity pattern ensured topographic
connectivity, while also guaranteeing a sparse weight matrix for
all layers (Fig. 1C; Materials and Methods, Eq. 1). We term such
a RNN, with sparse, topographic connectivity, as an st-RNN. st-
RNN dynamics were simulated with a phenomenological rate
model, previously employed in simulations of neural population
dynamics (Eq. 2, Materials and Methods; Ganguli and Latham,
2009; Sussillo, 2014). For illustration, we first describe the results
of training and testing the st-RNN with simple, 8 x 8 binary
image patches as input. In a subsequent section, we test the
st-RNN’s ability to detect changes in high-resolution, natu-
ral images.

Two key operations are necessary for solving the change
blindness task (Fig. 1D). First, the network must robustly maintain
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Figure 1. A midbrain-inspired st-RNN model. A, Schematic showing key components of the midbrain attention network (Knudsen, 2018). The SC, or its non-mammalian vertebrate homo-
log, the OT, is a multilayered structure with recurrently connected excitatory (E; blue) and inhibitory (I; orange) neurons. Superficial layers (Sup) receive visual inputs whereas intermediate and
deep layers (L10, Deep) project to other brain regions and to oculomotor centers. Dashed gray rectangle, Neurons in layer 10 that project topographically to a midbrain GABAergic nucleus (Imc;
lower ellipse), which provides global inhibition across the SC/OT neural representation (diffuse orange connections). B, Schematic of st-RNN, with connectivity inspired by the midbrain network.
Blue: E-neurons, orange: |-neurons, triangles: E-synapses, circles: I-synapses. Input layer (top) and output layer (bottom) comprise 8 x 8 E-neurons with feedforward connections. Dashed gray
rectangle: hidden layer comprising 16 x 16 E-neurons and 8 x 8 I-neurons with recurrent connections. C, Top, Schematic of topographic connectivity: each neuron can connect to a spatially re-
stricted neighborhood of neurons only, for both feedforward and recurrent connections. Bottom, Mask matrix (320 x 320) showing permitted (topographic) recurrent connections in
the hidden layer. First 256 rows (and columns) correspond to E-neurons and the last 64 rows (and columns) correspond to I-neurons. Each cell (i,j) represents a connection from neuron j to
neuron i. E-E and E-I, connections from excitatory to other excitatory or other inhibitory neurons, respectively; I-E and I-I, connections from inhibitory to other excitatory or other inhibitory neu-
rons, respectively. Black: permitted connections, white: disallowed connections. D, Change detection by the st-RNN. Top row, An exemplar binary patch sequence presented as input to the
model. A: original image patch; B: blank; A+: changed image patch. Black: “active” pixels; white: “inactive” pixels; red box: location of change (pixels in the lower left). £, Top, Mean squared
error (MSE) (log-scale) over the course of training iterations for the mnemonic coding st-RNN (blue), a conventional fc-RNN (red), an RNN with sparse, but not topographic, connectivity (snt-
RNN, green), and an fc-RNN with gradients masked with a sparse matrix during leaming (black). Shading: SEM across n = 6 different weight initializations and leaming rates (Materials and
Methods). Bottom, Same as in the top panel, but for the respective change detection RNNs of each network. Other conventions are the same as in the top panel. F, Top left, The final connectiv-
ity matrix learned by the mnemonic coding st-RNN. Blue: excitatory synaptic weights (positive values); red: inhibitory synaptic connection weights (negative values); white: no connectivity (syn-
aptic weight of zero). Top right, Same as in the top left panel, but for the snt-RNN. Bottom, Same as in the top left panel, but for the fc-RNN. G, Connectivity masks used for training
mnemonic coding (MC) st-RNN and change detection (CD) st-RNN with different sparsity levels (SL) of connectivity and receptive field (RF) sizes of localized, topographic inputs (Materials and
Methods). Columns, Left to right, Connectivity patters with increasing sparsity levels. Rows, Top to bottom, Connectivity pattems with increasing RF sizes. Other conventions are the same as
for the mask matrix shown in panel C. H, Performance of the MC st-RNN, quantified with the mean L1 error, during the maintenance epoch, for different sparsity levels (columns) and receptive
field sizes (rows) corresponding, respectively, to the connectivity mask matrices shown in panel G. I, Same as in panel H but showing performance of the CD st-RNN. Other conventions are the
same as in panel H. G-I, Red dashed squares, Sparsity levels and receptive field sizes used in subsequent model simulations.
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a representation of the first image (Fig. A
1D, A) over the duration of the blank
frames (Fig. 1D, B). Second, this main-
tained information must be compared
against the subsequently presented image
(Fig. 1D, A™) for detecting and localizing
the change successfully. These two opera-
tions were achieved with two different st-
RNNSs, operating in tandem (Fig. 1D).
The first st-RNN, the “mnemonic coding”
RNN, encoded and maintained the repre-
sentation of the input image (A) over the
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duration of one or more blank frames
(Fig. 1D). Moreover, this RNN learned to
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flexibly update its representation when
presented with a new input image (A”)
following the blank frames (Fig. 1D). The
second st-RNN, the “change detection”
RNN, monitored variations in output
of the mnemonic-coding RNN, which
enabled it to detect and localize the
change (Fig. 1D). Both st-RNNs were
trained independently, with 200,000
8 x 8 binary image patches, and tested
with 20,000 validation patches, not
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used in the training dataset (Materials
and Methods). We then compared the

Stimulus PCq

performance of the st-RNN against a
conventional, fc-RNN, without con-
straints on sparse or topographic con-
nectivity (Materials and Methods).

The st-RNN maintained its input
and detected changes with high accuracy
(Fig. 1E, top, blue; mean squared error or
MSE: mnemonic coding st-RNN=1.7 =
0.02%, change detection st-RNN=
1.6 = 0.02%, mean * std at iteration
200; 7n=20,000 validation patches).
The fc-RNN’s also detected changes with
high accuracy (Fig. 1E, top, red; MSE:
mnemonic coding fc-RNN =2.6 * 0.5%;
change detection fc-RNN=2.5* 0.1%),
but the MSE for the fc-RNN was marginally, albeit significantly
higher, as compared with the st-RNN (p <10~°, n=20,000
patches, Wilcoxon signed rank test). In addition, the fc-RNN
training converged much more slowly (~7.5-9x longer) both
for the mnemonic-coding and change-detection operations
(Fig. 1E, bottom, red vs blue curves; mnemonic-coding: st-
RNN =12 epochs, fc-RNN = 90 epochs; change-detection: st-
RNN =10 epochs, fc-RNN =93 epochs; # iterations to achieve a
training MSE of 1%, across 10,000 training samples). Moreover,
the proportion of non-zero weights in the hidden layer
of the fc-RNN (45.7%) was, far higher than the proportion of
non-zero weights in the st-RNN (2.9%; Fig. 1F; p<105
Kolmogorov-Smirnov test for significant differences in weight
distributions).

We sought to understand the relative advantages of sparsity
versus topographic connectivity for change detection. First, we
asked whether the topographic nature of connectivity provided a
specific advantage for change detection. We trained a network with
random (nontopographic) connectivity, but with weight sparsity
identical to the st-RNN; we call this network a sparse, non-topo-
graphic RNN (snt-RNN). The weight matrix following training is

Figure 2.

Stable maintenance occurs in a “mnemonic” subspace despite heterogenous dynamics of individual units. 4, Projection of
input stimulus patterns in the mnemonic subspace. “Stimulus PC1” and “Stimulus PQ2” correspond to the two PC dimensions with the
largest variance across time-averaged representations of the mnemonic coding st-RNN hidden layer units. Points with lighter shades of
gray represent input patterns of lower sparsity (proportion of active pixels). Insets, Specific 8 < 8 input pattems. B, Top row, Activity
dynamics of the top 16 hidden layer units with the most “stable” dynamics (see text for details) in the mnemonic coding st-RNN during
the blank epoch (t=4-20); each color denotes dynamics for a different unit. Dots: data for every third time bin; lines: data for each
time bin. Bottom row, Same as in top row but for the top 16 hidden layer units with the most “unstable” dynamics. Left and right col-
umns, Results for two exemplar input pattems. Several units show overlapping activity profiles. C, Left, Low-dimensional trajectories
obtained by projecting the hidden layer unit activity onto the mnemonic subspace during the maintenance epoch. Each dluster of points
corresponds to a different input 8 x 8 patter (insets). Blue to yellow: time points ranging from early (t=3) to late (t=17) in the
blank epoch. Right, Same as in the left panel, but trajectories plotted with an additional dimension along the z-axis indicating a “Time
PC” corresponding to a PC dimension with maximal variance in input-averaged activity across time that is also orthogonal to the mne-
monic subspace. Dark-gray trajectories on the xy-plane indicate the projection of the trajectories in the mnemonic subspace.

shown in Fig. 1F. The snt-RNN training converged more slowly
(Fig. 1E, green) as compared with the st-RNN (Fig. 1E, blue).
Specifically, the number of iterations for convergence (1% training
MSE) was more than 2-fold higher for the snt-RNN as compared
with the st-RNN (mnemonic-coding: st-RNN =12 epochs, snt-
RNN = 25 epochs; change-detection: st-RNN =10 epochs, snt-
RNN =22 epochs). Second, we asked whether sparsity of the
weight matrix was responsible for faster training. As an alter-
native model, we tested whether reducing the degrees of free-
dom, by reducing the number of weight updates, would also
achieve faster training; for this, we applied a sparse mask
(Materials and Methods, Eq. 1) to the gradient updates,
rather than to the full weight matrix itself, during training.
In this case, again we observed considerably slower conver-
gence (Fig. 1E, black) as compared with the original st-RNN
model (Fig. 1E, blue).

Finally, we performed simulations of the model by varying
the level of sparsity in the connections, and with different sizes of
local, topographic connections in the hidden layer (Fig. 1G;
Materials and Methods). Increasing the level of sparsity led to
systematic degradations in performance for both the mne-
monic coding and change detection st-RNNs, likely because
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Figure 3. Distinct contributions of unit and connection subtypes to change detection. 4, Distribution of variance of activity during the maintenance epoch for all hidden layer units of the
mnemonic coding st-RNN. Black and gray inverted triangles: mean activity variance of the units exhibiting the most stable and the most unstable dynamics respectively; dashed vertical line:
unstable units with top 5th percentile of activity variance. B, Connectivity kerels of representative stable (top panel) and unstable (bottom panel) excitatory units in the mnemonic coding st-
RNN. First column, The unit's location in a 16 x 16 grid. Second column, Feedforward connections from the 8 x 8 input layer to the corresponding unit in the respective row. Third column,
Recurrent input from other excitatory hidden layer units. Fourth column, Recurrent output to other excitatory hidden layer units. Last column, Feedforward connections to the output layer units.
C, Mean absolute error (L1 norm) between the expected and observed output of mnemonic-coding st-RNN during maintenance (t = 4-20) after silencing the top 5% of stable (“Stable™"; black
open circles and curve) and top 5% of unstable (“Unstable™"; gray open circles and curve) units. Dashed line and filled circles: mean absolute error with all units intact (“None”); shading: SEM
(n=500 input patterns). D, Mean absolute error (L1 norm) between the expected and observed output of the mnemonic coding st-RNN following selective silencing of each type of recurrent
connection: E-E (green), || (black), I-E (blue), and E-I (red). Connections were silenced during the maintenance epochs alone (gray shading, t=2-10 and t = 12-20). Yellow: mean absolute
error but with all connections intact (None); dots: data for specific time points; lines: spline fits; shading: SEM (n =500 input patterns). E, Same as in panel D but following silencing of recur-
rent connections only during the presentation of the new image, A* (t=11; gray shading). Inset, Logarithmic scale plot magnified to show mean absolute error at the time of the change.
Other conventions are as in panel D. F, Output of the mnemonic-coding st-RNN for a representative input pattern (topmost row) following silencing of each type of recurrent connection: E-E
(green outline, fourth row), I-I (black outline, fifth row), I-E (blue outline, sixth row), and E-l (red outline, seventh row). Second and third rows from top, Expected output and observed output
with all connections intact (“None”), respectively. The colored outline indicates the time points during which connections were silenced. Other conventions are the same as in Figure 1D. G,

Same as in panel F but following silencing of recurrent connections only during the presentation of the new image. Other conventions are as in panel F.

of the stronger constraints on connectivity imposed by pro-
gressively sparser weight matrices (Fig. 1H,I, columns). By
contrast, decreasing the receptive field size degraded per-
formance for the mnemonic coding st-RNN but slightly
improved performance for the change detection st-RNN
(Fig. 1H,I, rows). Because of its fine-grained, spatially local
nature, the change detection computation was rendered
more challenging when signals were pooled across multiple
neighboring neurons.

In summary, our midbrain inspired st-RNN architecture was
able to successfully solve the challenging change blindness task.
Moreover, the st-RNN accomplished change detection far more
efficiently, with considerably fewer connections and significantly
faster learning rates, compared with a conventional, fc-RNN.
Finally, neither a network with sparse, but unstructured, connec-
tivity nor a network with a comparably simple, but a conceptually
different, learning strategy were as fast as the st-RNN model at
learning to successfully detect changes. In other words, both spar-
sity and topographic connectivity were relevant for efficiently
learning to detect changes (see Discussion for caveats regarding
the biological plausibility of the supervised learning rule).

Mechanisms underlying stable maintenance and flexible
updating

We analyzed computational mechanisms by which the st-RNN
achieves robust change detection in this change blindness task.
The computation performed by the change detection st-RNN is
a comparatively simple one: it needs to compute differences
between each successive frame of the mnemonic coding st-
RNN’s output, as long as the latter maintains an active represen-
tation of the latest input. The key challenge, then, rests with the
mnemonic coding st-RNN, which must not only maintain a sta-
ble representation of the first image (Fig. 1D, A) over the course
of the blank epoch (Fig. 1D, B), but must also rapidly and flexibly
update its representation as soon as the new image is presented
(Fig. 1D, A™).

We analyzed, first, low-dimensional dynamics of the mne-
monic coding st-RNN to understand how it was able to maintain
image information robustly during the blank epoch. For this we
identified a “mnemonic” subspace, based on the activity of the
hidden layer units of the mnemonic coding st-RNN (Murray et
al., 2017); the dimensions of this subspace represent those that
capture maximal variance across stimuli during the blank epoch
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Figure 4.  Global inhibition enables change detection with natural images. 4, Top, Schematic of change detection with a representative natural image (resolution: 1024 x 768), interspersed
by blanks. Red rectangle: location of change (not part of the image). Bottom, 8 x 8 st-RNN modules tiled to represent the full resolution image (overlapping blue patches in both input and
output map). st-RNN modules were tiled with 50% overlap along both horizontal and vertical directions, such that each 4 x 4 patch in the image (except for patches closest to the border)
was processed by four different st-RNN modules. Orange outline: global inhibition (GI) layer, mimicking the architecture of the Imc connection (Fig. 14, orange nucleus). Gray lines: convergent,
topographic connections from input to the Gl layer; orange circles: inhibitory connections from the Gl layer to both E and | neurons in the hidden layer of each st-RNN module; dashed connec-
tions: recurrent excitatory connections from E neurons in the hidden layer to neurons in the Gl layer (in blue) and recurrent inhibitory connections among neurons in the Gl layer (in orange);
these connections were implemented in one variant of the network incorporating the Gl layer (Materials and Methods). B, Topmost row, Thresholded, binarized saliency map around the region
of change (red box; see text for details). Second and third rows, The expected output (ground truth) of mnemonic coding (MC) and change detection (CD) st-RNNs, respectively. Fourth and fifth
rows, Output of the trained MC and (D st-RNN models before incorporating the global inhibition layer (—Gl). Sixth and seventh rows, Output of the trained MC and (D st-RNN models after
incorporating the global inhibition layer (+Gl). For all rows, the middle and right columns represent the output of the respective st-RNN during the blank (B) and change image (A™) epochs,
respectively. Red outlines: location of change. C, Analysis of a toy-example with nine st-RNN modules tiled in a 3 x 3 square grid, with no overlap. Rows 1-3, Input to the st-RNN modules
(1st row), and the expected ouputs of the MC st-RNN (2nd row), and (D st-RNN (3rd row). Rows 4-9, Outputs of the trained MC and (D st-RNN models before incorporating the global inhibi-
tion layer (—Gl; 4th and 5th rows), after incorporating local (short-range) recurrent interactions (+Li; 6th and 7th rows), and after incorporating the global inhibition layer (+Gl; 8th and 9th
rows). Other conventions are the same as in panel B. Top row, Red box: on-off transition; blue box: off-on transition. D, Left, Projection of hidden layer activity for each st-RNN (panel €) into
the mnemonic subspace, in the absence of global inhibition (—Gl). Trajectories begin from the first blank, when the first image was maintained (blue shaded dots; t = 3-10), through a transi-
tion corresponding to the presentation of the change image (lines with superimposed arrowheads), followed by the second blank, when the change image was maintained (green to yellow
shaded dots; t = 13—20). Insets, Input images for each st-RNN module from the toy example (panel €). The st-RNN failed to accomplish the on-off transition (“plus” shape to blank) successfully
(dashed purple arrow). Right, Activity of five representative hidden layer units, each represented by a different color, of the mnemonic coding st-RNN corresponding to the middle pattern
(“plus”) from panel C. In absence of global inhibition (~Gl) unit activity failed to reset on presentation of the change image (A™). Dots: data for each bin; dashed lines: spline fits; gray shaded
bar: time point (t=11) corresponding to presentation of the change image. E, Same as in panel D but in the presence of global inhibition (+Gl). Left, The st-RNN accomplished the on-off
transition (“plus” shape to blank) successfully (solid purple arrow). Right, In the presence of global inhibition (+Gl) unit activity “reset” on presentation of the change image (gray shading).



Sawant et al. ® A Midbrain Inspired RNN for Efficient Change Detection

J. Neurosci., November 2, 2022 - 42(44):8262-8283 - 8273

A . B C D
Static Moving Looming Receding
Input e 6 0 ©° e 0 06 o a e o O O o ®@ o o
0.45 ¢ MO @ @ @ 045 MO @& @ @& 045 MC e © @ @ 045 MO @ ® oo
QCD w ) ‘ o O IC ) D
- é\ 04+ ',h‘ 04+ 04} 041
o> i’
N s n
T 80070 1% 0.07 0.07} 0.07
£ ¢ i
o roy
=z ‘GE) Py
001} | 00000 oo 001} 001
00 0 0 : 0 : :
2 Time 10 2 Time 2 Time 10 2 Time 10
E F G H
071
00 B Dmmmmmej ,
] 0.095 Slow Looming 0.095 | Fast Looming
z z o%r - B
§ = E = ——Single S
— = o~ . 4
B o2 2 = G008t ——FPaired 08 | 2
£ c v |ElEIIB € c 5
§ g = s 5 § ZO ©0.05F 0.05 f g_
+ o) E
ﬁ S||o|x m D g0 |
0.04 . 0.04 . . S
0 2 Time 2 Time 6 Slow Fast
Figure 5. Model unit responses to static, dynamic and competing stimuli. A-D, Normalized mean activity of output units (n = 62,500) of the change detection st-RNN for static (4), moving

(B), looming (C), and receding (D) stimuli. Mean activity was normalized by the maximum activation across all four stimulus classes. Insets, Input stimulus patterns for each, respective, simula-
tion. Insets, First row, Input sequence corresponding to each stimulus type (4-D). Insets, Second and third rows, Mnemonic coding (second row) and change detection (third row) outputs cor-
responding to the respective stimulus type. E, Normalized mean activity of the change detection st-RNN output units averaged across the final seven frames (t=3 to t=10) for static (S),
moving (M), looming (L), and receding (R) stimuli (see text for details). F, Same as in panels A—D except showing activity evoked by a slow-looming stimulus in the upper left quadrant when
presented alone (“Single,” gray) or concurrently with a fast-looming stimulus (“Paired,” black). Inset, Paired input stimulus pattern. Other conventions are the same as in panels A-D. G, Same
as in panel F, but showing activity evoked by the fast-looming stimulus. Other conventions are the same as in panel F. H, Suppression of the mean activity (percentage) for paired, as compared
with single, across the last five frames (t =2 to t = 6), for neurons representing the slow-looming (left bar) and fast-looming (right bar) stimuli, respectively.

(stimulus PCs; Fig. 2A; Materials and Methods). We then plotted
the activity trajectories of the hidden layer units in this mne-
monic subspace (Fig. 2C, colored dots with connecting lines).
The mnemonic coding subspace encoded interpretable, and
(partially) dissociable, features of stimuli during the stimulus
presentation epoch: stimulus PC1 encoded the proportion of
“active” pixels (sparsity) in the input image (Fig. 2A, x-axis, dark
to light shading) whereas stimulus PC2 encoded the location of
these active pixels - in terms of their approximate center of mass
along the vertical axis (Fig. 24, y-axis). Individual hidden layer
units exhibited markedly heterogeneous dynamics during the
maintenance epoch. Some units (Fig. 2B, top) exhibited stable ac-
tivity during maintenance, whereas others (Fig. 2B, bottom)
exhibited unstable and oscillatory patterns of activity. Despite
these wide variations in individual unit dynamics, the projection
of hidden layer activity in the mnemonic subspace was remark-
ably stable over time, even in the absence of sensory input (Fig.
2C; different colors show activity projection at different time
points during the blank epoch). Dynamics were primarily con-
fined to a “Time PC,” orthogonal to the stimulus PC axes (Fig.
2C, left; Materials and Methods). In other words, stable coding
in the mnemonic subspace emerged despite heterogeneous dy-
namics in individual units’ activities. Each of these characteristics
is a hallmark of the “stable subspace model,” a recently proposed
framework for stable maintenance of information in the brain
(Druckmann and Chklovskii, 2012; Murray et al., 2017). In
Materials and Methods, Stable network output despite unstable

activity in individual units, we analyze these observations mathe-
matically to show how a stable representation may arise in the
network with unstable and heterogenous units (Druckmann and
Chklovskii, 2012).

We explored the contributions of distinct groups of units,
based on the stability of their activity profiles, to robust mainte-
nance. Specifically, we asked whether only units with stable activ-
ity dynamics enabled robust maintenance or whether units with
unstable dynamics were also involved. We grouped hidden layer
units into two subsets based on the top (“stable” units) and bot-
tom (“unstable” units) 5th percentiles (Fig. 3A) of activity var-
iance during the maintenance epoch [Materials and Methods;
maintenance epoch variance: stable units = (3.45 * 1.5) X 107°
a.u., unstable units = (2906 + 820) x 10> a.u., 7 = 500 patterns].
Interestingly, while all of the stable units comprised excitatory
neurons, a majority (11/16) of the unstable units comprised
inhibitory neurons; connectivity kernels of representative
stable and unstable excitatory neurons are shown in Figure
3B. Interestingly, as compared with unstable units, stable
units exhibited a much sparser connectivity profile both in
terms of the input and recurrent connections. By contrast,
few unstable units contributed directly to the st-RNN out-
put; most contributed only indirectly through recurrent
connections.

We tested whether, and how much, each of these subsets (sta-
ble or unstable) contributed to stable maintenance. Silencing the
stable subset alone produced a strong degradation of the
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Figure 6.  Simulated microstimulation rescues change detection deficits. A, Top row, Simulated laboratory change blindness task. Two oriented gratings were presented, one in each visual

hemifield. The entire image spanned 1000 x 800 pixels and was encoded with 50,000 overlapping st-RNN modules. Following the blank (B), a new change image occurred in which one of
the gratings (here, the grating in the left hemifield) underwent a change in orientation. Middle row, Output of the mnemonic coding (MC) st-RNN. Bottom row, Output of the change detection
(CD) st-RNN. Red box: location of change, is shown for illustration only, and is not presented along with the visual input. Other conventions are the same as in Figure 4B. B, The output of the
mnemonic coding (first row) and change detection (second row) st-RNNs following simulated, focal microstimulation of the right hemifield (no-change) grating representation alone (see text
for details). ¢, Same as in panel B but following simulated, focal microstimulation of the left hemifield (change) grating representation alone. Other conventions are as in panel B. B, C, Blue
box, Location of simulated microstimulation, is shown for illustration only and is not presented along with the visual input. Blue horizontal bar: duration of microstimulation. D, Quantification
of change in performance following the simulated microstimulation experiments of panel B (top) and panel € (bottom), respectively. Top, Mean L1 error for units representing the right hemi-
field (no-change) grating without (gray dashed) or with (blue solid) simulated microstimulation. Dashed vertical lines: time of appearance of the changed image (A*). Other conventions are
the same as in panel €. Bottom, Same as in the top but mean L1 error for units representing the left hemifield (change) grating. Other conventions are the same as in the top panel.

maintained pattern (Fig. 3C, dark gray open circles, “Stable™), as
compared with when all units were intact (Fig. 3C, filled circles,
“None”). On the other hand, silencing the unstable subset alone
produced a weaker but, nevertheless, robust degradation of the
maintained pattern (Fig. 3C, light gray open circles, “Unstable™);
surprisingly, this degradation increased progressively to even
surpass the level of degradation following silencing the stable
subset. This latter finding could be explained on the basis of the
large proportion of inhibitory neurons (~70%) in the unstable
subset: silencing these neurons reduced network inhibition and
resulted in runaway excitation because of which the maintained
pattern degraded progressively. In Materials and Methods (see
“Unstable” units are important for stable maintenance), we lever-
age an analytical framework for the stable subspace model
(Wasmuht et al., 2018) to further analyze these results based on
the null space of the feedforward (hidden to output) connectivity
matrix.

Next, we asked which type(s) of recurrent connections in the
mnemonic coding st-RNN were critical to stable maintenance.
For this, we silenced, in turn, each type of recurrent connection
in the hidden layer, separately, during the maintenance (blank)
epochs (Fig. 3D, gray shading, =2-10 and t=12-20) and calcu-
lated the mean error with pattern maintenance. We expected
that silencing the E-E or I-I connections would decrease the
overall excitation in the network, the latter by disinhibiting the
inhibitory neurons (Sridharan and Knudsen, 2015), whereas
silencing the E-I or I-E connections would decrease the overall
inhibition in the network. We tested the effect of each of these
manipulations on stable maintenance.

Silencing mutual E-E connections (Fig. 3D, green) or the mu-
tual I-I connections (Fig. 3D, dark gray; virtually overlapping
with the green curve) produced the strongest degradation of

maintained patterns, as quantified by the mean error (L1 norm)
relative to the expected output (higher error signifies more deg-
radation). Silencing the other two connection types (I-E or E-I)
also disrupted maintenance (Fig. 3D, blue and red, respectively),
but these effects were marginally weaker. These results could be
explained mechanistically. In the absence of external inputs dur-
ing the blank, silencing recurrent E-E connections abolished the
activity in the hidden layer E neurons and eliminated persistence,
yielding in null activity in the output layer during the blank (Fig.
3F, E-E"). Similarly, silencing I-I connections abolished the
recurrent inhibition to hidden layer I neurons. This resulted
in over-strong inhibition of the E neurons, which abolished
their activity and eliminated persistence, as before (Fig. 3F,
I-I7). On the other hand, silencing E-I connections abolished
inhibition in the network, thereby producing over-strong ex-
citation in the E neurons. As recurrent E-E connections were
intact the entire hidden layer became active after a few
frames, and ultimately resulted in disrupted maintenance
(Fig. 3F, E-I"). Silencing I-E connections also disrupted per-
sistence but, interestingly, this disruption showed an oscilla-
tory pattern (Fig. 3F, I-E"): removing the inhibitory input to
E neurons resulted in their over-strong excitation, which,
coupled with the intact E-I and I-I, shifted the network into
an oscillatory regime (Tiesinga et al., 2004).

Finally, we asked which connections in the mnemonic coding
st-RNN were critical to flexible updating, on presentation of the
new input image (A™). Again, for this we silenced each type of
recurrent connection in the hidden layer, transiently, when the
new image was presented (Fig. 3E, gray shading at t=11). In
this case, silencing the I-E connections (I-E~; Fig. 3E, blue) or
E-I connections (E-I"; Fig. 3E, red) produced the strongest
degradation in flexible updating, which persisted throughout
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between them (red box indicates location of change), were alternated for 250 ms each, with intervening blank frames, also presented for 250 ms (“flicker” paradigm). In the laboratory experi-
ment, participants were required to scan the image and detect the change within a fixed trial duration (60 s). B, Steps involved in simulating sequential fixations with the st-RNN model.
Clockwise from top left, Following fixation (yellow dot), the image was foveally magnified with a CVR transform. Following this a bottom-up saliency map was computed (Itti et al., 1998),
thresholded and binarized (for details, see Materials and Methods). The temporal sequence of hinarized saliency maps was provided to the stacked st-RNN model to obtain the Change map
(output of the change detection st-RNN; top right). The Saliency and Change maps were then fused along with an IOR map to obtain the final Priority map (bottom; Materials and Methods).
This final map was converted into a probability density and used to sample the next fixation point.

the subsequent maintenance epoch (Fig. 3E, t=12-20). In
contrast, silencing E-E or I-I connections resulted in no dis-
cernible degradation in flexible updating (Fig. 3E, green and
dark gray, respectively). These effects could also be readily
explained. Silencing I-E connections produced over-strong
excitation of the E neurons, thereby yielding a degraded repre-
sentation in the hidden layer when the new image was pre-
sented (Fig. 3G, I-E7). A similar effect occurred with silencing
E-I connections because of transiently reduced inhibition in
the network; in this case, the degradation was more modest
because some excitation to the I neurons was provided directly
by the feedforward input from the image patch (Fig. 3G, E-I7).
In both cases (I-E™ and E-I7), the degraded representation was
maintained and amplified through recurrence over the subse-
quent blank epochs, because all connections were held intact
during these epochs. In contrast, silencing E-E and I-I connec-
tions during the encoding, merely reduced the net recurrent
excitation (directly or indirectly, respectively), whereas the
dominant source of excitation to the hidden layer was from
the input layer, which was held intact. Therefore, no obvious
degradation of the representation was observed on silencing
the E-E or I-I connections (Fig. 3G, E-E™ and I-I").

In summary, the mnemonic-coding st-RNN mimicked key
hallmarks of the “stable subspace” model, a candidate model for
working memory in the neocortex (Murray et al., 2017). Stable
maintenance occurred despite marked heterogeneity in individ-
ual unit activities. Surprisingly, units with both stable and unsta-
ble dynamics contributed to robust maintenance of stored
activity patterns. Connections that increased the excitatory tone
in the network (E-E and I-I) were relatively more important for
stable maintenance. In contrast, connections that increased the
inhibitory tone in the network (I-E and E-I) were critical for flex-
ible updating. The results suggest potentially dissociable roles of
recurrent excitation and inhibition during change detection
(Discussion).

A midbrain inspired GI motif promotes efficient change
detection

Having achieved change detection in binary 8 x 8 image patches,
we sought to test the model in a change blindness task with high-

resolution, natural images (Fig. 44, top). We encoded high-reso-
lution (1024 x 768) images by tiling individual 8 x 8 st-RNN
modules, along both horizontal and vertical axes, with 50% over-
lap between adjacent modules (49,152 modules total, Fig. 4A,
bottom; Materials and Methods). Because midbrain SC neurons
are known to encode visual saliency, the input to the st-RNN was
a thresholded saliency map of each image (Fig. 4B, A and A
Materials and Methods; Itti et al., 1998).

To our surprise, this “tiled” network, even after extensive
training, failed to detect particular categories of changes consis-
tently. While the network robustly detected the appearance of a
novel object or feature in the new image (“off-on” changes), it
consistently failed to detect disappearance of already present
objects or features (“on-off” changes). For example, when a tran-
sition of the latter type occurred in the sequence shown in Figure
4B, the network failed to detect the disappearance of the “steel
railing” (Fig. 4B, red box; model output, —GI).

To explain the reason for this failure we simulate the network
with a “toy” example comprising nine 8 x 8 st-RNN modules
tiled together in a 3 x 3 grid (24 x 24 neuron network; no over-
lap among modules; Fig. 4C). We replicated the failure case in
this example: while the image patch that underwent an off-
on change (Fig. 4C, first row, blue outline, appearance of
the “kite” shape) was correctly detected (Fig. 4C, fifth row,
—GI: CD, upper right patch), the patch that underwent an
on-off change (Fig. 4C, first row, red outline, disappearance
of the “plus” shape) failed to be detected (Fig. 4C, fifth row,
—GI: CD, center patch). Examining the output of the mne-
monic coding st-RNN revealed that the patch that under-
went an on-off change continued to be maintained even on
presentation of the new image, A" (Fig. 4C, fourth row,
—GI: MC, center patch) and, therefore, was not flagged by
the change detection st-RNN (Fig. 4C, fifth row, —GI: CD,
center patch).

Why was the nonexistent stimulus erroneously maintained,
even on presentation of the new image? We propose that each
mnemonic-coding st-RNN module cannot, by itself, distinguish
between on-off changes across the images (A, A®), versus transi-
tion from an image to a blank epoch (A to B). In other words, an
isolated st-RNN module cannot distinguish between the
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Figure 8.

st-RNN based gaze model mimics and predicts human strategies in a change blindness task. A, Comparison of gaze scan path for a representative human subject (top) versus a

model’s trial (bottom) on an example image from the change blindness experiment. Red hox: location of change. B, Correlation between model (x-axis; average across n = 80 iterations) and
human data (y-axis; average across n = 39 participants) for the number of fixations (left) and distance traveled (right) before fixating on the change region. Error bars: SEM. C, Same as in panel
B, but for a model in which the priority map was computed after excluding the st-RNN output (see Materials and Methods). D, Distribution of four different saliency comparison metrics across
27 images for the fixation map predicted by the st-RNN model (x-axis) versus the map predicted by the Salicon algorithm (y-axis) (Huang et al., 2015). Clockwise from top: AUC (Borji), KL-
divergence, CC and similarity. Diagonal line: line of equality (x=y). For all metrics, except for KL-divergence, a higher value implies better match with human fixations. Insets, Distribution of
difference between the st-RNN and Salicon prediction for each metric. E, Same as in panel D but comparing fixation predictions of the st-RNN model (x-axis) against that of the Itti—Koch sali-

ency prediction algorithm (y-axis). Other conventions are the same as in panel D.

following two scenarios: (1) when its input vanished because the
new image contained a blank patch at the module’s location (Fig.
4C, A%, center patch), versus (2) when its input vanished because
of the blank epoch onset (Fig. 4C, B, center patch). Note that, in
scenario (2), the mnemonic coding st-RNN must maintain the
representation of the original image patch, whereas in scenario
(1) it must update its output to a blank patch. The inability to
distinguish these scenarios resulted in a failure of the st-RNN to
correctly detect on-off changes.

We hypothesized that this failure occurred because inde-
pendent st-RNN modules lacked cues about changes of global
context (e.g., presentation of a new image). To overcome this
failure, we tested two different approaches. First, we modeled
local interactions among st-RNN modules, which would ena-
ble these modules to infer information about global context,
in an emergent manner (Materials and Methods). We

discovered that this approach barely ameliorated this issue
(Fig. 4C, +Li, sixth and seventh rows).

An alternative approach, then, is to enable global contextual
cues to be shared among all st-RNN modules. We looked to the
anatomy of the midbrain SC/OT network for circuit motifs in-
dicative of global interactions. Neurons in the SC project topo-
graphically to an adjacent nucleus, nucleus Imc, whose neurons
project back to the SC/OT to provide global inhibition, spanning
the entire SC/OT map (Knudsen, 2018; Fig. 1A). We tested
whether incorporating a global inhibition motif, inspired by SC/
OT-Imc architecture, would overcome change detection deficits
in this tiled st-RNN network.

We modeled a GI layer of 10 x 8 neurons (Fig. 4A) that
received low-dimensional input, mimicking convergent input
from the input layer (Materials and Methods), and projected
globally to both E and I neurons in st-RNN hidden layers (Fig.
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4A, orange arrows). A single st-RNN module was retrained
from scratch along with this GI layer (Materials and Methods)
and the GI layer weights were replicated, globally, across all st-
RNN modules. This strategy of tiling multiple st-RNN modules -
involves learning a relatively small number of weights (~10°)
while also permitting scaling up the model to detect changes in
arbitrarily large images (see Discussion). By contrast, we
estimate that training up a full 1024 x 768 st-RNN network
would require learning a significantly larger number of
weights (~10'% Materials and Methods). In neurobiological
terms, such a divide-and-conquer approach enables the net-
work to learn to detect changes efficiently, with far fewer
connections, compared with a network that learns over the
entire image.

With the GI layer incorporated, the st-RNN network achieved
successful detection of on-off changes (Fig. 4C; +GI, eighth and
ninth rows). Plotting the mnemonic coding st-RNN hidden unit
activity in the mnemonic subspace revealed accurate updating
for both on-off (Fig. 4E, left, “plus” to “blank”) and off-on
(Fig. 4E, left; “blank” to “kite” arrow) changes (solid arrow
indicates successful update). In contrast, in the network with-
out the GI layer, this updating did not happen correctly for
the on-off change (Fig. 4D, left, dashed arrow); rather, the
“plus” representation continued to persist even after the new
image was presented (Fig. 4D, left, colored dots from t=13-
20). Examining the activity of randomly selected hidden layer
units revealed that the GI layer enabled a reset in activity on
presentation of the new image (Fig. 4E, right, +GI), which did
not occur without the GI layer (Fig. 4E, right, —GI). When
tested with high-resolution natural images, incorporating the
GI layer allowed the st-RNN network to correctly detect dis-
appearing objects also (Fig. 4B, last row, +GI, red box).

Lastly, we also trained a version of the model with recurrent,
topographic connections from the hidden layer excitatory neu-
rons of the mnemonic coding layer to the GI layer (recurrent
E-I connections to GI layer; Materials and Methods; Fig. 4A,
dashed connections); the goal was to mimic recurrent connec-
tions between the SC/OT and Imc that have been observed
experimentally (Knudsen, 2018). This network was also able
to detect changes well, albeit with marginally higher mean
absolute error than the standard network (4% relative to the
trained standard network over 20 maintenance epochs, aver-
age across 10,000 patterns).

To summarize: independent st-RNN modules, tiled to
encode natural (high-resolution) images, failed to detect
transitions involving object disappearance. Incorporating a
global, inhibitory layer, inspired by the neural architecture
of the SC/OT-Imc circuit, overcame this failure by enabling
global contextual cues, regarding the appearance of the new
image, to flexibly update st-RNN unit activity for accurate
change detection.

Model mimics functional properties of the SC/OT network

The st-RNN’s architecture was constrained by neuroanatomical
connectivity in the midbrain, and trained to perform change
detection, a key neural computation known to occur in the mid-
brain (Cavanaugh and Wurtz, 2004; Lovejoy and Krauzlis, 2010;
Knudsen, 2018). We asked if, as a consequence, st-RNN model
neurons would mimic known functional properties of SC/OT
neurons. In addition, we tested whether previously reported
effects of causal manipulation (microstimulation) of the SC on
change detection could be mimicked by analogous manipula-
tions of model neurons. These simulations were performed with
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the network with recurrent connections from the hidden layer
excitatory neurons to the GI layer, to mimic recurrent con-
nections between the SC/OT and Imc, as described in the
previous section. Moreover, to model the relatively volatile mne-
monic representations observed in biology, for these simula-
tions we employed a partially trained model whose mnemonic
representations were less robust than a fully trained model
(Materials and Methods).

First, we examined the activity of output neurons in the
change-detection st-RNN vis-a-vis known properties of stimu-
lus-encoding in SC/OT neurons (Knudsen, 2018). Visual neu-
rons in the SC are known to fire strongly in response to dynamic
stimuli (e.g., moving or looming objects) rather than to static
stimuli (Knudsen, 2011; White et al., 2017). We presented each
of these stimulus types to the model, in turn, as 1000 x 800
images by tiling 50,000 8 x 8 st-RNN modules (Fig. 5A-D, insets;
Materials and Methods).

st-RNN output neurons exhibited higher sensitivity for
dynamic versus static inputs. When a static image was pre-
sented to the model for four successive frames, output neu-
rons of the change-detection RNN were active briefly, at the
onset of the image (Fig. 5A4,E), but not subsequently. On the
other hand, when a moving stimulus was presented neurons
responded with a much higher steady state response (~4x),
as compared with when a static stimulus was presented
(Fig. 5B,E). Similarly, when we presented a looming stimu-
lus the neurons responded with an even higher steady state
response (~5x static stimulus’ steady state response; Fig.
5C,E). Finally, neural responses to receding stimuli were
also robust, albeit marginally weaker than those evoked by
looming stimuli (Fig. 5D,E), qualitatively in line with recent
experimental observations (Lee et al., 2020). The higher
sensitivity of model neurons to dynamic, as compared with
static, stimuli is an emergent consequence of training the
network to detect changes and has interesting implications
for understating the role of the SC in saliency computations
(Discussion). In addition, the stronger response to looming,
as compared with receding stimuli, was an emergent conse-
quence of the interaction between the mnemonic and
change-detection st-RNNs, providing an alternative to the
mechanism proposed in an earlier experimental study (Lee
et al., 2020; see Discussion).

Second, SC/OT neurons are known to exhibit robust signatures
of stimulus competition: when multiple stimuli are presented
concurrently, the strongest stimulus is represented preferentially,
and suppresses responses to weaker stimuli (Mysore et al., 2010)
To test whether these signatures of stimulus competition also
emerged in our st-RNN model, we simulated paired looming
stimuli, one looming fast, and the other comparatively slowly, one
in each visual quadrant (Materials and Methods; Fig. 5F, inset).
We observed clear signatures of competitive suppression in the ac-
tivity of the change-detection st-RNN outputs: responses evoked
by the weaker (slow looming) stimulus were markedly (~8%)
lower when it was paired with a stronger (fast looming)
stimulus, than when it was presented by itself (Fig. 5F,H).
By contrast, responses to the stronger (fast looming) stimu-
lus were nearly identical, regardless of whether it was paired
with a slow looming stimulus or presented alone (Fig. 5G,
H). In other words, the st-RNN model exhibited clear, emer-
gent evidence for stimulus competition.

Finally, we examined the model’s performance in a perceptual
change detection task vis-a-vis the known role of the SC/OT’s
in mediating change detection (Cavanaugh and Wurtz, 2004;
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Lovejoy and Krauzlis, 2010; Knudsen, 2018). Specifically, we
simulated a visual change detection psychophysics task, com-
monly used in “change blindness” experiments in the laboratory
(Steinmetz and Moore, 2014; Sridharan et al., 2017; Sagar et al.,
2019; Banerjee et al., 2019). In this task, two oriented gratings are
presented, one in each visual hemifield (Fig. 64, set A). After a
random delay, the screen is blanked, and gratings briefly disappear
(Fig. 64, blank B). Following reappearance, the orientation of one
of the gratings has changed (Fig. 64, set A"). The subject’s task is
to detect and localize the grating that changed in orientation.

To simulate this psychophysical task, as before, we repre-
sented the set of gratings as a 1000 x 800 image, by tiling 50,000
8 x 8 st-RNN modules (Materials and Methods). In this example,
the grating in the left visual hemifield underwent an orientation
change following the blank (“change” grating), whereas the right
hemifield grating (“no-change” grating) remained unchanged (Fig.
6A, top row; red box). We employed the same partially trained st-
RNN model as in the previous simulations. In this case, the model
produced two types of errors: (1) signaling the change in the left
hemifield grating (change grating) incompletely (compare Fig. 6A,
left grating, Expected vs Observed), and (2) signaling a change in
the right hemifield (no-change) grating also (“false-alarm”).
Examining activity of the mnemonic coding st-RNN during the
maintenance epoch revealed the reason for these errors: The main-
tained activity for original grating set (A) in both hemifields gradu-
ally deteriorated (Fig. 6A, second to last row) and, on presentation
of the new grating set (A"), resulted in incorrect activations of the
change detection units in both the change and no-change gratings
(Fig. 6A, last row). As a consequence, the model signaled an
incomplete change in the change grating, and a spurious change
(false alarm) in the no-change grating.

We sought to rescue this deficit in the model by mimicking
reported experimental effects of microstimulation of the SC/OT
(Cavanaugh and Wurtz, 2004). In nonhuman primates focal
microstimulation of the SC enhances the animals’ ability to
detect changes in a change blindness-like task (Cavanaugh and
Wurtz, 2004). Specifically, SC microstimulation produces two
key effects (see Cavanaugh and Wurtz, 2004; their Fig. 5B): (1)
an improvement in change detection performance (hit rates)
when microstimulation is applied to the target location (location
of change), and (2) a decrease in false-alarms when microstimu-
lation is applied to a nontarget location (location of no-change).
We mimicked both of these effects of focal SC microstimulation
in our model by scaling up (by 1.1x) the recurrent and output
weights of mnemonic-coding st-RNN units at each, respective
microstimulated location (Materials and Methods). Focal microsti-
mulation of the right hemifield (no-change) grating representation
produced a robust recovery of the network’s ability to ignore this
location without producing spurious activations (false-alarm; Fig.
6B,D, top). In contrast, focal microstimulation of the left hemifield
(change) grating representation yielded accurate detection of the
change in the left hemifield grating (compare Fig. 6A, Expected,
left grating and C, Observed, left grating; Fig. 6D, bottom).

Taken together, these results suggest emergent similarities
between st-RNN properties and biological properties of the SC/
OT: not only did st-RNN model neurons resemble functional
properties of SC/OT neurons in terms of their responses to
dynamic (moving, looming, receding) and paired (competing)
stimuli, but behavioral effects of SC/OT causal manipulations
could also be reproduced with simulated manipulations of the st-
RNN model. Our st-RNN model may, therefore, provide a test
bed for understanding neural computations underlying change
detection in the midbrain.
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Model performance correlates with human performance in a

change blindness task

Finally, we asked whether the st-RNN model would be relevant
for understanding human performance in a change blindness
task. For this, we analyzed data from 39 human participants per-
forming a laboratory change blindness experiment with natural
images (Materials and Methods; Jagatap et al., 2021). We sum-
marize the task design here; details can be found in the previous
study (Jagatap et al., 2021). On each trial a pair of images (clut-
tered scenes, typically) was alternately flashed for 250 ms, with
an intervening blank, also of 250-ms duration (Fig. 7A). Subjects
were instructed to detect the change by freely scanning the
images. 20 image pairs were tested; each pair differed in terms of
some key aspect (e.g., appearance or disappearance of an object;
Materials and Methods). Subjects indicated the change location
by fixating on it (for 3 s). If the change had not been detected
within 60 s, the trial timed out.

We simulated gaze shifts on natural images with the st-RNN
model by computing a “priority map” (Materials and Methods).
Briefly, following foveal magnification (CVR; Wiebe and Basu,
1997), we computed a binarized saliency map, based on estab-
lished algorithms (Itti et al., 1998; Otsu, 1979; Fig. 7B, left and
top). This was provided as input to the st-RNN network, which
produced a “change map” (Fig. 7B, rightmost). To encourage the
model to explore the image thoroughly, we computed an IOR
map (Materials and Methods), which discouraged saccades to
previously fixated image locations (Materials and Methods). The
final priority map was computed as a combination of the saliency
map, the change map and the IOR map (Materials and Methods;
Fig. 7B, lower right and bottom). Saccades were generated by
constructing a probability density function over the image,
whose value at each location was proportional to the priority at
that location. The saccade generation process terminated when
the model either correctly fixated at the location of the change,
or until 120 time steps had elapsed (analogous to the human
experiment).

Exemplar scan paths for the model and the human are shown
in Figure 84, red lines. We quantified the similarity of the mod-
el’s gaze data with human gaze data using two approaches. First,
we computed two gaze metrics: (1) the total number of fixations,
and (2) the total “distance traveled” (cumulative path length of
saccades), until the change was detected (Adeli et al., 2017), for
both the human and model experiments. Strong correlations
were observed between humans and the model, for both gaze
metrics (Fig. 8B, number of fixations: #=0.53, p = 0.017; total dis-
tance traveled: r=0.55, p=0.011; Pearson correlation). Because
the priority map included a saliency component, we tested
whether the correlations were driven primarily by the saliency
(Itti et al., 1998), or whether they also required the change
map (change detection st-RNN output). When we removed
the change map from the priority map computation, correla-
tions between the human and model gaze metrics were no lon-
ger significant (Fig. 8C, number of fixations: r=0.31, p=0.18;
total distance traveled: r=0.29, p=0.217).

Second, we correlated human fixation maps with those gener-
ated by the st-RNN model. We compared this correlation against
that generated by the “Salicon” saliency prediction algorithm
(Huang et al,, 2015), among the highest ranked algorithms in the
MIT saliency benchmark leaderboard (Bylinskii et al., 2019) for
predicting free-viewing fixation maps. We employed four stand-
ard benchmark metrics for comparing the similarity of fixation
maps: AUC-Borji, KL-divergence, Similarity score and CC (for



Sawant et al. ® A Midbrain Inspired RNN for Efficient Change Detection

details, see Materials and Methods; Bylinskii et al., 2019). The
st-RNN model significantly outperformed the state-of-the-art
Salicon model, based on three out of the four benchmark met-
rics (Fig. 8D, signed rank test, across 20 image pairs). We also
compared the st-RNN model’s fixation map predictions with
the conventional Itti-Koch saliency prediction algorithm and
observed similar results (Fig. 8E).

In summary, st-RNN model gaze metrics resembled human
gaze metrics in a laboratory change blindness experiment.
Moreover, the st-RNN outperformed a state-of-the-art saliency
prediction algorithm (Salicon) in terms of predicting human fix-
ations. Thus, the st-RNN model may enable linking essential
neural computations with psychophysical mechanisms underly-
ing change detection in change blindness tasks.

Discussion

Detecting changes, across space and time, is a fundamental oper-
ation of the nervous system (Engel et al., 2001). Neurons in a va-
riety of sensory cortical areas (Borst and Egelhaaf, 1989; Zatorre
et al., 2002; Buonomano and Maass, 2009), are tuned to detecting
and processing temporal gradients in incoming stimulus infor-
mation. Yet, in “change blindness” tasks, detecting changes can-
not be accomplished by computing temporal gradients alone. A
more complex sequence of operations is necessary, including
maintaining information in the form of a (transient) memory
trace, and comparing incoming sensory information with this
mnemonic representation. Our model of change blindness,
therefore, sought inspiration from the SC, a midbrain struc-
ture, that is known to exhibit delay period activity during the
maintenance of spatial information (Wurtz et al., 2001) and is
also known to be causally involved in change blindness tasks
(Cavanaugh and Wurtz, 2004).

The SC, and its homolog in nonmammalian vertebrates, the
OT (Basso and May, 2017), are multilayered structures with dis-
tinct neural subtypes in the different layers. Neurons in the su-
perficial layers of the SC/OT (SCs) are involved in the analysis of
visual space (Veale et al., 2017), and respond to changes in visual
stimulus properties such as size, luminance or color (Corbetta et
al,, 1991; Herman and Krauzlis, 2017). In particular, these neu-
rons respond strongly to dynamic, as compared with static
stimuli, and systematically encode the strength of such salient,
dynamic stimuli (Knudsen, 2011, 2018). Our model neurons
also exhibited enhanced sensitivity to moving and looming
stimuli (Fig. 5). Remarkably, the sensitivity to motion or loom
was not programmed into model neurons but emerged as a
consequence of training the network to detect changes in
static stimuli. Moreover, responses to looming stimuli were
stronger than those evoked by receding stimuli, qualitatively
resembling recent experimental observations (Lee et al., 2020).
Whereas (Lee et al., 2020) modeled looming selectivity based
on distinct dynamics of excitatory and inhibitory neurons, in
our model, such selectivity arises from a different mechanism.
Because of the mnemonic coding layer, activations of periph-
eral units for the receding (but not looming) stimuli persist
marginally over successive frames (Fig. 5C,D, MC), thereby
attenuating the output of the change detection units (Fig. 5C,
D, CD). These results suggest that motion and loom sensitivity
in the SC/OT may be an emergent property of more funda-
mental computations, information persistence at short time-
scales, and change detection.

Neurons in intermediate-deep layers of the SC/OT (SCi) pro-
ject to other brain regions, as well as to oculomotor nuclei in the
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brainstem that control eye movements (Veale et al, 2017;
Knudsen, 2018). Of particular interest are neurons in intermedi-
ate layer 10 of the vertebrate OT that contain recurrently con-
nected excitatory and parvalbumin positive (PV+) inhibitory
interneurons (Goddard et al,, 2014). In the model, successful
change detection relied on the ability to both maintain represen-
tation of the original stimulus stably during the blank epoch, and
to update this representation flexibly on presentation of a novel
stimulus. Our analysis (Fig. 3D-G) of the role of connection sub-
types in the model revealed a double dissociation of excitation
versus inhibition in mediating each of these functions (mainte-
nance and updating, respectively). This hypothesis can be tested
experimentally by targeted inactivation of each class of connec-
tions, those that increase the excitatory tone, versus those the
increase the inhibitory tone of the network, in turn.

At first glance, modeling persistent sensory inputs in the SC
appears at odds with previous experimental results, which report
highly transient SC/OT responses following visual stimulation
(Sridharan et al., 2011; Zhao et al., 2014; Lee et al., 2020). In our
model recurrent excitatory connections among SCi neurons ena-
ble persistence of sensory input during the blank epoch. Yet,
neurons in SCi/OTi layer 10 also provide topographic projec-
tions to a GABAergic midbrain nucleus, the Imc, which provides
feedback global inhibition to the entire SC/OT representation
(Wang et al,, 2017). In our model, we incorporated a GI motif
inspired by the neuroanatomy of this SC/OT-Imc circuit. In our
model, activating the GI (Imc) input terminates the persistence
of activity in the SC/OT (Fig. 4E). In other words, our model can
operate in two modes: in the absence of GI (Imc) input, recur-
rent connectivity in the mnemonic coding st-RNN (SCi) enables
persistent activity; this result mimics experimental findings that
show robust persistent activity in an Imc-disconnected OT slice,
in vitro (Goddard et al,, 2012). Yet, when the GI layer (Imc) is
activated, inhibition dominates and persistence is suppressed
(Fig. 4E); this result mimics experimental findings in the SC in
vivo, during natural visual stimulation, e.g. (Lee et al., 2020).

Activation (or deactivation) of the GI/Imc, therefore, provides
a mechanism for flexibly turning “off” (or “on”) persistent activ-
ity in the SC. We propose that, by default, the Imc is active and
this suppresses persistence and yields transient visual responses
in the SC during sensory stimulation. Yet, when a task requires
active maintenance in working memory, Imc output is rendered
functionally ineffective, and this enables persistent activity in the
SC. In our model, the Imc was rendered inactive during the
blank epoch to enable persistence in the SC/OT. It is possible
that in the brain Imc activation is suppressed through top-down
mechanisms (e.g., forebrain input) to enable such persistence in
the SC.

Moreover, the GI/Imc module broadcasts global contextual
cues across the SC/OT input representation and facilitated effec-
tive change detection by enabling flexible updating when new
inputs were presented to the network. While many other net-
work motifs, such as global excitation or long-range recurrent
connections, may serve to broadcast global contextual cues, our
biologically inspired model provides a novel hypothesis regard-
ing the role of the Imc in change detection. The Imc has been
previously studied primarily for its role in spatial stimulus com-
petition (Knudsen, 2011; Mysore and Knudsen, 2012). On the
other hand, we propose that the Imc’s GI output resolves tempo-
ral competition among input representations, such that old, irrel-
evant information can be effectively extinguished and novel,
relevant information can take its place (Fig. 1A4). Successful reso-
lution of this temporal competition is essential to effective
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change detection, and our results suggest an experimentally test-
able role of the Imc in this key neural computation.

In the model, neurons in mnemonic coding st-RNN maintain
information, in the form of a saliency map, during the blank
interval. Previous experimental results suggest that a persistent
saliency map could be present in the SC. First, recent experimen-
tal evidence suggests that SCs neurons encode a saliency map,
with topographical activity representing each stimulus depend-
ing on its relative saliency (White et al., 2017). Second, SC neu-
rons demonstrate persistent firing during the delay period of
working memory tasks (Wurtz et al., 2001; Goddard et al., 2012;
Rahmati et al,, 2020); whether such persistent activity is linked
entirely to premotor signals, or also carries sensory information,
remains to be established. Even if high-dimensional persistent
visual activity does not occur in the SC over the timescale of sev-
eral seconds, it is conceivable that such persistence could occur
over shorter timescales, of a few hundred milliseconds (e.g.,
~100-400 ms; Goddard et al., 2012), sufficient for stable visual
representations to arise during the blank in the change blindness
experiment. Another possibility is that mnemonic representa-
tions occur in a brain region distinct from the SC (e.g., in the
associative cortices, or prefrontal cortex/PFC; Murray et al,
2017). In this latter case, objects at salient locations, as identified
as such by the SCs, or other cortical regions (e.g., parietal cortex;
Bisley and Goldberg, 2010), could be maintained in a prioritized
state in the PFC. Top-down feedback from the PFC would then
enable the SCi to implement change detection, which would,
via the deep SC layers, subsequently drive gaze toward the
next saccade target (Guerrasio et al., 2010). Simultaneous
recordings from the SC and PFC, or association cortices, in
the context of working memory tasks will permit disambiguat-
ing these hypotheses.

We demonstrated the relevance of the st-RNN model for
change detection behavior, by simulating two experimental find-
ings. First, we reproduced hallmark behavioral effects of causal
manipulation of the SC on change detection. Causal experi-
mental manipulations, such as microstimulation and pharma-
cological inactivation, have revealed a key role of the SC/OT
in mediating target selection in the presence of distractors
(McPeek et al., 2003; Carello and Krauzlis, 2004; Cavanaugh
and Wurtz, 2004; Knudsen, 2011; Sridharan and Knudsen,
2015; Knudsen et al., 2017; Sridharan et al., 2017). Simulated
microstimulation, by selectively enhancing the mnemonic
coding st-RNN weights, improved the model’s ability to detect
changes and reduced the proportion of false alarms, in line
with experimental effects (Cavanaugh and Wurtz, 2004).
Second, we extended the model to incorporate saccades to simu-
late a laboratory change blindness experiment. The saccade pri-
ority map in our model included not only a “bottom-up”
saliency map (Fig. 7B, left), but also a “goal-driven” map of task-
relevant locations of change (“change map”; Fig. 7B, top right).
In line with our model, converging evidence suggests that, in
addition to coding for eye movements, neurons in the deep SC
layers also represent task-relevant locations (McPeek et al., 2003;
Carello and Krauzlis, 2004; Cavanaugh and Wurtz, 2004;
Krauzlis et al., 2004; Hafed and Krauzlis, 2008; Knudsen, 2011;
Sridharan and Knudsen, 2015). Notably, our st-RNN model with
saccades outperformed a state-of-the-art algorithm (Salicon;
Huang et al., 2015) with predicting gaze fixations in human par-
ticipants performing a change blindness task. Saliency-based
algorithms like Salicon (or Itti-Koch; Itti et al.,, 1998) are typi-
cally tuned for predicting gaze fixations in free-viewing tasks.
Our results suggest that fixation strategies during change blindness
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tasks may be different from those during free-viewing tasks, and
our model provides a starting point for investigating mechanisms
underlying these differences in gaze strategies.

More generally, our results suggest three organizing princi-
ples that may underlie change detection in the brain. First, the st-
RNN model, with sparse, local connectivity, learned significantly
faster and achieved state-of-the-art change detection perform-
ance with far fewer connections than both a conventional, fc-
RNN and an RNN with sparse, but unstructured (nonlocal)
connectivity. These results suggest that topographic, local con-
nectivity and structured organization, reported in neurons in
various sensory (Ledoux et al., 1987) and higher-order brain
regions (Shipp, 2004) may reflect an efficient architecture for
implementing change detection, or similarly “local” neural com-
putations. Such sparse, local connectivity reduces both the num-
ber of synapses (connections) as well as the length of wiring
between computational units. Second, although the st-RNN was
inspired by well-characterized neuroanatomical circuits in the
SC/OT, the model architecture, comprising recurrently con-
nected E-I neurons, represent a circuit motif that likely occurs in
various brain regions, including the prefrontal cortex (Thompson
and Bichot, 2005) and parietal cortex (Bisley and Goldberg, 2010).
Thus, change detection may reflect the outcome of neural compu-
tations by recurrent E-I circuits that occur in parallel across several
brain networks. Third, the model was able to effectively detect
changes in high-resolution images (~1024 x 768), although indi-
vidual st-RNN modules were trained with no larger than 8 x 8
image patches (Fig. 4B). This success of this scaling depended on
incorporating a global inhibition (GI) layer, that enabled global
contextual information to be shared across independent st-RNN
modules. In fact, training with multiple independent 8 x 8 mod-
ules and a single 10 x 8 GI layer required learning only a few ten
thousand connection weights. By contrast, training a full 1024 X
768 st-RNN network would require learning several orders of
magnitude more weights (~10'2). Scaling up functionality, based
on learning in local modules (e.g., cortical columns, or columns
in the SC/OT), coordinated by a global contextual signal (e.g.,
neuromodulation from the brainstem, or global inhibition from
the Imc), could be a key principle by which the brain implements
key neural computations, including change detection, at scale.

We propose a few modifications and extensions that could
render the st-RNN model more biologically plausible. First,
more detailed aspects of afferent and recurrent SC connectivity
could be incorporated into the model. In the present model,
inputs to the st-RNN are analogous to retinal afferents that syn-
apse onto SC superficial layer neurons. Nevertheless, in addition
to direct retinal inputs, the SC superficial layer neurons receive
input from the visual cortex (Wurtz, 2009). Moreover, interme-
diate/deep layer neurons of the SC also receive inputs from fore-
brain regions including the lateral intraparietal area (LIP) and
frontal eye field (FEF), as well as from the basal ganglia nucleus,
substantia nigra pars reticulata (SNr; Francois et al., 1984). As we
have speculated above, inputs originating in the visual cortex,
LIP or FEF could be, at least partly, responsible for the delay pe-
riod activity observed in the SC. On the other hand, in addition
to its well-documented role in eye movement control (Hikosaka
and Wurtz, 1983), inhibitory input from visual neurons in the SNr
could help curtail the persistence of SC activity. Furthermore,
modeling distinct neural types in the SC, including those subtypes
linked to approach or avoidance behaviors (Shang et al., 2015;
Evans et al., 2018; Hoy et al., 2019), as well as more refined model-
ing of lateral inhibitory interactions in the superficial and deep SC
(Phongphanphanee et al., 2014; Whyland et al., 2020; Essig et al.,



Sawant et al. ® A Midbrain Inspired RNN for Efficient Change Detection

2021) will enhance the model’s biological plausibility. Second,
it is unclear whether the backpropagation algorithm used for
training st-RNN network weights can be instantiated in bio-
logical networks (Zipser and Andersen, 1988; Stork, 1989).
Nevertheless, recent studies have proposed biologically plausible
implementations that are as effective as conventional backpropa-
gation (Lillicrap et al., 2016; Neftci and Averbeck, 2019; Payeur et
al., 2021); these modified algorithms can be incorporated when
training our st-RNN modules. More generally, training the st-
RNN network to detect changes with supervised learning
approaches is likely far removed from how such networks are
configured in biology. Future work involving unsupervised, or
weakly supervised learning approaches that are also informed
by known experimental facts on developmental programs that
shape wiring in the SC/OT (Stein and Stanford, 2013), may
render the st-RNN model more biologically plausible. Third,
the activation functions of the st-RNN model neurons repre-
sent, at best, approximations to neural firing rates. Replacing
st-RNN modules with spiking neural networks may render the
model more biologically plausible. Fourth, the model was pro-
vided a saliency map as input (Itti et al., 1998) without address-
ing the biological origins of this map, although recent evidence
suggests that superficial layer SC neurons encode stimulus sali-
ency (White et al,, 2017). Fifth, the mnemonic coding and
change detection computations were achieved with distinct st-
RNN networks. While it remains to be shown whether this
exact sequence of operations also occurs in the midbrain, future
extensions could model these operations in a single network
with more efficient, training strategies. A possible extension
along these lines is the ConvRNN model framework (Nayebi et al,,
2018). This model combines specialized RNN cells with feedforward
convolutional filters and long-range feedback and could be used to
model the mnemonic-coding and change-detection operations in a
single, unified model. Sixth, it is possible that other neurobiological
mechanisms, such as repetition suppression, may be involved in
change detection in the SC. Nonetheless, neurobiological evidence
for a persistent representation in the SC (Wurtz et al, 2001;
Goddard et al,, 2014) suggests that a persistence based change detec-
tion mechanism is not implausible. Finally, our model detects par-
ticular kinds of changes (onset, offset or size changes) effectively. To
detect other types of changes, such as changes of color, other sali-
ency algorithms, such as the frequency tuned salient region detec-
tion algorithm (Achanta et al., 2009), may be incorporated into
the model. Notwithstanding the scope for improvement, our study
shows that RNNs, constrained by biological principles, provide a
useful test bed for understanding neural computations, and their
link with psychophysical mechanisms, underlying high-level cog-
nitive phenomena.
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