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Introduction

Meningiomas are the most common type of primary intra-
cranial tumor affecting the central nervous system (CNS).1,2

They can be classified into two subtypes based on anatomical

location: skull base and non-skull base.3 While maximal
resection of the tumor and its dural attachment is the
standard surgical treatment for all meningiomas types, the
utility of extent-of-resection as a meaningful prognostic
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Abstract Objective While predictive analytic techniques have been used to analyze meningio-
ma postoperative outcomes, to our knowledge, there have been no studies that have
investigated the utility of machine learning (ML) models in prognosticating outcomes
among skull base meningioma patients. The present study aimed to develop models
for predicting postoperative outcomes among skull base meningioma patients,
specifically prolonged hospital length of stay (LOS), nonroutine discharge disposition,
and high hospital charges. We also validated the predictive performance of our models
on out-of-sample testing data.
Methods Patients who underwent skull base meningioma surgery between 2016 and
2019 at an academic institution were included in our study. Prolonged hospital LOS and
high hospital charges were defined as >4 days and >$47,887, respectively. Elastic net
logistic regression algorithms were trained to predict postoperative outcomes using
70% of available data, and their predictive performance was evaluated on the
remaining 30%.
Results A total of 265 patients were included in our final analysis. Our cohort was
majority female (77.7%) and Caucasian (63.4%). Elastic net logistic regression algo-
rithms predicting prolonged LOS, nonroutine discharge, and high hospital charges
achieved areas under the receiver operating characteristic curve of 0.798, 0.752, and
0.592, respectively. Further, all models were adequately calibrated as determined by
the Spiegelhalter Z-test (p >0.05).
Conclusion Our study developed models predicting prolonged hospital LOS, nonrou-
tine discharge disposition, and high hospital charges among skull base meningioma
patients. Our models highlight the utility of ML as a tool to aid skull base surgeons in
providing high-value health care and optimizing clinical workflows.

received
December 31, 2021
accepted after revision
June 20, 2022
accepted manuscript online
June 25, 2022
article published online
August 25, 2022

© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG,
Rüdigerstraße 14,
70469 Stuttgart, Germany

DOI https://doi.org/
10.1055/a-1885-1447.
ISSN 2193-6331.

Review Article 635

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.

Accepted Manuscript online: 2022-06-25   Article published online: 2022-08-25

https://orcid.org/0000-0002-5403-8237
mailto:dmukher1@jhmi.edu
https://doi.org/10.1055/a-1885-1447
https://doi.org/10.1055/a-1885-1447


variable for skull base meningioma patients specifically has
recently been brought into question.4 Further, the location of
many skull base meningiomas adjacent to critical neuro-
vascular structures often makes aggressive resection diffi-
cult or unfeasible, and puts patients at risk of serious
postoperative complications.5 While overall survival has
not been shown to be significantly different between skull
base and non-skull base meningiomas, patients with skull
base tumors are approximately twice as likely to undergo
retreatment of their meningiomas (either by surgery or
radiotherapy) and have significantly shorter retreatment-
free survival.3 Therefore, being able to better predict the
postoperative course of skull base meningioma patients
specifically may aid in reducing patient morbidity and
optimizing the delivery of high-value health care after
surgery.

While predictive analytic techniques have been used to
study meningioma postoperative outcomes generally, to our
knowledge, there havebeen no studies that have investigated
the utility of machine learning (ML) models in prognosticat-
ing outcomes among skull base meningioma patients specif-
ically. The goal of the present study was to validate a
workflow aimed at (1) developing predictive models for
postoperative outcomes among skull base meningioma
patients, specifically including prolonged hospital length of
stay (LOS), nonroutine discharge disposition, and high hos-
pital charges; and (2) validating the predictive performance
of these models of out-of-sample testing data. We hope that
this proof-of-concept study demonstrates the validity of
using ML to develop effective prognostic tools for skull
base meningioma patients.

Methods

Patient Selection and Recorded Variables
Thepresent studywas conductedusingdata from265patients
who received surgical resection of their skull base meningio-
mas at a single academic institution between January 1st, 2016
and December 31st, 2019. Using Al-Mefty’s anatomical classi-
fication system, the following meningioma subtypes were
defined as “skull base”: tuberculum sellae, planum sphenoi-
dale, olfactory groove, sphenoid wing/spheno-orbital, clinoi-
dal, cavernous sinus, clival and petroclival, tentorial,
cerebellopontine angle, foramen magnummeningiomas, me-
ningiomas of the middle fossa floor, and temporal bone
meningiomas.6 Our Institutional Review Board (IRB), acting
as a Health Insurance Portability and Accountability Act
(HIPAA) Privacy Board, reviewed and approved the waiver of
informed consent for this retrospective study (IRB00181593).
Manual chart reviewof electronicmedical recordswas used to
obtain demographic and clinical information. Tumor size and
location were determined using post-contrast magnetic reso-
nance images, with tumor volume measured using tumor
dimensions in axial (x), coronal (y), and sagittal (z) planes
via the following formula: . An American Society of
Anesthesiology physical status classification system (ASA)
score was documented for each patient, and patient frailty
was quantified using the 5-factor modified frailty index

(mFI-5).7,8 A symptomatic presentation was defined as a
meningioma diagnosis on the basis of a workup prompted
by any of the following symptoms: seizures, headaches,
nausea/vomiting, diplopia, decreased hearing, vertigo, dysar-
thria, dysphagia, confusion, bladder incontinence, motor defi-
cit, sensory deficit, language deficit, visual deficit, cognitive
deficit, or gait deficit. Surgeon years of experiencewas defined
as the number of years since a surgeon completed their
residency training to the date of surgery, in line with prior
research.9,10

Regarding postoperative outcomes, prolonged hospital
LOS and high hospital charges were both analyzed as dichot-
omous variables using a cutoff of the upper quartile of each
outcome (>4 days for LOS and >$47,887 for hospital
charges), as described previously.11–16 For the present study,
routine discharge disposition was defined as discharge to
home (either with self-care or health care service assistance)
and nonroutine discharge was defined as discharge to a
rehabilitation facility, a skilled nursing facility, or a hospice
facility.17

Statistical Analysis
Data were collected using Microsoft Excel (version 2016,
Microsoft Corp.) and statistical analyses were conducted
using R statistical software (version 4.0.2, r-project.org).
Bivariate analyses were conducted using Fisher’s exact test
and the Mann-Whitney U test for continuous and categorical
variables, respectively. ML algorithmswere trained using the
Caret package.18 For this study, elastic net logistic regression
ML algorithms were used. Briefly, the elastic net is a
statistical technique used to prevent model overfitting by
applying a penalty function to regression β-coefficients.19

Addition of this penalty function to either linear or logistic
regression model coefficients allows for better predictive
performance compared with ordinary least-squares regres-
sion coefficients by effectively removing model covariates
that do not contribute to optimizing predictive perfor-
mance, thereby creating more parsimonious models that
perform better when evaluated on out-of-sample testing
data.19

Patient data was separated into training and independent
holdout testing subsets based on an 70/30 ratio, respectively.
Fivefold cross validation repeated 10 times was used to tune
model hyperparameters on the 70% training dataset, and
hyperparameter optimization was conducted using a ran-
dom search.20 Following training (i.e., hyperparameter opti-
mization), the predictive abilities of the finalized models
were evaluated on 30% holdout testing dataset. Models were
compared based on their discrimination and calibration,
quantified by the area under the receiver operating charac-
teristic curve (AUROC) and by the Brier score, respective-
ly.21,22 An AUROC (also known as the c-statistic) of 0.70 is
generally taken to indicate that a predictive model demon-
strates clinically-useful discrimination.21 For AUROC and
Brier score metrics, 95% confidence intervals were obtained
using 2,000 bootstrapped replicates while a 95% confidence
interval for accuracy was calculated as described by Clopper
and Pearson.23 Spiegelhalter’s Z-test was also used to assess
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for adequate calibration of the final models for prolonged
LOS, nonroutine discharge, and high hospital charges, with p
<0.05 indicating inadequate calibration.22 Variable impor-
tance plots were also created for each model to depict the
relative importance of each variable toward calculating the
predicted outcome.

Results

Patient Demographics and Outcomes
►Table 1 demonstrates the demographic and clinical char-
acteristics of our patient cohort. Our cohort was comprised
of patients with the following types of skull base

Table 1 Patient demographic and clinical characteristics (n¼265)

Characteristic n (%)

Mean age � SD 58.89 � 12.91

Sex

Female 206 (77.7)

Male 59 (22.3)

Race

White or Caucasian 168 (63.4)

Black or African-American, Asian, or Other 97 (36.6)

Insurance

Private 182 (68.7)

Medicare or Medicaid 83 (31.3)

Marital status

Married 185 (69.8)

Not married 80 (30.2)

Admission type

Elective surgery 244 (92.1)

Non-elective 21 (7.9)

WHO Grade

I 249 (94.0)

II/III 16 (6.0)

Mean tumor volume (cm3) � SD 17.17 � 20.99

Tumor location

Anterior fossa 47 (17.7)

Middle fossa 111 (41.9)

Posterior fossa 107 (40.4)

Mean ASA score � SD 2.64 � 0.53

Mean mFI-5 score � SD 0.79 � 0.84

Hypertension requiring medication 138 (52.1)

Diabetes 46 (17.4)

Chronic obstructive pulmonary disease 13 (4.9)

Congestive heart failure 9 (3.4)

Functional status 4 (1.5)

Symptomatic presentation

Yes 241 (90.9)

No 24 (9.1)

Mean surgeon years of experience � SD 16.64 � 10.71

Surgical approach

Endoscopic endonasal resection 9 (3.4)

Craniotomy 256 (96.6)

(Continued)
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meningiomas: 72 sphenoid wing meningiomas (no spheno-
orbital meningiomas), 54 cerebellopontine angle meningio-
mas, 43 tentorial meningiomas, 27 tuberculum sella menin-
giomas, 20 cavernous sinus meningiomas, 15 olfactory
groove meningiomas, nine meningiomas of the middle fossa
floor, eight meningiomas of the temporal bone, six foramen
magnum meningiomas, five planum sphenoidal meningio-
mas, three clinoidal meningiomas, and three
clival/petroclival meningiomas. Overall, our cohort had a
mean age (� SD) of 58.89� 12.91 years, was majority female
(77.7%), and was mostly Caucasian (63.4%). Most patients
had private insurance (68.7%), were married (69.8%), and
underwent an elective resection of their skull base meningi-
oma (92.1%). Most patients hadWHO grade I tumors (94.0%),
and the mean tumor size (� SD) of our cohort was 17.17 �
20.99 cm3. A total of 47 (17.7%), 111 (41.9%), and 107 (40.4%)
patients had tumors located in the anterior, middle, and
posterior fossa of the skull base, respectively. The mean ASA
andmFI-5 scores (� SD) for our patientswere 2.64� 0.53 and
0.79 � 0.84, respectively. The majority of our patient cohort
had a symptomatic presentation (90.9%). The mean surgeon
years of experience (� SD) among our cohort was 16.64 �
10.71 years, with a small minority of surgeons utilizing an
endoscopic endonasal approach for tumor resection (3.4%).
The mean surgery duration (� SD) in our cohort was 4.84 �
1.92hours, while the mean hospital LOS (� SD) was 4.86 �
7.18 days. Most patients had a routine discharge disposition
postoperatively (88.7%), and the mean hospital charges (�
SD) incurred among our patients were $44,740.88 �
$29,547.03.

Bivariate Analysis
►Table 2 displays the results of our bivariate analysis assess-
ing for significant relationships between patient
demographic/clinical variables and our three postoperative
outcomes of interest: prolonged LOS, nonroutine discharge,
and high hospital charges. Regarding LOS, older patient age
(p¼0.017), Medicare or Medicaid insurance status

(p¼0.0021), non-elective admission (p <0.0001), greater
tumor volume (p¼0.0017), higher ASA score (p <0.0001),
greater mFI-5 score (p¼0.0032), less surgeon years of expe-
rience (p¼0.0045), and longer surgery duration (p¼0.017)
were all significantly associatedwith prolonged hospital LOS.
Regarding discharge disposition, older patient age (p
<0.0001), Medicare or Medicaid insurance status
(p¼0.035), greater tumor volume (p <0.0001), higher ASA
score (p <0.001), and higher mFI-5 score (p¼0.020) were all
significantly associated with nonroutine discharge. Finally,
non-Caucasian race (p¼0.012), Medicare or Medicaid insur-
ance status (p¼0.032), non-elective admission (p¼0.0010),
greater tumor volume (p <0.0001), higher ASA score
(p¼0.031), less surgeon years of experience (p <0.001),
and longer surgery duration (p<0.0001) were all significant-
ly associated with high hospital charges.

Predictive Modeling Results
►Table 3 displays the regularized coefficients for our fully-
trained elastic net logistic regression models in addition to
their respective odds ratios. Further, our elastic net models
predicting prolonged LOS, nonroutine discharge, and high
hospital charges had α values of 0.38, 0.017, and 0.95,
respectively. While all patient demographic and clinical
variables were utilized to predict nonroutine discharge
disposition, elastic net regularization only selected the fol-
lowing variables for predicting prolonged hospital LOS:
insurance status, admission type, tumor volume, ASA score,
and surgeon years of experience. Further, elastic net regular-
ization removed the following variables from logistic regres-
sion analysis when seeking to optimize the predictive
accuracy of high hospital charges: patient age, patient sex,
patient race, marital status, WHO grade, tumor location, ASA
score, mFI-5 score, symptomatic presentation, and surgical
approach.

Importantly, our analysis demonstrated that Medicare or
Medicaid insurance status (odds ratio [OR]¼1.11), non-
elective admission (OR¼1.30), greater tumor volume (OR

Table 1 (Continued)

Characteristic n (%)

Mean hospital LOS � SD 4.86 � 7.18

Prolonged hospital LOS (>4 d)

Yes 66 (24.9)

No 199 (75.1)

Discharge disposition

Non-routine 30 (11.3)

Routine 235 (88.7)

Mean hospital charges in U.S. dollars ($) � SD $44,740.88 � 29,547.03

High hospital charges (>$47,887.39)

Yes 66 (24.9)

No 199 (75.1)

Abbreviations: LOS, length of stay; SD, standard deviation.
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¼1.04 per 1 cm3 increase), and higher ASA score (OR¼1.22
per 1 point increase) were all associated with higher odds of
prolonged hospital LOS. Further, greater surgeon years of
experience was associated with a lower odds of prolonged
hospital LOS (OR¼0.95 per additional year of experience).
Regarding discharge disposition, older patient age (OR¼1.55
per 1 year increase), Medicare or Medicaid insurance status
(OR¼1.11), WHO grade II/III vs I (OR¼1.13), greater tumor
volume (OR¼1.51 per 1 cm3 increase), middle relative to
anterior fossa tumor location (OR¼1.11), higher ASA score
(OR¼1.36 per 1 point increase), higher mFI-5 score (OR
¼1.07 per 1 point increase), and symptomatic presentation
(OR¼1.05) were all associated with increased odds of non-
routine discharge. Male sex (OR¼0.74), non-Caucasian race
(OR¼0.83), married marital status (OR¼0.87), non-elective
admission status (OR¼0.79), posterior relative to anterior
fossa tumor location (OR¼0.93), greater surgeon years of
experience (OR¼0.86 per additional year of experience), and
endoscopic endonasal approach relative to craniotomy (OR
¼0.85) were all associated with decreased odds of nonrou-
tine discharge. Finally, Medicare or Medicaid insurance
status (OR¼1.03), non-elective admission (OR¼1.13), and
greater tumor volume (OR¼1.46 per 1 cm3 increase) were
all associated with increased odds of high hospital charges.
Greater surgeon years of experience (OR¼0.85 per 1 year
increase) was the sole variable associated with decreased
odds of incurring high hospital charges.

►Table 4 displays the predictive performance metrics
for our elastic net logistic regression models on our
holdout validation datasets. Models predicting prolonged
LOS, nonroutine discharge, and high hospital charges
achieved AUROCs of 0.798, 0.752, and 0.592, respectively.
ROC plots for all three models are displayed in ►Fig. 1. The
elastic net logistic regression model predicting prolonged
LOS achieved an accuracy of 82.1% on its holdout dataset,
while the model predicting nonroutine discharge achieved
an accuracy of 89.9% and the model predicting high
hospital charges achieved an accuracy of 73.4%. Further,
the Brier scores of models predicting prolonged LOS,
nonroutine discharge, and high hospital charges were of
0.15, 0.084, and 0.19, respectively. All three models dem-
onstrated adequate calibration via the Spiegelhalter Z-test
(p >0.05). Variable importance plots for all three elastic
net models are depicted in ►Fig. 2A–C.

Discussion

Prior Research
Previous research within the neurosurgical literature has
utilized ML to predict postoperative outcomes such as LOS,
discharge disposition, and hospital charges in brain tumor
patients. A 2017 study by Muhlestein et al analyzed the
impact of medical comorbidities on discharge disposition
and LOS following craniotomy for brain tumor patients listed
within the National Inpatient Sample.13 The authors created
ML ensemble models predicting discharge disposition and
LOS >7 days with AUROC of 0.796 and 0.824, respectively.
The authors also found that preoperative paralysis,Ta
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fluid/electrolyte abnormalities, and other non-paralysis
neurological defects most strongly influenced the ensemble
model predicting prolonged LOS.13 In a separate study,
Muhlestein et al also developed ML models that directly
predicted total charges for transsphenoidal surgery for pitu-
itary tumors, and the investigators identified extended LOS,
nonelective admission type, non-Southern hospital region,
minority race, postoperative complication, and private in-

vestor hospital ownership as drivers of total charges and
therefore as potential targets for cost-lowering interven-
tions.24 Within the orthopaedics literature, a 2018 study
by Navarro et al used a naïve Bayesian ML algorithm to
predict LOS and inpatient costs following total knee arthro-
plasty. The authors noted that their ML algorithm demon-
strated high validity for predicting LOS and hospital charges,
with AUROCs of 0.782 and 0.738, respectively.25 While our

Table 3 Elastic net logistic regression coefficients and odds ratios for models predicting LOS, discharge, hospital charges, and
readmission

Hospital LOS Nonroutine disposition Hospital charges

Characteristic β-coefficient Odds ratio β-coefficient Odds ratio β-coefficient Odds ratio

Age – – 0.44 1.55 – –

Sex

Male – – �0.30 0.74 – –

Female – – – –

Race

Black or African-American,
Asian, or Other

– – �0.19 0.83 – –

White or Caucasian – – – –

Insurance

Medicare or Medicaid 0.10 1.11 0.11 1.11 0.026 1.03

Private

Marital status

Married – – �0.15 0.87 – –

Not married – – – –

Admission type

Non-elective 0.26 1.30 �0.24 0.79 0.12 1.13

Elective

WHO Grade

II/III – – 0.12 1.13 – –

I – – – –

Tumor volume (cm3) 0.039 1.04 0.41 1.51 0.38 1.46

Tumor location

Anterior fossa Reference Reference Reference Reference Reference Reference

Middle fossa – – 0.11 1.11 – –

Posterior fossa – – �0.076 0.93 – –

ASA score 0.20 1.22 0.30 1.36 – –

mFI-5 score – – 0.067 1.07 – –

Symptomatic presentation

Yes – – 0.052 1.05 – –

No – – – –

Surgeon years of experience �0.055 0.95 �0.15 0.86 �0.17 0.85

Surgical approach

Endoscopic endonasal
resection

– – �0.16 0.85 – –

Craniotomy – – – –
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prior work has utilized logistic regression models and infer-
ential statistics to identify predictors of high-value care
outcomes among skull base meningioma patients as well
as to obtain predictive performance metrics for these mod-

els, the present study represents the first effort (to our
knowledge) of applying ML methods to model these
outcomes.26

Present Study
The present work sought to apply an ML-workflow to
prognosticating postoperative outcomes among skull base
meningioma patients. Additionally, we also evaluated the
discrimination and calibration of our predictive algorithms
to assess whether preoperative patient demographic and
clinical characteristics could effectively predict high-value
care metrics. Overall, our two elastic net logistic regression
models predicting prolonged hospital LOS and nonroutine
discharge disposition demonstrated adequate discrimina-
tion (AUROC >0.70) and calibration (Spiegelhalter’s Z-test
p-value >0.05). Importantly, while our model predicting
high hospital charges demonstrated adequate calibration,
its AUROC of 0.592 suggests inadequate discrimination that
would likely not be clinically useful. One potential reason for
the our limited ability to predict high hospital charges
preoperatively is that the charges incurred by a patient
during their hospital stay are mainly influenced by intra-
and postoperative variables such as surgery duration,

Table 4 Elastic net logistic regression models predictive performance metrics and 95% confidence intervals on holdout validation
sets

Metric Hospital LOS (n¼ 78) Nonroutine discharge (n¼ 79) Hospital charges (n¼ 79)

AUROC 0.798 (0.662–0.900) 0.752 (0.581–0.906) 0.592 (0.445–0.731)

Accuracy (%) 82.1% (71.7%–89.8%) 89.9% (81.0%–95.5%) 73.4% (62.3%–82.7%)

Brier score 0.15 (0.11–0.19) 0.084 (0.037–0.13) 0.19 (0.14–0.24)

Spiegelhalter Z-test p-value 0.16 0.83 0.64

Abbreviation: LOS, length of stay.

Fig. 1 ROC curves for LOS, discharge, and hospital charges on
holdout validation sets. LOS, length of stay; ROC, receiver operating
characteristic curve.

Fig. 2 Variable importance plots for elastic net logistic regression models predicting (A) LOS, (B) discharge, and (C) hospital charges. LOS,
length of stay.
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postoperative complication, and total hospital LOS, as de-
tailed in prior studies.24,27,28Our results highlight that while
ML algorithms may be useful for predicting postoperative
risk of prolonged LOS and nonroutine discharge disposition,
the preoperative variables utilized in the present study are
likely not sufficient for effectively predicting a patient’s risk
of incurring high hospital charges.

Further, our use of the elastic net logistic regression
algorithm allowed us to calculate odds ratios for each model
covariate to determine whether a given variable was associ-
ated with a higher or lower odds of a given postoperative
outcome. Our results demonstrating that Medicare or Med-
icaid insurance, non-elective admission, greater tumor vol-
ume, higher ASA score, and less surgeon years of experience
were all associated with increased odds of prolonged hospi-
tal LOS corroborates prior findings within the neurosurgical
and spine surgery literature.11,29–31 Further, the fact that
older patient age, Medicare or Medicaid insurance, greater
tumor volume, higher ASA score, and higher mFI-5 score are
all associated with higher odds of nonroutine discharge also
validates prior research findings.32–35 Finally, the fact that
Medicare or Medicaid insurance, non-elective admission,
greater tumor volume, and less surgeon years of experience
were all associatedwith higher odds in high hospital charges
according to our predictive model is also in line with previ-
ous research.16,30,36–40

Interestingly, several associations that were significant in
bivariate analysis were excluded from the final predictive
models during the training process (such as the significant
association between older patient age and higher odds of
prolonged LOS), and some associations that were not signif-
icant in bivariate analysis were included as inputs in thefinal
elastic net models (such as the association between patient
sex and discharge disposition). This also highlights the
importance of differentiating between inferential statistics
and predictive analytics. While inferential methods such as
generalized linear models make use of probabilistic assump-
tions and hypothesis testing to provide a mathematical
guarantee regarding the underlying structure and behavior
of associations observed in datasets, predictive analytic
methods such as ML algorithms focus mainly on achieving
superior predictive performance (AUROC, calibration) on
out-of-sample datasets with a lesser emphasis on represent-
ing the data-generating mechanism between model input
and output.41 Linear and logistic regression methods repre-
sent examples of inferential approaches where the probabi-
listic, stochastic structure of the models allows for
calculation of meaningful confidence intervals and p-values
that can be interpreted to yield insight regarding specific
relationships between model inputs and outputs. Deep
neural networks, on the other hand, are examples of algo-
rithms that can achieve excellent performancemetrics when
predicting complex, non-linear relationships, but also pro-
vide little insight regarding the underlying data-generating
relationship and thus how such predictions are being
made.42,43

The present study developed three predictive models
using elastic net regularization, anML algorithm that accom-

plishes data-driven variable selection and allowed us to train
two models predicting prolonged LOS and nonroutine dis-
charge dispositionwhich demonstrated good calibration and
discrimination on out-of-sample datasets. Elastic net logistic
regressionwas also useful becausewe are able to calculate β-
coefficients and odds ratios to gain some degree of under-
standing regarding how our model inputs were producing
our model outputs. However, given that the elastic net
regularization method does not have an underlying proba-
bilistic structure like ordinary-least-square linear or logistic
regression that would allow for the calculation of confidence
intervals and p-values, it is important to keep in mind that
we are limited regarding our inferences about the statistical
relationships among model inputs and output.44,45 Overall,
our study demonstrates thatMLmethodology can be applied
to prognosticate postoperative outcomes among skull base
meningioma patients with reasonable predictive perfor-
mance. However, investigators must be mindful about
whether their priority is achieving superior predictive per-
formance or attaining a better understanding of the under-
lying statistical relationships in their data. Further, given the
mixed results of ML predictive performance relative to
traditional statistical techniques within the medical litera-
ture, one cannot assume a priori that ML always leads to
superior predictive performance compared with linear or
logistic regression and therefore should empirically assess
the performance of their algorithms to see if they attain
acceptable levels of discrimination and calibration for their
outcomes of interest.46–49

Limitations
The present study is retrospective and is limited in its
analysis of patient data from a single academic, medical
institution during a restricted time period (2016–2019). The
retrospective design of our study prevents us from comment-
ing on any causal relationships that may exist between the
variables that we analyzed. External validation of our find-
ings in an independent cohort of skull base meningioma
patients would be ideal to ensure the generalizability of our
findings; this validation provides an avenue for future re-
search. As all patients in this study were surgically managed,
the model is not valid for patients who are treated only with
non-surgical approaches such as radiotherapy. Additionally,
the present study only estimated total hospital charges as
opposed to costs. Hospital charges are initial hospital list
prices for services while costs represent actual expenses
incurred during a patient’s hospitalization, and while
charges and costs are not synonymous, we agree with
previous investigators that charges may represent a useful
proxy for costs.24 Applying ML methods to estimate charges
directly may serve as an avenue for future research efforts.
Another important limitation is the small number of EEA
cases in our patient cohort (n¼9). Additional research efforts
incorporating greater number of EEA surgeries may be
needed to definitively determine whether surgical approach
is a useful prognostic variable to consider when using ML to
predict high-value postoperative outcomes among skull base
meningioma patients. Acknowledging these limitations, the
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present study has developed and internally validated predic-
tive models that may be useful in optimizing postoperative
outcomes and increasing the provision of high-value health
care.

Conclusion

Our study developed three ML models predicting prolonged
hospital LOS, nonroutine discharge disposition, and high
hospital charges among skull base meningioma patients.
Using preoperative demographic and clinical variables, our
models predicting hospital LOS and nonroutine discharge
disposition demonstrated adequate discrimination and cali-
bration, and highlight the utility of ML as a tool to aid
neurosurgeons in providing high-value health care and
optimizing clinical workflows.

Reporting Guidelines
The authors found no applicable reporting guidelines that
would apply to this article. By following the EQUATOR
reporting guidelines decision tree, (http://www.
equatornetwork.org/wp-content/uploads/2013/11/
20160226-RG-decision-tree-for-Wizard-CC-BY-26- Feb-
ruary-2016.pdf), we found that none of the most popular
checklists are appropriate for our study design.
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