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Abstract

This work proposes to develop and evaluate a deep learning framework that jointly optimizes 

k-t sampling patterns and reconstruction for head and neck dynamic contrast-enhanced (DCE) 

MRI aiming to reduce bias and uncertainty of pharmacokinetic (PK) parameter estimation. 2D 

Cartesian phase encoding k-space subsampling patterns for a 3D spoiled gradient recalled echo 

(SPGR) sequence along a time course of DCE MRI were jointly optimized in a deep learning-

based dynamic MRI reconstruction network by a loss function concerning both reconstruction 

image quality and PK parameter estimation accuracy. During training, temporal k-space data 

sharing scheme was optimized as well. The proposed method was trained and tested by multi-coil 

complex digital reference objects of DCE images (mcDROs). The PK parameters estimated by the 

proposed method were compared with two published iterative DCE MRI reconstruction schemes 

using normalized root mean squared errors (NRMSEs) and Bland-Altman analysis at temporal 

resolutions of Δt=2s, 3s, 4s, and 5s, which correspond to undersampling rates of R=50, 34, 

25, and 20. The proposed method achieved low PK parameter NRMSEs at all four temporal 

resolutions compared with the benchmark methods on testing mcDROs. The Bland-Altman plots 

demonstrated that the proposed method reduced PK parameter estimation bias and uncertainty 

in tumor regions at temporal resolution of 2s. The proposed method also showed robustness to 

contrast arrival timing variations across patients. This work provides a potential way to increase 

PK parameter estimation accuracy and precision, and thus facilitate the clinical translation of DCE 

MRI.
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I. Introduction

Dynamic contrast-enhanced (DCE) MRI is an imaging technique that acquires a time-series 

of T1 weighted images before, during and after a bolus administration of a contrast agent 

(CA) to enable quantitative physiological parameter extraction from a pharmacokinetic (PK) 

model. The extracted parameters, e.g., blood volume and blood flow, could help assess the 

histological grade of tumors [1], differentiate tumors from normal tissue [2], and monitor as 

well as predict cancer response to therapy [3]. Despite these promises, DCE MRI still faces 

technical challenges that limit its utility for routine clinical use or even for application 

to multi-center clinical trials. Major challenges include: 1) a trade-off between spatial 

resolution and/or spatial volume coverage of anatomy of interest versus temporal resolution 

of the dynamic scan; and 2) accuracy and reproducibility of the quantified parameters that 

are sensitive to temporal resolution, PK model, pulse sequence and reconstruction method 

[4], [5].

To achieve adequately high temporal resolution of DCE MRI to yield accurate PK parameter 

estimation [4], parallel imaging [6] and different k-t space sampling trajectory designs 

[7]–[11] have been used. The challenge of simultaneously increasing spatial resolution, 

coverage volume and temporal resolution of DCE MRI requires optimizing the k-t sampling 

pattern (SP) by taking advantage of the spatiotemporal sparsity of dynamic signals as well 

as characteristics of anatomy being imaged. A few attempts have been made to optimize 

the SP to leverage similarity of the same body site assisted by prior knowledge for image 

reconstruction algorithms [12]–[16]. However, these works most relied on pattern search 

algorithms that lack computational efficiency. Most importantly, no currently known strategy 

considers the underlying quantitative PK parameter estimation model in the sampling 

optimization, even though an influence of the k-t SP on the variance of estimated PK 

parameters has been demonstrated [17]. We hypothesize that joint optimization of DCE 

MRI k-t SPs and PK parameter estimation has the potential to improve accuracy and 

reproducibility of the estimated parameters.

Nonlinear algorithms are needed to reconstruct high quality MR images from highly 

undersampled k-t space DCE data. Compressed sensing-based methods have been applied 

with hand-crafted constraints exploiting the spatial and temporal sparsity in DCE MRI 

[18]–[21]. Recently, deep learning has shown promise in MR image reconstruction by 

exploring data-driven constraints [22]–[26]. In deep learning-based frameworks, recurrent 

neural networks (RNNs) that processes temporal information in the dynamic data have 

shown superior performance in DCE MRI reconstruction [27], [28]. More recently, deep 

learning-based joint optimization of k-space SPs and reconstruction networks has been 

proposed [29]–[31], and shown improved quality of reconstructed MR images from 

optimized undersampled k-space data compared to compressed sensing-based methods with 

non-optimized sampling. However, existing investigations have primarily focused on the 

optimization for static MR image reconstruction.

In this work, we extend the use of RNNs further to jointly optimize k-t space SPs of DCE 

MRI acquisition and image reconstruction with an objective that combines image quality 

and parameter estimation accuracy. The dynamic MRI reconstruction network exploits the 
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spatiotemporal sparsity of DCE MRI to optimize where in k-space and when in the dynamic 

time course to acquire the MR data. The PK parameter estimation l2 loss was integrated into 

the objective of the image reconstruction network to account for PK modeling information 

during network training. Realistic multi-coil digital reference objects (mcDROs) were 

created from PK parameter maps estimated from patient scans with head and neck cancers 

and used for network training and testing, which provided ground truth for quantitative 

evaluation. The proposed method was tested in a wide range of temporal resolutions of 

mcDROs, and showed reductions in PK parameter bias and uncertainty compared to two 

previous published works [21], [32].

II. Methods

Our proposed method consists of four major components: 1) k-t SP optimization, 2) k-t 

space data sharing optimization, 3) a dynamic MR image reconstruction network, and 4) 

a PK parameter estimation layer. The first three have learnable parameters and are jointly 

optimized during training. The last component, the PK parameter estimation layer, has 

no trainable parameters, but its gradient is passed on to the other components to provide 

feedbacks for the network learning. The overall workflow of the proposed approach is 

shown in Fig. 1. The details of each component and how they are combined to allow an 

end-to-end training are described in the following subsections.

A. k-t Sampling Pattern

In this work, the k-t space SP that represents 2D phase encoding locations along the time 

course of a DCE acquisition using a 3D T1 weighted spoiled gradient echo sequence is 

learned jointly with the reconstruction network. Frequency encodings are fully sampled 

due to their rapid sampling speed. We extended LOUPE [33] to the time domain by 

adding a temporal degree of freedom (TDoF) to learn dynamic SPs in the k-t space. Let 

x ∈ ℂnxnynt denote a sequence of fully sampled images of a slice with width nx, height ny 

and nt time frames. The 2D Cartesian k-space SP in a kx-ky plane at time nt is denoted 

as mu ∈ 0, 1 nxnynt where superscript u represents “undersampling”, which is formulated 

as a realization of random vector Mu containing independent Bernoulli random variables, 

i.e. Mu ∼ ∏i = 1
nxnyntℬ piu , where pu ∈ [0, 1]nxnynt denotes the subsampling probability to 

be learned. Therefore, the undersampled k-space data of the cth coil can be written as 

FuCcx = diag mu FCcx, where Cc is a diagonal matrix with the coil sensitivity values of the 

cth coil as the diagonal elements, F is the forward discrete Fourier transform matrix and 

Fu = diag(mu)F is the undersampling matrix. The first timeframe of the image slice is fully 

sampled to provide the anatomic baseline prior to the arrival of the injected contrast.

To implement LOUPE with a TDoF, a set of neural network weight parameters wu ∈ ℝnxnynt

to be learned is regularized by an element-wise sigmoid function to produce a set of 

sampling probability maps pu ∈ [0, 1]nxnynt. To create SPs from the sampling probability 

maps pu, a sigmoid function is used to approximate the operation so that mu = σv(u 

− pu), where u ∈ [0, 1]nxnynt is a realization of ∏i = 1
nxnyntU(0, 1) and σv(x) = 1

1 + e−vx  is an 
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element-wise sigmoid function with slope v. The sigmoid function ensures nonzero gradient 

when backpropagating through the sampling of Bernoulli random variables.

B. k-t Space Data Sharing

In DCE MRI, adjacent temporal frames share similar contrast enhancements among the 

same anatomy, and especially, dynamic changes are limited before starting contrast uptake 

and after reaching the uptake plateau. Sharing the k-space data among temporal frames 

within the same anatomy would reduce undersampling-caused aliasing in an initial image 

for reconstruction network training. Inspired by previous data sharing approaches [25], 

we propose a novel machine learning-based k-space data sharing (DS) scheme. A subset 

of frames is determined during training to share their k-space data with frame j, and 

represented by a data sharing mask mjs ∈ 0, 1 nt where superscript s represents “sharing” 

and value 1 or 0 indicates sharing or not. The k-space data from other frames shared with 

frame j at coil c, kj, c
S ∈ ℂnxny, is described as follows:

kj, c
s = ∑

j′ = 1

nt
(mjs)j′diag(mju)FCcxj′, (1)

where xj′ ∈ ℂnxny denotes the j′th frame of a MR slice and mju ∈ 0, 1 nxny is the 

subsampling mask for frame j. If a k-space location in frame j has more than one frame 

for data sharing, a data average is taken. Then, the initial guess xj, c
(0) of the image of frame j 

at coil c is obtained by taking an inverse discrete Fourier transform (DFT) of the combined 

acquired and shared k-space data as:

xj, c
(0) = F H(diag(mju)FCcxj + (diag(1 − mju))kj

s), (2)

where FH denotes the inverse DFT matrix. Finally, the coil-combined initial guess of the 

image is xj
(0) = ∑c = 1

nc Cc
Hxj, c

(0).

Similar to the approach that generates the SP, the data sharing mask mjs is a realization 

of random vector Mj
s containing independent Bernoulli random variables of which the 

probability pjS ∈ [0, 1]nt is parameterized by network weights that are learned during training. 

The same σv(∙) is used to approximate the sampling of Bernoulli random variables.

C. Image Reconstruction

To take full advantage of temporal sparsity of DCE MRI, we adopted and modified 

the Convolutional RNN (CRNN) framework [34] to utilize RNN capability of extracting 

temporal correlations in dynamic data and to improve computation efficiency. In the 

modified CRNN, connections are over both temporal and iteration dimensions, which is 

not used in deep-learning methods for static image reconstruction.
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In the typical compressed sensing (CS) framework, the MR image reconstruction problem is 

usually posed as a nonlinear optimization problem in a form:

x = argmin
x

‖Ax − y‖2
2 + λℛ(x), (3)

where x ∈ ℂnxnynt is the set of fully sampled images, A is the MRI system matrix including 

effects of coil sensitivity, Fourier encoding and undersampling, y is the measured k-space 

data and ℛ( ⋅ ) denotes a regularization term that represents our prior knowledge of x. 

The first l2 norm enforces the data-consistency (DC) between the reconstructed image and 

the acquired k-space data. For dynamic MR reconstruction, ℛ( ⋅ ) is often employed as 

spatiotemporal total variation (TV) [35] or low rank [36] constraints. By applying variable 

splitting and alternating minimization techniques, x can be solved iteratively by:

z(i + 1) = argmin
z

μ x(i) − z 2
2 + λℛ(z), (4)

x(i + 1) = argmin
x

‖Ax − y‖2
2 + μ x − z(i + 1) 2

2 . (5)

where μ is a penalty parameter and z is an auxiliary variable. The x update is often called the 

DC term. We follow D-POCSENSE [37] to implement this step as

x(i + 1) = ∑c = 1
nc Cc

HF H diag 1 − mu FCcz(i + 1) + y . (6)

The z update is a proximal operator, which we follow previous works [25], [34] to solve with 

a CNN-based dealiasing network DΘ( ⋅ ) parameterized by Θ so that z(i + 1) = DΘ x(i) . We 

used a modified version of the CRNN framework as the de-aliasing network.

Our CRNN framework (Fig. 2) contains 5 components: 1) one bidirectional CRNN layer 

over both time and iterations (BCRNN-t-i), 2) one recurrent U-net (R-U-net-i), 3) one 2D 

CNN layer, 4) residual connection, and 5) multi-coil DC layers. Inspired by a previous work 

on multi-scale image deblurring [38], we replaced the second component, a CRNN layer 

over iterations (CRNN-i) of the original CRNN framework, with a compact U-net structure 

where a recurrent connection over iterations is placed on the bottleneck of the U-net, 

dubbed recurrent U-net (R-U-net-i). This modification largely reduces the GPU memory and 

training time, allowing other components being incorporated to the framework, e.g., the PK 

parameter estimation layer. The CRNN was also extended to multicoil settings by using a 

multicoil DC layer (6).

D. PK parameter estimation

The extended Tofts (eTofts) model [39] was implemented in this study which estimates the 

transfer constant Ktrans of the CA that diffuses from blood vessels to the interstitial space, 

the rate constant kep of the CA efflux from the interstitial space to blood plasma and the 

fractional volume of blood plasma vp voxel-by-voxel. Also, a voxel-wise contrast bolus 
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arrival time, τBAT(r) is warranted for accuracy of PK parameter estimation [40]. Finally, we 

adopted a linear least squares (LLSQ) method for PK parameter estimation [41], which is 

more robust to the low SNR of DCE data and more computationally efficient than NLSQ 

fitting. Linear operations in LLSQ fitting can be easily incorporated into a deep learning 

framework. The eTofts model for LLSQ fitting is expressed as:

Ct(r, t) = Ktrans(r) + kep(r)vp(r) ∫
0

t
Cp(τ − τBAT(r) dτ − kep(r)∫

0

t
Ct(r, τ)dτ

+ vp(r)Cp t − τBAT(r) ,
(7)

where Ktrans, kep, and vp are linearly related to the integral of Ct(r, t) (concentration of tissue 

contrast (CTC)), integral of Cp(t) (concentration of blood plasma contrast), and Cp(t). For 

a given τBAT(r), Ktrans, kep, and vp can been readily estimated using only linear operations. 

τBAT(r) can be estimated jointly with Ktrans, kep, and vp by minimizing the normalized root 

mean squared error (NRMSE) between the measured and the estimated CTCs. The τBAT(r) 

range can be determined by prior knowledge. In our implementation, we tested τBAT(r) 

values of {0, 1, …, 6} s for tissue in the head and neck region. The LLSQ method is 

wrapped as a layer denoted as LLSQ(∙ ; Cp) with the layer input as the reconstructed images 

x ∈ ℂnxnynt.

E. Loss Function

The learning objective is formulated to include both l2 errors of reconstructed images and 

estimated PK parameters as the following:

argmin
pu, Θ, ps

Ex (1 − β) LLSQ DΘ x(0) ; Cp − θ 2
2

+β DΘ x(0) − x 2
2 ,

(8)

where x(0) ∈ ℂnxnynt is the initial guess of an image as described by (2). θ ∈ ℝ3nvox

represents ground truth values of Ktrans, kep and vp. nvox is the number of voxels in the 

anatomic region, and Cp is the ground truth CA concentration in plasma. The first term 

in the expectation represents the l2 norm between reconstructed PK parameter maps and 

corresponding ground truth values, called the parameter loss. The second term is the l2 norm 

between reconstructed and ground truth images, called the image loss. β controls weighting 

between the parameter loss and the image loss.

III. Experiments

A. Multi-coil Digital Reference Objects

mcDROs of DCE MRI data used for training and testing were synthesized using patient 

specific AIFs and PK parameter maps estimated from real DCE MRI data of 17 patients 

with head and neck cancers enrolled on a protocol approved by the Institutional Review 

Board.

The DCE MR images of the patients were acquired using a 3D dynamic scanning sequence 

(TWIST) with an injection of 0.149 cc/kg of gadobenate dimeglumine on a 3 Tesla MRI 
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scanner (Skyra, Siemens Healthineers, Erlangen Germany). The scanning parameters were: 

flip angle = 10°, echo time (TE) = 0.97ms, repetition time (TR) = 2.73ms, 60 time frames, 

voxel size = 1.56mm×1.56mm×2.5mm, and matrix = 192×192. The dynamic images were 

interpolated to have spatial resolution of 1.56mm×1.56mm×1.56mm. Axial slices were 

used due to their small dimensions and relative anatomical symmetry compared to the 

anatomy along the cranial-caudal direction, which may allow more aggressive k-space 

undersampling. For all cases, the patient specific AIFs were extracted manually by averaging 

the signal intensity-time curves of 20 voxels from the carotid artery, which had maximum 

intensities at the time frame before the enhancement peak [42], and then subtracted and 

divided by the average pre-contrast signal intensities of the voxels. The PK parameter maps 

were estimated using LLSQ with joint estimation of τBAT(r) in {0, 1, …, 6}s. The voxels 

that had estimated parameters out of the physiologically reasonable range (Ktrans ∈ (0, 

3)min−1, kep ∈ (0, 6)min−1, vp ∈ (0, 0.55)) were considered incompatible with eTofts model 

and excluded from the final estimated maps. These parameter maps were regarded as ground 

truth values for mcDRO creation, and network training and testing.

mcDROs with temporal resolutions of {2, 3, 4, 5}s and spatial resolution of 

1.56mm×1.56mm×1.56mm were simulated. Using a TR of 2.73ms that can be achieved on 

this 3 T scanner yields undersampling rates (R) of {50, 34, 25, 20} for temporal resolutions 

of {2, 3, 4, 5}s, respectively. The undersampling rate is a reduction factor in the k-space 

subsampling relative to fully sampling of each frame. The mcDRO creation steps are: 1) 

Simulate CTCs Ct(r, t) from ground truth PK maps of Ktrans(r), kep(r), vp(r) using the eTofts 

model and patient specific AIF Ct(t), and τBAT(r) in the voxels where the eTofts model is 

applicable, 2) Add Gaussian noise to the simulated CTCs to have contrast-to-noise ratios 

(CNR) of 20 in each voxel to mimic the noise level present in real DCE data, 3) Convert the 

CTCs to signal intensity images using baseline signal intensities s0(r, 0) from the actual scan 

as: s(r, t) = [1 + Ct(r, t)]s0(r, 0), 4) Use the signal intensities from the real scan for the voxels 

where eTofts model is not applicable (e.g., vessels), 5) Estimate coil sensitivity maps from 

fully sampled high resolution (0.875mm×0.875mm×3.3mm) post Gd T1-weighted images 

acquired immediately following the DCE scans by using ESPIRiT [43] and compressing 

coils from 30 to 8 coils [44], 6) Create complex DCE images by using the real phase 

variation estimated from post Gd T1-weighted images of the same patient ϕ(r) as: s(r, t) 
= [1 + Ct(r, t)]eiϕ(r)s0(r, 0), 7) Create multi-coil DCE image series as well as multi-coil 

time-series of k-space data (see Fig. 1). Note that the simulated mcDROs used realistic PK 

parameter ranges, AIFs and anatomy provided from patients.

Of 17 patients, 8 were randomly selected for training, 3 for validation and 6 for testing. 

Note that during training, the ground truth patient specific AIF Cp(t) was used for PK 

parameter estimation, while during testing, a patient specific AIF Cp(t) was extracted from 

reconstructed MR images by a fully automated process that mimicked how an expert 

delineated an AIF [42]. As a brief, the anatomy surface was extracted by thresholding 

followed by closing operation. The contrast enhancement peak within the anatomy surface 

was detected after performing enhanced signal subtraction and division from baseline 

signals. The 20 voxels with the maximum enhancement in the dynamic frame of 3–10s 

prior to the peak of tissue enhancement was considered as an AIF. A 3×3 Gaussian filter 

Zou and Cao Page 7

IEEE Trans Med Imaging. Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



was applied to the real scan for creation of mcDROs used for training and validation, but not 

for mcDROs set aside for testing in order to provide for better AIF characterization during 

testing.

B. Network Training

The R-U-net-i unit of the reconstruction network used in the experiment contains 3 

convolutions and 3 deconvolutions with stride 2, where the number of filters (nf) are doubled 

or halved after each convolution or deconvolution. We used kernel size k=3. The number of 

filters of the BCRNN-t-i unit and the number of iterations were optimized and set to nf = 

32 and N=5, respectively. The estimated PK parameters were clipped to the physiologically 

reasonable range to stabilize the network training. Adam optimizer [45] was used with 

learning rate 1e-3. We used batch size = 1 and terminated training when the validation error 

was not improved in 3 consecutive epochs. All codes were implemented in PyTorch, and the 

experiments were performed on an NVIDIA RTX A6000 GPU with 48GB memory.

C. Evaluation and Comparison

1) CRNN Network Architecture Hyperparameter Optimization: First, we 

optimized nf and N across the combinations of nf ∈ {8,16,32,64} and N ∈ {3,5,10} using 

the mcDRO with spatial resolution 1.56mm×1.56mm×1.56mm and temporal resolution 

3s. Fixed Poisson disk SP and image loss were used. The best nf and N were selected 

according to the average parameter NRMSE across the three PK parameters and were used 

in experiments thereafter. The Poisson disk SP was generated using SigPy package (https://

github.com/mikgroup/sigpy).

2) Ablation Study of CRNN: To demonstrate the effectiveness of CRNN for DCE 

MRI reconstruction, we next performed an ablation study to evaluate effects of recurrent 

connections in temporal and iteration dimensions in CRNN by removing each or both 

connections. The same training data, loss function, SP, and evaluation metrics were used as 

in Section C. 1).

3) Ablation Study of Learnable k-t Sharing: The learnable k-t sharing was 

compared with fixed neighbor-frame sharing strategies [25] in which {0,2,4,6,8,10,12} 

neighbour-frames of a center frame were shared. The same training data, loss function, SP, 

and evaluation metrics were used as in Section C. 1).

4) Ablation Study of k-t Sampling Pattern Learning Module: To demonstrate 

the benefit of k-t SP learning module, we removed it from the proposed framework, and 

used the fixed Poisson disk and uniform random samplings to train the network. The same 

training data, loss function, and evaluation metrics were used as in Section C. 1).

5) Weighting Parameter Optimization: We optimized weighting parameter β in terms 

of the NRMSE of estimated PK parameters using the mcDRO with spatial resolution 

1.56mm×1.56mm×1.56mm and temporal resolution 3s to search β in {0,0.01,0.1,0.3,0.7,1}. 

The optimized weighting parameter β  was used in the following experiments.
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6) The Effect of Contrast Arrival Time Variation across Subjects: One variation 

in the DCE signals across patients is the contrast arrival time (tCA), which needs to be tested 

for its effect on the network performance. Here, tCA was defined as the time when the DCE 

signal started rising from the baseline and calculated by the second time-derivative of the 

spatially averaged DCE signals, tCA = argmax
t

d ∫ s(r, t)dr 2/d2t.

We first analyzed the tCA distribution in the training and testing datasets. Then, we 

aligned tCA to 35s for all data by shifting the DCE series along the time dimension. We 

compared performance of the model trained by the time shifted data but tested using the 

data with and without time shifting. This experiment was done under spatial resolution 

1.56mm×1.56mm×1.56mm and temporal resolution 3s. The performance results were used 

to determine how to deal with the variation of contrast arrival time variation across subjects.

7) Comparison with Prior Works: To demonstrate the advantages of joint 

optimization of k-t subsampling and reconstruction, we compared our method with 

two iterative dynamic MRI reconstruction methods. These two methods both explored 

spatiotemporal sparsity of dynamic MRI but did not optimize SPs, and instead used heuristic 

Poisson disk [46] and uniform random SPs. The first one is a dictionary learning-based 

indirect PK parameter estimation method [32] (DL) which was implemented based on 

open source code (https://github.com/sajanglingala/DCE_dictionary_recon). The ranges of 

PK parameters used for library learning were adjusted according to our data. As in the 

original paper, a population-based AIF was used in the test. The second method is a 

low-rank plus sparse model [21] (L+S) for which the open source code (https://github.com/

JeffFessler/reproduce-l-s-dynamic-mri) is available. Proximal optimized gradient method 

(POGM) was used for optimization. We compared performances of the two methods 

with ours under different temporal resolutions of {2, 3, 4, 5}s and spatial resolution 

1.56mm×1.56mm×1.56mm.

8) Evaluation Metrics: The image reconstruction quality was measured using the 

structural similarity index measure (SSIM) and peak signal to noise ratio (PSNR) for 

different aspects of image similarity. The PSNR is calculated for each reconstructed slice 

x ∈ ℂnx × ny × nt as PSNR = 20 log10(max( |x | )/MSE( |x | , |x | )), where x ∈ ℂnx × ny × nt is the 

ground truth image time series. The PK parameter estimation accuracy was evaluated 

by NRMSE, defined as MSE(θi, θ l)/ max θi − min θi , where θi and θ l stand for the 

ground truth and estimation of the ith parameter, respectively, and MSE(∙, ∙) represents 

mean squared error. The mean and standard deviation (SD) of the parameters were 

calculated across testing mcDROs. Bland-Altman analysis was performed to assess bias 

and uncertainty in reconstructed PK maps compared with ground truth.

IV. Results

A. CRNN network architecture hyperparameter optimization

In the grid search of nf and N of the CRNN architecture, nf=32 showed the best overall 

NRSMEs across three parameters, for which N=5 was better than 3 (Fig. 3).
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B. Ablation Study of CRNN

In the ablation study of the recurrent connections in the temporal and iteration dimensions in 

the CRNN, the temporal connections were crucial for the parameter reconstruction accuracy, 

and the iteration further reduced errors in the parameters, see NRMSEs in Table I.

C. Ablation Study of Learnable k-t Sharing

The learned k-t sharing strategy was superior over fixed neighbor-frame sharing strategies in 

terms of NRMSEs of PK parameters (Fig. 4).

D. Ablation Study of k-t Sampling Pattern Learning Module

The learned k-t SP outperformed the fixed Poisson disk and uniform random samplings 

under the same CRNN reconstruction architecture in terms of NRMSEs of PK parameters 

(Table II).

E. Weighting Parameter Optimization

Searching for the optimal weighting parameter β in {0,0.01,0.1,0.3,0.7,1} using the mcDRO 

yielded that β=0.1 had the best performance for PSNR of reconstructed images and NRMSE 

of PK parameters. The PSNR and SSIM of the reconstructed images and NRMSE of the 

estimated PK parameters of tested β values are shown in Table III. Note that when β = 1, 

where the loss function reduces to including the image loss l2 only and which was used 

commonly in deep learning-based reconstruction of MRI in the literature, the performance 

on image reconstruction was similar to β = 0.1 but the accuracy of estimated PK parameters 

was worse than β = 0.1. However, when β = 0, where the image loss was not included, both 

image quality and PK parameter estimation accuracy were worse than any β > 0 . In the 

subsequent experiments, the optimal weighting parameter β = 0.1 was used.

F. The Effect of Contrast Arrival Time Variation across Subjects

Variations in tCA variations observed in both training and testing datasets, with tCA = 38.5 ± 

3.6 in the training set and tCA = 40.5 ± 4.5 in the testing set. The proposed network trained 

using DCE data with the same tCA performed similarly well on testing data with the same 

tCA and different tCAs in terms of PK parameter NRMSEs (Table IV), indicating that the 

contrast arrival time differences among subjects did not have a significant effect on the PK 

parameter estimation accuracy for the proposed method.

G. Comparison with Prior Works under Different Temporal Resolutions

Based upon the results in Table IV, we trained the model using the data without time-

shifting. The NRMSEs of the PK parameters estimated from the DCE data with different 

temporal resolutions and SPs by the proposed method compared to L+S and DL are 

summarized in Table V.

The proposed method consistently outperformed L+S and DL using both Poisson disk 

random sampling and uniform random sampling at all tested temporal resolutions by a 

factorof ~2 to 20 in NRMSE (%). The best performance achieved by the proposed method 

was at Δt=3s (R=34) for Ktrans and at Δt=4s (R=25) for kep and vp.
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Examples of reconstructed PK images at temporal resolution of 2s of the proposed method, 

L+S using Poisson disk sampling, and DL using Poisson disk sampling as well as the ground 

truth PK maps are shown in Fig. 5. The proposed method generated the most perceptually 

similar PK maps to the ground truth maps and support the quantitative results. Note that the 

L+S method overestimated Ktrans and vp values and resulted in larger errors in kep estimation 

in this example slice. Also, the DL method showed overestimations in all three parameters.

The bias and uncertainty of the three PK parameters estimated from the DCE data at 2 

s temporal resolution by the proposed method, L+S with Poisson disk sampling, and DL 

with Poisson disk sampling in gross tumor volumes of all 6 testing DROs are shown in 

the Bland-Altman plots in Fig. 6. For comparison, the plots of PK parameters estimated 

from fully sampled DCE data at the same temporal resolution were also included. The bias 

observed in the fully sampled data might be due to the added Gaussian noise [4], [41]. The 

proposed method showed comparable estimation bias and uncertainty to those from fully 

sampled DCE data, but reduced bias and uncertainty compared to DL and L+S methods. 

The proposed method improved the standard deviation of the PK parameter estimation errors 

by 0.10 (41%) and 0.19 (56%) compared to DL and L+S with Poisson disk sampling, 

respectively. A systematic bias on all three parameters was present in the L+S and DL 

methods.

The learned sampling probability maps and sampling masks at frame 20 and the ky-t plot 

of the central kx for the DCE temporal resolution Δt=2s compared to the Poisson disk and 

uniform random SPs are shown in Fig. 7. Note that the probabilities at the center of the 

k-space varied over the contrast uptake time course learned by the proposed method. The 

learned sampling mask had a lower sampling density in the k-space center than Poisson disk 

sampling.

V. Discussions

In this work, we developed a deep learning-based framework to jointly optimize k-t SPs 

and image reconstruction for DCE MRI by minimizing a loss function including l2 errors 

of both image reconstruction and PK parameter estimation. A time series of sampling 

probability maps in the k-t space was optimally learned by the network to achieve rapid 

acquisition and accurate estimation of PK parameters. A PK parameter loss with optimal 

weighting, added into the objective function of image reconstruction, improved accuracy in 

the PK parameter estimation as well as quality of reconstructed images compared to using 

the image loss only. Overall, our proposed method performed superior and had reduced 

bias and uncertainty in the estimated PK parameters compared to two iterative dynamic 

MRI reconstruction methods. In addition, the proposed method was robust to patient-wise 

contrast arrival time variations. This method has the potential to increase spatial resolution 

of DCE MRI using a higher acceleration factor while providing accurate and precise PK 

parameter estimates. One possible extension of the current approach is to replace the LLSQ 

layer with a neural network that can simultaneously produce PK parameter estimations and 

corresponding uncertainties [47]. This may allow direct minimization of the uncertainty in 

PK parameters.
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It is important to learn the optimal subsampling patten in the k-t space for dynamic image 

acquisition, instead of using a random SP following an assumed distribution, e.g., a Poisson 

distribution or uniform distribution of the k-space data. Similarly, temporal data sharing, 

although widely used in dynamic acquisitions, lacks optimization and is instead manually 

crafted [48], [49]. In this work, we extended LOUPE [33] to the time domain and added 

a TDoF to learn dynamic subsampling and data sharing in the k-t space. In the learned 

sampling probability maps, the sampling density near the k-space center was high during 

initial contrast uptake, but decreased over time, and then increased at the end of the temporal 

acquisition. This could be explained as the data near the k-space center are important to 

capture fast contrast dynamics for accurate estimation of PK parameters, and then became 

less important over the time course. Also, the spread of sampling probabilities in the k-space 

at the frames near the time course center could be due to fact that the spatiotemporal sparsity 

is well captured by the CRNN network. The increased density near the k-space center at the 

end of the acquisition could be because of the zero initializations of the hidden features of 

the BCRNN layer which may be removed by using learnable initializations.

We included the PK parameter loss in the objective for image reconstruction. The weighting 

of the PK parameter loss in the objective had a nonlinear effect on NRMSEs of estimated 

PK parameters [50]. We found that an optimal weighting between the image loss and 

parameter loss improved both image and PK parameter reconstruction qualities. While the 

image loss provided direct guidance on image reconstruction, the parameter loss distilled 

PK modeling knowledge that the image l2 loss might not be sensitive to in the model 

during training and in SP optimization. We observed that the sampling density was more 

concentrated in the k-space center when the model was trained with image loss only 

compared with that trained with combined image and parameter losses. This is possibly 

because the inclusion of parameter loss enabled the network to directly learn hemodynamics 

in the signal time courses that influence parameter maps, thereby sampling the k-space 

center less frequently.

In our comparison with two other methods under different temporal resolutions, we observed 

a nonlinear dependence of NRMSE on temporal resolutions, which could be due to the 

interplay of temporal resolution, signal to noise ratio (SNR) and SPs. While both high 

temporal resolution and SNR are beneficial for PK parameter estimation [4], [41], [51], in 

practice, there is usually a tradeoff between the two. The optimal temporal resolutions of 4s 

and 5s from the proposed method represented a balance of these factors. The AIF could be 

another factor contributing to the accuracy of PK parameter estimation [40]. Note that the 

proposed and L+S methods extracted patient-specific AIFs from the reconstructed images, 

while the DL method used a population-based AIF for PK parameter estimation which might 

contribute to, at least in part, the high bias observed in the Bland-Altman plot [52]. We also 

observed a generally higher instability in kep compared with Ktrans and vp as demonstrated in 

the corresponding NRMSEs (Table 4), which is consistent with prior reports [4].

In this work, the proposed method was validated using realistic multi-coil complex DROs 

to demonstrate its ability to reduce PK parameter estimation bias and uncertainty compared 

with iterative reconstruction methods using non-data driven SPs. One limitation of the 

current mcDROs simulation is that the real data was acquired using view sharing techniques 
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at Δt=3s, which might reduce the temporal high frequency information in the subsequently 

derived AIFs used in the simulation for mcDROs at higher temporal resolutions (Δt<3s). 

High temporal resolution DCE MRI sequences [53], [54] could be utilized to create 

mcDROs at higher temporal resolutions in future works. Validating the proposed method 

in prospective studies in future investigations is also warranted. To facilitate these studies, 

realistic factors such as motion and native T1 can be easily incorporated into training data 

to make the network robust to these factors present in real scans. In future prospective 

studies, the learned SPs can be implemented as 2D phase encoding locations in a 3D T1 

weighted spoiled gradient echo sequence without changing other sequence parameters. One 

of the challenges in applying the proposed method to prospective studies is that the timing 

of the contrast arrival may vary from patient to patient even with the same contrast injection 

timing due to patient-specific factors such as cardiac output [55]. This may cause the SPs 

trained with a specific contrast arrival timing to fail in fully capturing the contrast dynamics 

information, which may result in uncertainty in PK parameter estimation. Our simulation 

of clinically measured variations in mcDROs demonstrated that small variations normally 

encountered in clinical scans had almost no impact on the PK parameter NRMSEs. This 

demonstrates the apparent robustness of the network to the normal variations in contrast 

arrival times expected in clinical DCE MRI scans of the neck region. Direct estimation of 

PK parameters from k-t space data has shown promise for parameter reconstruction in DCE 

MRI [17], [20]. An interesting direction of future works will be to incorporate data-driven 

priors into these approaches by extending the proposed framework to direct PK parameter 

reconstruction.

VI. Conclusions

We have presented a jointly optimization framework for head and neck DCE MRI k-t SP 

and image reconstruction with a combined objective of image reconstruction quality and 

PK parameter estimation accuracy. Optimization of the k-t SP by learning the sparsity in 

the dynamic contrast enhanced images seems to enable a dramatic reduction in the k-space 

sampling to achieve accurate PK parameter estimations including in tumor regions. The 

proposed framework is general and can be applied to other quantitative MRI application, 

such as T1, T2, and apparent diffusion coefficient quantification, to improve the scan 

efficiency. Future study is warranted to validate the proposed method in in vivo experiments.

APPENDIX

A. Examples of Reconstructed Images and Time Courses of DCE Signals

Considering that DCE image series cannot be easily analyzed and comprehended by 

human brains, it is desirable to directly output parametric maps from a dynamic scan and 

omit intermediate reconstructed dynamic image series. Therefore, we optimized quality of 

parametric maps in this study. However, our proposed method resulted in more faithful 

reconstructed images and time courses of dynamic signals than DL and L+S methods (Fig. 

8).
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B. Adaptation of the Learnable SPs to Specific Anatomies

The learned sampling probability maps depend upon trained DCE signals and anatomies, 

see Fig. 9. Note that different patterns were yielded from training on DCE time-series from 

different anatomic regions ((a) brain+neck, and (b) brain). Also, full width half maximums 

(FWHMs) of the probability density projections were different in kx and ky dimensions 

between anatomic regions. In contrast, empirical sampling patterns are one for all, which 

omit spatial sparsity and are not optimized for anatomy.
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Fig. 1. 
The training and evaluation workflows of the proposed method. The k-t sampling probability 

map, k-t data sharing, and image reconstruction network are jointly optimized with respect 

to both image and parameter reconstruction quality using fully sampled DCE MRI data in 

the training phase. In the evaluation phase, the learned sampling mask and reconstruction 

network are used to undersample and reconstruct real data.
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Fig. 2. 
The overall structure of the image reconstruction network. The new R-U-net-i structure has 

5 layers with 2 down sampling and up sampling paths. The bottleneck layer has a recurrent 

connection across iterations.
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Fig. 3. 
Grid search results of nf and N of the CRNN architecture. Blank blocks are due to the 

combinations of nf and N beyond the available GPU memory.
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Fig. 4. 
NRMSEs of PK parameter using fixed k-t sharing patterns (blue curve) over the number of 

shared neighboring frames. For comparison, NRMSE of learned k-t sharing is plotted as a 

red dashed line.
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Fig. 5. 
Example reconstructed PK parameter maps from one slice at temporal resolution of 2s (R 

=50) using the proposed method (second column), L+S with Poisson disk sampling (third 

column) and DL with Poisson disk sampling (forth column). The ground truth maps (first 

column) are also included for comparison.
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Fig. 6. 

Bland-Altman plots of the difference between estimated Ktrans, Kep, and vp and reference 

values Ktrans, kep, and vp of fully sampled DCE data, the proposed method, L+S with 

Poisson disk sampling, and DL with Poisson disk sampling at temporal resolution of 2s 

(R=50). Each dot represents to one tumor voxel in 6 mcDROs. The mean and 1.96×SD were 

marked in each plot and represented by solid and dotted red lines, respectively.
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Fig. 7. 
Illustration of learned phase encodings of kx vs ky at the 20th time frame and ky vs t 

at the central kx (respective left and right subpanels in each plot): (a) learned sampling 

probability maps by our method; (b) realization sampling masks by our method, (c) Poisson 

disk sampling masks, and (d) uniform random sampling masks. All maps were obtained 

at temporal resolution of 2s and R=50. White dots indicate locations of phase-encodings 

acquired in the kx-ky plane. Note that the first frame is fully sampled to provide baseline 

anatomy.
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Fig. 8. 
(a) Example reconstructed images at the 30th frame by different methods (first row) and their 

corresponding error maps (second row). (b) Time courses of dynamic signals at two example 

voxels within the tumor region reconstructed by different methods. The two voxels are 

marked by red and blue crosses in the Ground truth (GT) image in (a). In these examples, we 

used spatial resolution of 1.56×1.56×1.5mm and temporal resolution of 3s in mcDROs. Note 

large deviations and fluctuations in the DCE signals generated by DL and L+S methods, 

respectively.
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Fig. 9. 
Learned sampling probability maps at the 30th frame trained with (a) full mcDROs including 

brain and neck slices and (b) brain slices only. Projections of the probability densities on the 

kx and ky dimensions are shown in the top and right plots of each probability map. The full 

width half maximum (FWHM) of each projection is shown in the top left corner of the plot. 

mcDROs with spatial resolution of 1.56×1.56×1.56mm and temporal resolution of 3s were 

used. GT=Ground truth; P=Probability; FOV=Field of view.
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TABLE I

Mean NRMSEs of estimated PK parameters with (Y) or without (N) recurrent connections in temporal and 

iteration dimensions

Temporal Iteration NRMSE (%)

Y Y 5.38

N N 8.04

Y N 5.61

N Y 5.83
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TABLE II

Mean NRMSEs of estimated PK parameters using the Poisson disk, uniform random, and learning-based 

samplings

SP NRMSE (%)

Learned 3.17

Poisson 4.69

Uniform 10.17
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TABLE III

PSNR and SSIM (Mean ± σ) of reconstructed images and NRMSE of estimated PK parameters with different 

β values

β PSNR (dB) SSIM
NRMSE (%)

Ktrans kep vp

0 24.66 ± 0.62 0.40 ± 0.01 3.75 ± 1.45 13.24 ± 5.76 16.76 ± 7.25

0.01 40.71 ± 0.39 0.89 ± 0.01 2.82 ± 1.50 7.72 ± 3.39 3.16 ± 1.57

0.1 41.55 ± 0.47 0.90 ± 0.00 1.92 ± 0.96 6.48 ± 2.69 2.55 ± 1.10

0.3 41.46 ± 0.48 0.90 ± 0.00 1.97 ± 1.02 6.82 ± 2.89 2.63 ± 1.10

0.7 41.22 ± 0.43 0.90 ± 0.01 2.49 ± 1.38 8.72 ± 4.19 3.53 ± 1.79

1 41.65 ± 0.51 0.91 ± 0.00 2.34 ± 1.50 7.46 ± 3.39 2.88 ± 1.62
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TABLE IV

The PK parameter estimation NRMSEs (Mean ± σ) of the proposed model trained on time shifted DCE data 

and tested on the data with and without time shifting

Testing tCA

NRMSE (%)

Ktrans kep vp

with 2.16 ± 0.92 7.07 ± 2.88 3.08 ± 1.64

without 2.01 ± 0.91 6.94 ± 2.98 2.72 ± 1.14
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TABLE V

PK parameter estimation NRMSEs (Mean ± σ) using the proposed method with learned sampling patterns 

(SP), L+S with Poisson disk and uniform random sampling, and DL with Poisson disk random sampling at Δt 

∈ {2,3,4,5}s and corresponding R ∈ {50,34,25,20}

Method SP Δt (s) R
NRMSE (%)

Ktrans kep vp

Proposed Learned

2 50 2.14 ± 1.01 6.71 ± 2.82 2.71 ± 1.21

3 34 1.92 ± 0.96 6.48 ± 2.69 2.55 ± 1.10

4 25 1.98 ± 0.90 6.46 ± 2.61 2.52 ± 1.05

5 20 2.21 ± 1.09 7.14 ± 3.13 3.77 ± 2.45

L+S Poisson

2 50 3.40 ± 1.87 10.73 ± 4.35 7.74 ± 5.13

3 34 3.17 ± 1.75 10.22 ± 4.36 4.84 ± 2.15

4 25 3.03 ± 1.46 10.32 ± 4.37 4.88 ± 2.24

5 20 2.90 ± 1.17 10.62 ± 4.75 4.74 ± 2.12

L+S Uniform

2 50 7.79 ± 7.00 12.62 ± 6.47 44.32 ± 20.80

3 34 6.45 ± 4.28 12.48 ± 6.32 41.79 ± 21.57

4 25 5.44 ± 4.08 12.76 ± 6.69 42.40 ± 19.59

5 20 6.59 ± 3.94 13.08 ± 6.29 23.56 ± 13.04

DL Poisson

2 50 7.30 ± 3.57 10.57 ± 4.60 6.40 ± 2.43

3 34 7.31 ± 3.35 10.14 ± 4.30 6.51 ± 2.45

4 25 8.05 ± 4.29 10.21 ± 4.42 6.68 ± 2.59

5 20 8.02 ± 4.36 9.95 ± 4.25 6.90 ± 2.78

DL Uniform

2 50 3.92 ± 1.66 13.46 ± 5.96 6.74 ± 2.83

3 34 4.10 ± 1.94 13.41 ± 5.95 6.75 ± 2.83

4 25 4.37 ± 2.33 13.15 ± 5.73 6.78 ± 2.86

5 20 4.44 ± 1.99 13.09 ± 5.81 6.80 ± 2.84
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