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Joint analyses of genomic datasets obtained in multiple different conditions
are essential for understanding the biological mechanism that drives tissue-
specificity and cell differentiation, but they still remain computationally
challenging. To address this we introduce CLIMB (Composite Llkelihood
eMpirical Bayes), a statistical methodology that learns patterns of condition-
specificity present in genomic data. CLIMB provides a generic framework
facilitating a host of analyses, such as clustering genomic features sharing
similar condition-specific patterns and identifying which of these features are
involved in cell fate commitment. We apply CLIMB to three sets of hemato-
poietic data, which examine CTCF ChlIP-seq measured in 17 different cell
populations, RNA-seq measured across constituent cell populations in three
committed lineages, and DNase-seq in 38 cell populations. Our results show
that CLIMB improves upon existing alternatives in statistical precision, while

capturing interpretable and biologically relevant clusters in the data.

Uncovering changes across multiple biological conditions is a lasting
theme in large-scale genomic data analyses across many types of stu-
dies. Examples include the analysis of tissue-specificity of gene
expression patterns'?, differential protein binding across cell types®,
or causal single nucleotide polymorphisms (SNPs)°™® and pleiotropic
genetic variants'® across many genome-wide association (GWA) stu-
dies. We are specifically motivated by two contexts:

Motivating context 1: classification by association patterns. If a set
of subjects has been observed in many conditions, one may seek to
assign subjects to classes based on the patterns of association they
exhibit across biological conditions. For example, when studying
plasticity of gene expression across multiple human tissues, joint
analysis of these data might ask which sets of genes are collectively up-
regulated together in some tissues, but down-regulated in others.

Motivating context 2: testing for consistent findings across
many experiments. One may desire to determine which signals are
consistent across studies. For example, if one collects several ChIP-
seq datasets under different experimental conditions, one may ask

which loci are consistently bound in a fixed number of those
conditions.

Both motivating contexts concern determining observations that
have either null or significant associations across a collection of con-
ditions. One standard approach to jointly analyzing a collection of
conditions applies general clustering algorithms such as K-means or
hierarchical clustering. Though these techniques can group signal
profiles with similar association patterns together, their results do not
directly provide information on condition specificity, such as which
signals are consistent or differential across conditions. Somewhat
similarly, time series-inspired methods such as the short time-series
expression miner” may be applied to genomic data collected at mul-
tiple time points. However, this approach assumes a temporal rela-
tionship across conditions and groups observations according to
changes relative to a temporal baseline. This temporal assumption may
not be applicable for studying genetic pleiotropy or plasticity in gene
regulation, and again cannot be used to identify patterns of condition
specificity. Alternatively, one may identify observations significantly

Department of Statistics, Pennsylvania State University, University Park, PA, USA. 2Department of Biochemistry and Molecular Biology, Pennsylvania State
University, University Park, PA, USA. 3The Bioinformatics and Genomics Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University
Park, PA, USA. “School of Economics and Finance, Xi‘an Jiaotong University, Xi‘an, China. °Department of Statistics, University of British Columbia, Vancouver,

British Columbia, Canada. | e-mail: rch8@psu.edu; qunhua.li@psu.edu

Nature Communications | (2022)13:6874


http://orcid.org/0000-0001-6594-0245
http://orcid.org/0000-0001-6594-0245
http://orcid.org/0000-0001-6594-0245
http://orcid.org/0000-0001-6594-0245
http://orcid.org/0000-0001-6594-0245
http://orcid.org/0000-0002-4681-1074
http://orcid.org/0000-0002-4681-1074
http://orcid.org/0000-0002-4681-1074
http://orcid.org/0000-0002-4681-1074
http://orcid.org/0000-0002-4681-1074
http://orcid.org/0000-0002-8110-5837
http://orcid.org/0000-0002-8110-5837
http://orcid.org/0000-0002-8110-5837
http://orcid.org/0000-0002-8110-5837
http://orcid.org/0000-0002-8110-5837
http://orcid.org/0000-0002-4664-3672
http://orcid.org/0000-0002-4664-3672
http://orcid.org/0000-0002-4664-3672
http://orcid.org/0000-0002-4664-3672
http://orcid.org/0000-0002-4664-3672
http://orcid.org/0000-0003-4084-7516
http://orcid.org/0000-0003-4084-7516
http://orcid.org/0000-0003-4084-7516
http://orcid.org/0000-0003-4084-7516
http://orcid.org/0000-0003-4084-7516
http://orcid.org/0000-0003-0675-7648
http://orcid.org/0000-0003-0675-7648
http://orcid.org/0000-0003-0675-7648
http://orcid.org/0000-0003-0675-7648
http://orcid.org/0000-0003-0675-7648
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-34360-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-34360-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-34360-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-34360-z&domain=pdf
mailto:rch8@psu.edu
mailto:qunhua.li@psu.edu

Article

https://doi.org/10.1038/s41467-022-34360-z

associated with each condition separately, and use these individual
outcomes to determine which relationships are significantly shared or
differential across conditions. This technique, which is commonly used
in expression quantitative trait locus (eQTL) analyses', does not
leverage any information-sharing among conditions, and is thus
underpowered to identify shared or differential associations'>”. Urbut
et al' improved upon single-condition analyses with a statistical
model for joint eQTL analysis. This approach shows increased power;
however, it makes some restrictive modeling assumptions, such as
data symmetry, that are not always appropriate, especially when
seeking consistent signals across conditions, as we will illustrate later.
Pairwise analyses, commonly employed for differential expression
analysis, also improve upon analyses of individual conditions, but still
do not offer the power of a joint analysis when more than two condi-
tions are present. Moreover, when more than two conditions are
examined, it is unclear how to properly aggregate findings from a
series of pairwise comparisons.

To provide interpretable joint analysis of multiple conditions,
several others have introduced “association vectors” to describe an
observation’s specific pattern of association across conditions; these
approaches leverage mixture models to cluster observations into
groups with different association vectors. For example, Andreassen
et al.'’ apply association vectors to the study of pairs of GWA studies. In
this two-condition setting, they assume the presence of four associa-
tion vectors {(0, 0), (0,1), (1,0), (1, 1)}, where a SNP described by the
(0, 0) assocation vector is null in both studies, a SNP from (1, 1) is non-
null in both studies, and a SNP from (0, 1) or (1, 0) is null in one of the
studies, but non-null in the other. Some™'¢ similarly use association
vectors to find reproducible observations across replicated experi-
ments, while others””'® leverage them to determine which SNPs are
eQTLs across various tissues.

These association vectors can be appreciated as an alternative to
binarization or ternarization of genomic signals, since they assign
binary or ternary labels to the data. A label directly reflects the pattern
of condition specificity of the observations in its associated cluster.
Further, as a mixture modeling approach, these labels naturally allow
for heterogeneity in signals, resulting in greater model flexibility.

Yet, a remaining challenge is that models that leverage these
association vectors suffer from computational intractability for even a
modest number of conditions™". To understand this issue, consider D
conditions: Let H={H=(hy, ..., ) : hy € {=1,0,1}} be the set of all
3? possible configurations of association vector H, such that an
observation described by an association vector with hj;=1(hj;=-1)
has a positive (negative) association in condition i. It is clear that this
model formulation becomes computationally prohibitive even for
single-digit D because the total number of possible association vectors
grows exponentially with D, possibly resulting in the number of model
parameters exceeding the number of observations. In response to this,
several restrictive assumptions are imposed. For example, Amar et al."®
somewhat alleviate computational burden by assuming all associations
must be positive, and estimate partial latent associations for sub-
groups of conditions with a heuristic approach. This heuristic reduces
statistical power and resolution when testing for consistent findings,
and cannot provide a single unified clustering of observations since it
is not a true joint analysis. Moreover, this approach does not distin-
guish an observation that is significant in opposite directions in two
conditions from an observation that exhibits consistent direction of
association across conditions. Alternatively, Urbut et al.* make com-
putational gains by assuming all observations come from a uni-modal
distribution centered over zero, but this restriction does not always
hold in practice.

We present a methodology we refer to as CLIMB (Composite
Llkelihood eMpirical Bayes) that allows us to tractably estimate which
latent association vectors are likely to be present in the data. Our
method is motivated by the observation that the true number of latent

classes, each described by a different association vector, cannot be
greater than the sample size. Thus, in higher dimensions, the number
of true classes is very small relative to 3°, and many candidate classes
have no members. By identifying these classes through a computa-
tionally efficient pairwise composite likelihood (CL) model and rigor-
ously filtering out unsupported latent classes, we elucidate sparsity in
class membership. In doing so, the aforementioned computational
intractability issue falls away, and a joint Bayesian analysis, informed by
the initial CL modeling, can be performed. Using ChIP-seq, RNA-seq,
and DNase-seq data collected from hematopoietic cell lineages, we
demonstrate that CLIMB compares favorably against existing alter-
natives based on improved statistical power, precision, and model
interpretability for investigating cell type-specific protein binding and
chromatin accessibility, and lineage-specific gene expression patterns.

Results
Overview of CLIMB
We model the multi-conditional data using a constrained mixture
model that encodes condition-specificity through latent association
labels -1, 0, and 1 (Fig. 1a). The parameter constraints in the model
enforce some general patterns commonly observed under condition-
specificity: (1) observations that are associated with a condition (i.e.,
association label + 1) have a stronger average signal than those that are
not (i.e., association label 0), and (2) observations that are associated
with multiple conditions correlate with one another within a given
cluster. Specifically, we assume the data are summarized as some
score, and transformed to a Z-score, with larger values corresponding
to stronger signals.

Then, letting n be the sample size, D be the dimension of the data,
and H=(hy, ..., hypp) be a ternary latent association vector, the
observed data x across D conditions follow the normal mixture model

X|H=h,, ~ @502 hy)

u @

H ~Mult(my, ...,my,),

where hy, is the mth latent class, m €1, ..., M, and ¢, is a D-dimensional
constrained normal distribution. The constrained normal distribution,
defined presently, is used to impose association label-driven con-
straints:

Pp(x; L X, h)=p(x; p, ¥), subject to
sgn(uy) = h[d] vd e {1,...,D}and 2
sgn(Z,,) = Ay - hyg Vret

where 1, is the dth element of g and X, is the (r, t)th element of X.
Though the possible number of latent classes M explodes com-
binatorially, many latent classes likely have no members. In order to
estimate the actual number of classes, we leverage information about
association patterns between pairs of conditions through a pairwise
composite likelihood model to eliminate classes that are unlikely to be
present in the data, making the final model computationally tractable.
This filtering works as depicted through a toy example in Fig. 1b, and is
briefly described in four major steps: D
L. Pairwise fitting: Fit a bi-dimensional model for each of the (*, )
pairwise combinations of dimensions through a pairwise compo-
site likelihood framework. The total number of possible latent
classes in each bi-dimensional case is 9, and therefore tractable
for typical genomic datasets. For each pair of dimensions, we
estimate which subset of the 9 possible configurations of the
latent association vector are supported by the data across those 2
dimensions by utilizing a penalized mixture model*. This mixture
model penalizes the class mixing weights, such that classes that
are likely without members are removed from the pairwise model.
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Step 1: Obtaining pairwise labels
from pairwise fitting

Dim. Dim.
2 3

Step 2: Assembling D-dimensional
association labels from pairwise
labels

Dim. Dim. Dim.
1 2 3

Step 4: joint analysis

Fig. 1| Toy example of CLIMB. a lllustration of the considered model using a
simulated dataset with two dimensions. The 9 classes are annotated by their cor-
responding latent association vectors. The null class (0, 0) lies in the center over the
origin. Classes that are non-null in at least one dimension exhibit a location shift.
Only observations from classes that are non-null in both dimensions are correlated.
b Flowchart of CLIMB with a 3-dimensional example, with true classes whose
association vectors are denoted hy, hy, h3, hy, and h,,. Step 1 fits 3 pairwise models.
Pairwise association vectors are estimated for each observation in each pairwise fit.
In Step 2, we enumerate candidate 3-dimensional association vectors using a graph-

H13)
0bs. 1 h,=(0,-1,0) |of remaining classes
Obs. 2 h,=(-1,0,0) (0,000 (0,-1,00 (0,-1,-1)
Obs. 3 h, =(0,1,1) ) 1 (0,0,1) (0,1,1) (-1,0,1)
b= (111 Step 3: Pruning cl

Obs. 4 = (1,11) via estimated cluster 0,00  (0,-1,0) (1,000 (1,-1-1) (1,-1,0)

o o ° weights .

o o o 0.-1.0) (0,0,1) 0,1,1) |¢

6 o o P Prune classes which are not concordant

(0,01) (0.1,1) (-1,00)  (1,-1,-1) with remaining pairwise labels

o0 = ©00.1) (1,00) (1-1,1)

based algorithm based on the estimated pairwise association vectors (shown as
edges) between dimensions 1 and 2, and the estimated pairwise association vectors
between dimensions 2 and 3. 9 candidate association vectors are found on the
graph, but those that are colored in red are not truly present in the data. Association
vectors that are not concordant with estimated association vectors from the pair-
wise fit between dimensions 1 and 3 are pruned. With 6 remaining candidates, one
computes their prior weights (Step 3), then in Step 4 fits a Bayesian mixture model
to the original, 3-dimensional data using the number of classes remaining

after Step 3.

Unlike many composite likelihood approaches that assume
independence across dimensions™?°, the pairwise model takes
account of dependence between each pair of conditions.

2. Assembling D-dimensional association labels from pairwise labels:
Use the estimated pairwise association vectors to assemble a
preliminary list of feasible D-dimensional association vectors. D-
dimensional association vectors that are inconsistent with infer-
red pairwise labels will be deemed infeasible and pruned.

3. Pruning association labels with insufficient cluster weights: Esti-
mate the mixing weights for the remaining latent classes using the
estimates obtained from the pairwise fits, pruning classes with
insufficient weight and ensuring that M < n.

4. Empirical Bayesian estimation of the full D-dimensional model:
Reestimate parameters for the D-dimensional mixture model
based on the final list of classes using a Bayesian approach. Inform
prior hyperparameters with parameter estimates obtained from
the pairwise fits. This final step ensures information across all
dimensions is considered.

CLIMB’s model output is useful for a host of analyses, including:
(1) using association labels and class membership to elucidate condi-
tion-specificity, (2) using class membership probabilities to test for
consistency in signals across conditions, (3) using estimated cluster
covariances to infer similarity between conditions, and (4) using esti-
mated cluster means to obtain a parsimonious characterization of
dominant patterns of condition-specificy. See Methods for details on
these downstream analyses.

Simulations
We used simulations to compare CLIMB to the available methods for
multi-conditional analysis, Urbut et al’s mash' and Amar et al’s

SCREEN'. We selected these two methods to compare against because
they are also designed to analyze many conditions for obtaining
information on condition specificity. In a separate simulation, we also
compare CLIMB to DESeq2?, a widely used tool for pairwise differ-
ential expression analysis. Although DESeq2 focuses on pairwise
comparisons, its wide adoption makes it a worthy comparison in the
context of RNA-seq analysis.

We consider three data types commonly encountered in genomic
analyses: ChIP-seq data, differential analysis output from RNA-seq data
collected from treatment/control tissue pairs, and RNA-seq data. The
first simulation aims to study cell type-specificity of patterns of protein
binding across different cell types (motivating context 1), the second
aims to identify which genes are dysregulated in a consistent manner
across different diseased tissues when compared against normal tis-
sues, and the final simulation aims to identify genes whose expression
levels change across cell differentiation (motivating context 2). These
datasets exhibit different distributional structures. For example, sig-
nals in simulation 1 have a positive sign (Supplementary Fig. S1a), but
signals in simulations 2 and 3 can be positive or negative. The strictly
positive nature of signals in simulation 1 arises from the fact that
identified protein binding sites from ChIP-seq data are output from a
peak-calling routine, where each signal indicates evidence for the
presence of a ChIP-seq peak at a given genomic location. In contrast,
the data in simulation 2 are derived from P-values that indicate whe-
ther genes are relatively over- or under-expressed in a diseased tissue
relative to a normal counterpart tissue. This translates to Z-scores
exhibiting both positive and negative signals, and data that are more
symmetrically distributed about the origin (e.g., Supplementary
Fig. S1b). A unifying goal of all simulations is to evaluate the capacity of
all methods to adapt to data types with different distributions. See
Testing consistency of effects for description of statistical test used;
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see Simulations and comparisons and Supplementary Notes 3-4 for
further details on the simulation procedure. A computational cost
analysis is also conducted (Supplementary Fig. S2).

CLIMB uniformly performed better than SCREEN and mash in
simulations 1and 2 across several quantitative metrics (Supplementary
Figs. S3-S9), including sensitivity and precision. CLIMB, mash, and
SCREEN respectively had average F1-scores of 0.97, 0.77, and 0.74 for
simulation 1, and 0.46, 0.45, and 0.12, for simulation 2, at an a-level of
0.05. CLIMB also outperformed DESeq?2 in simulation 3, for identifying
differentially expressed genes in a multi-condition setting (Supple-
mentary Fig. S5). For this simulation, CLIMB and DESeq2 had F1-scores
of 0.65 and 0.48, respectively, at a confidence threshold of 0.05. If
effects are not shared in more than 2 conditions, as they were in our
simulations, then CLIMB gains no power over DESeq?2 or other pairwise
methods. These results indicate that CLIMB is well-suited for identi-
fying patterns of association in the data as well as consistent and dif-
ferential signals.

Case study overview

We showcase CLIMB’s utility by analyzing multiple datasets col-
lected as part of the VISION (Valldated Systematic IntegratiON of
hematopoietic epigenomes)”** and ENCODE* projects. These
VISION and ENCODE data were collected from, respectively, 17
murine and 38 human hematopoietic cell populations across dif-
ferentiation. The primary goal of the VISION project is to under-
stand the interplay between transcriptomic variation and
mechanisms of gene regulation during hematopoiesis, while the
ENCODE project aims to describe functional elements in the human
genome more broadly.

First, we study VISION CTCF ChIP-seq data in 17 hematopoietic
cell populations®. While CTCF binding sites that are invariant across
cell types are known to maintain chromatin structures”, the function
of more cell type-specific CTCF binding sites remains largely
unknown’>**?°, We show how CLIMB can be used to aid in tackling this
question. Next, we examine VISION RNA-seq data collected from a
subset of these cell populations to probe the transcriptomic changes
that commit multipotent cells to different fates. Results from these
analyses demonstrate CLIMB’s ability to elucidate interrelationships
between cell populations in different genomic data types,
produce interpretable classes, and conduct lineage-specific differ-
ential analyses. Finally, with ENCODE’s DNase-seq data, we illustrate
CLIMB’s ability to identify novel classes of tissue-specific regulatory
elements.

VISION CTCF ChIP-seq

We applied CLIMB to CTCF ChIP-seq of chromosome 11 from 17 murine
cell populations. This analysis yielded a final model that included 15
non-empty classes. Among these, 2 classes described constitutive
binding behavior, while the remaining were more cell type-specific
(see Supplementary Fig. S10 for an illustration of all classes). Similar
results are obtained for chromosome 7 (see Supplementary Note 8).

Constitutively bound CTCF is the dominant class

Previous work has noted that CTCF binding is largely consistent across
cell types>”*°. We identified two such classes of conserved loci from
CLIMB’s model fit. The first is the class of all ones, corresponding to the
collection of loci bound by CTCF across all cell types. The second is
the class of all ones except for the CFUE population, corresponding to
the collection of loci bound by CTCF in all but the CFUE cell popula-
tion, likely reflecting lower signal-to-noise ratio in the CFUE dataset.
Indeed, the CFUE experiment had the lowest quality as measured by
Fraction of Reads in Peaks (FRiP) score® (0.031, compared against next
lowest iMK with FRiP score 0.054 and CMP with FRiP score 0.097). In
agreement with previous studies, these two classes make up ~36% of all
loci in the analysis. Moreover, consistent with others®>*, the average

signal strength (based on the estimated class means) for bound loci
within the two constitutive classes is significantly larger than the
average signal strength for bound loci that are not widely shared
across cell populations (one-sided t-test(59) = 4.16, P=5.23 x107).

Differential CTCF binding is predictive of cell population
relationships

Although CTCF binding is largely consistent across cell types, previous
studies suggested that changes in its binding patterns modify gene
expression programs, affecting developmental cues or cell
function®*>*, We asked whether the classes discovered by CLIMB
support the idea that changes in CTCF binding relate to hematopoietic
development. To address this question, we clustered the cell popula-
tions based on the estimated class covariance matrices™ (see Supple-
mentary Note 5). CLIMB's clustering, shown in Fig. 2b, closely reflects
the expected lineage relationship in Fig. 2a. This result supports the
claim that changes in CTCF binding occur in a lineage-specific manner,
and that CLIMB is well-suited to tease out this information from the
data. In contrast, the clusterings based on mash and the standard
hierarchical clustering using Pearson correlation depart further from
the expected lineage relationship (Baker's Gamma® correlation coef-
ficients, which measures the similarity between two hierarchical tree
structures, of 0.251, 0.096, and 0.209 for CLIMB, mash, and Pearson,
respectively, when compared against the ground truth tree in Sup-
plementary Fig. S11). This suggests that mash does not sufficiently
capture CTCF binding patterns across cell types, and that simple cor-
relation measures cannot effectively distinguish between different
classes of signals in the data. The low signal in the CFUE experiment
likely caused the hierarchical clusterings by both CLIMB and Pearson
correlation to isolate the CFUE cell from the remaining cell populations
on the hierarchical tree. CLIMB exhibits robustness to this challenge,
identifying this cell as an outlier among all experiments, while still
achieving a hierarchical clustering that reflects the expected relation-
ship among the remaining cell populations.

CLIMB identifies succinct groupings of CTCF binding patterns
Visualization of binding sites assigned to different classes is important
for identifying biologically meaningful patterns. To facilitate visual
examination, CLIMB provides a means to merge similar classes based
on model output (see Supplementary Note 5 for details on the class
merging procedure). From the VISION CTCF dataset, CLIMB clusters
the binding sites into 15 non-empty classes. To simplify the visualiza-
tion, we aggregated these classes into 5 parent groups, with sizes
ranging from 254 to 5462 binding sites. Supplementary Fig. S12a dis-
plays the average signal strength (Supplementary Equation 16) asso-
ciated with each of these groups. For example, group 1 includes
constitutive binding sites, while group 4 contains progenitor-specific
binding sites, and group 5 contains binding sites constituent to mature
erythroid and T cells. Supplementary Fig. S12b displays the locations of
the binding groups within the genomic region around murine gene
Bcllla, whose gene product is involved in gene regulation of multiple
cell types.

CTCF binding patterns relate to epigenetic states during
differentiation

We next examined how CLIMB’s classes of CTCF binding patterns
relate to chromatin accessibility and various histone modifications.
Interestingly, though we only supplied CTCF ChIP-seq data to each
method, the classes estimated by CLIMB also displayed cell type-
specific behavior of chromatin accessibility as measured using ATAC-
seq and epigenetic histone modifications H3K4mel and H3K4me3
(Fig. 3a, b). Further, using GREAT** (Genomic Regions Enrichment of
Annotations Tool), we identified that classes that exhibit erythroid-
and immune cell-specific binding patterns are indeed enriched in
erythroid- and T cell-specific functions (Fig. 3c). In contrast, the classes
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for each clustering method. The rows, corresponding to each loci, are ordered
based on class membership (for CLIMB and mash) and Pearson correlation (for
Pearson), respectively. (CH12 and MEL are murine lymphoma and erythroleukemia
cell lines, respectively, and thus do not clearly occupy one space in the lineage,
though CHI2 is most related to B cells, and MEL is a mature erythroid cell type.).

identified by mash do not appear to relate to epigenetic modifications
(Supplementary Figs. S13-S16). In fact, there is not a large amount of
overlap between CLIMB’s and mash’s estimated classes (Supplemen-
tary Fig. S17), altogether suggesting that CLIMB effectively captures
biologically meaningful protein binding patterns.

The classes learned by CLIMB also provide hypothesis-generating
discoveries. For instance, though class 14 exhibits consistent but low
signal for CTCF binding only in erythroid cells, these same sites are in
open chromatin in all four cell populations, as assayed by ATAC-seq.
Since transcription factor binding is often regulated by differentially
open chromatin, this raises a question of what is driving the erythroid-
specificity of this class. One possibility is that the sites could be bound
by other transcription factors, occluding CTCF. The pattern of
H3K4mel as high surrounding peaks of H3K4me3 in these class 14 sites
suggests that they may be promoters. Indeed, ~6% of the CTCF-bound
sites in class 14 (as well as the constitutively bound classes 1 and 2)
overlap with transcription start sites from GENCODE.v35, while this
occurred on average ~ 2% for the remaining classes, which fits with the
patterns of histone modifications and ATAC-seq data. This hypothesis
is testable in further studies.

VISION RNA-seq

We next used CLIMB to perform lineage-specific differential expres-
sion analysis. In the hematopoietic cell system, LSK, CMP, and MEP are
multipotent cells that differentiate into different terminal cells, such as
ERY, MONO, NEU, and iMK cells (Fig. 2a). We considered three paths:
the erythroid lineage (LSK~> CMP > MEP - CFUE - ERY), the mega-
karyocytic lineage (LSK > CMP > MEP -» CFUMK - iMK), and the mye-
loid lineage (LSK-> CMP - GMP~>MONO/NEU). The differentially
expressed genes identified in each linage are expected to be related to
the biological function of the specific differentiation path and cell fate
commitment. The datasets for these lineages respectively contained
21,303, 20,995, and 22,940 expressed genes.

CLIMB identifies lineage-specific genes related to cell develop-
ment and differentiation

We sought to identify genes that show varying gene expression levels
across each differentiation path. We first fit a model with CLIMB to
each lineage. We then pinpointed the genes that exhibit differential
signals across each lineage based on model fit. To proceed, we first
identified genes with consistent signals by performing a statistical test
(see Methods). Briefly, a gene was considered "consistently expressed”
across the lineage if its probability of belonging to a class that is
interpreted as describing consistent expression behavior is sufficiently

large. These classes are: (-1,-1,-1,-1,-1),(0,0,0,0,0),0r 1,1,1,1,1),
where hj4 =-1implies a gene is lowly expressed or off, iz = 0 implies a
gene is moderately expressed, and hy4=1 implies a gene is highly
expressed in cell population d. Otherwise, a gene was considered dif-
ferentially expressed (DE) along the lineage.

As illustrated by the diagrams in Supplementary Fig. S18, one
class of consistently expressed genes (1,1,1,1,1) contains about
10,000 genes that are highly expressed in all the cell types along
each lineage. This observation is consistent with previous results
showing that about half of human or mouse genes are expressed at
similar levels in all cell types®; this set of constrained genes includes
those encoding common cellular ("housekeeping”) functions.
Another equally large class of consistently expressed genes
(-1,-1,-1,-1, -1) was found on each lineage; these classes contain
genes that are not expressed in blood cells. A rich set of distinct
classes of differentially expressed genes were observed on each
lineage. One class showed a dramatic increase in expression during
erythroid maturation, which included erythroid marker genes
Alas2, Hba-al, Hba-a2, and Gatal. Similarly, three classes showed
substantial induction during one or both of monocyte and neu-
trophil differentiation; these classes include myeloid marker genes
Cxcr2, C5arl, Mpo, S100a8, and S100a9. In contrast, no class of
genes showed a dramatic induction to high expression levels during
megakaryocyte differentiation, which is consistent with previous
analyses showing similar gene expression patterns between multi-
lineage progenitor cells and megakaryocytes®. In total, our results
identified 2242 DE genes along the erythroid lineage, 2073 along the
megakaryocytic lineage, and 2376 along the myeloid lineage.
Overlap of DE genes across lineages is diagrammed in Supplemen-
tary Fig. S19.

A common, alternative approach to this sort of analysis task is to
apply a series of pairwise differential expression analyses along each
lineage with standard software such as DESeq2?, then take the union of
all DE genes across the analyses. We implemented this strategy using
DESeq2 with FDR < 0.01 and obtained 6,883 DE genes across the ery-
throid lineage, 7,458 across the megakaryocytic lineage, and 6,863
across the myeloid lineage. The number of DE genes called by DESeq2
was about one third of all input genes for each analysis, and about 3
times more than the number of DE genes identified by CLIMB. We also
applied SCREEN to identify DE genes along each lineage, and found
that SCREEN systematically reported lower precision in identifying
lineage-related GO terms than both CLIMB and DESeq2 (Supplemen-
tary Fig. S20). All differential genes identified by CLIMB and DESeq2
are provided in Supplementary Data 1.
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Fig. 3 | CTCF binding patterns uncovered by CLIMB capture different patterns  model of CTCF binding patterns for the 3 classes in (a). ¢ Significantly enriched
of epigenetic modifications. a Data from the loci on chromosome 11 thatbelongto  mouse phenotypes (FDR < 0.05 for all) associated with the plotted classes. Class 1,
classes of CTCF binding patterns (numbered 1, 4, and 14) identified by CLIMB are  containing loci with CTCF bound in every cell type, is not significantly enriched in
shown. The original CTCF ChiP-seq, alongside ATAC-seq and histone modification ~ any mouse phenotypes. Class 4 is enriched with terms related to T and B cells and
ChlIP-seq data in 4 hematopoietic cell populations reveal differing patterns of epi-  the thymus, while class 14 contains terms related to red blood cells and kidney
genetic modifications across cell populations. b Log class means based on CLIMB’s  function.
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The large number of DE genes returned by DESeq2 raises ques-
tions about the specificity of this approach in pinpointing genes rele-
vant to differentiation. To probe whether DESeq2 is exhibiting low
precision or CLIMB exhibiting low power, we first ran gene ontology
(GO) enrichment analyses for each lineage®. Some enriched GO terms
from the CLIMB analysis of each lineage are in Table 1. Meanwhile, with
the exception of the myeloid analysis, the DESeq2 gene sets were not
enriched in lineage-specific GO terms (Supplementary Data 2-7). The
abundance of CLIMB’s enriched hematopoiesis-specific GO terms
further suggests that, though CLIMB identifies far fewer DE genes than
DESeq2, CLIMB is more precise in identifying key genes relevant to cell
development and differentiation. See Simulations and comparisons to
see further investigation of this claim.

Table 1| Lineage-specific differentially expressed genes
identified by CLIMB are enriched in gene ontology terms
related to terminal cell function

To more directly compare CLIMB and DESeq2, we partitioned
DE genes into three categories, namely, differentially expressed
genes specific to CLIMB, DE genes specific to DESeq2, and DE genes
in the intersection of both methods for each lineage (Fig. 4a), and
ran GO analyses on these sets. We noticed that genes identified as
DE by both CLIMB and DESeq?2 are enriched in many hematopoietic-
related terms, while DESeq2-specific genes are enriched for many
terms related to general cell function. In each lineage, DESeq2-
specific genes are highly enriched for functions that are not specific
to hematopoietic cells; CLIMB-specific genes in general are not
highly enriched for these same terms. Genes identified by both
CLIMB and DESeq2 and CLIMB-specific genes are more frequently
enriched for hematopoietic-specific functions (Fig. 4b). The
result that DESeq2’s significant gene sets are only enriched in
hematopoiesis-related GO terms after intersection with CLIMB’s
significant gene sets demonstrates that CLIMB is a powerful and
more precise approach to multi-condition differential gene
expression analysis when compared to DESeq2 applied in a series

Lineage Gene ontology term FDR across multiple conditions. CLIMB is also a sensitive tool for finding
Erythroid Heme biosynthetic process 4.71x107° differentially expressed genes, even detecting low-level but differ-
Heme metabolic process 4.08x10%  ential expression during erythroid differentiation of some genes
Erythrocyte differentiation 319<10°  associated with functfons il.'l myeloid cel!s, in which they are
Response to oxygen-containing compound o e?<pressed at substantially higher levels (Fig. 4b, Supplementary
Megakaryocytic  Platelet activation 4.30x10°° Fig. S21).
Regulation of blood coagulation 125x10°  CLIMB latent association labels describe patterns of expression
Response to wounding 258x10°  across cell differentiation
Regulation of homotypic cell-cell adhesion ~ 4.16x10?  Next we used CLIMB to further probe specific gene expression pat-
Myeloid Pos. regulation of monocyte chemotaxis 6.91x107 terns of interest. For example, in the erythroid analysis, 559 genes fell
Leukocyte differentiation 115%10°° into the (-1, -1,-1,1,1) class. This class describes genes with little to no
Neutrophil migration 6.11%10° expression in the LSK, CMP, and MEP cell populations, but high
- — = expression in the CFUE and ERY cell populations. This gene set is
Regulation of macrophage activation 1.46x10 .
enriched for GO terms such as erythrocyte development
erythroid megakaryocytic myeloid
a erythroid b GO analysis GO analysis GO analysis

cellular response to DNA damage stimulus
chromatin organization

chromatin remodeling

chromosome organization

cytoskeleton organization

DNA replication

DNA strand elongation

773 1468 5415

1t of organelle

protein folding

regulation of cell cycle phase transition
regulation of establishment of protein localization
regulation of nucleic acid templated transcription
regulation of organelle assembly

regulation of viral process

RNA metabolic process

RNA splicing

RNA transport

sister chromatid segregation

megakaryocytic

general cellular function

hemopoiesis 4

FDR

472 1599 5859

heme biosynthetic process 4

>

al

iron ion homeostasis -

1.00

@
hemostasis 4

0.75

regulation of cell matrix adhesion 4

blood coagulation

0.50

meg.

regulation of wound healing -

regulation of platelet activation 4

I 0.25

regulation of phagocytosis -

regulation of neutrophil degranulation 4

myeloid

regulation of mononuclear cell migration 4

regulation of leukocyte differentiation 4

regulation of interleukin 1 beta production 4

regulation of granulocyte chemotaxis

positive regulation of calcium mediated signaling 4
defense response to bacterium 4

phagocytosis, recognition -

phagocytosis, engulfment {

humoral imm. resp. mediated by circ. immunoglobulin 4
regulation of T cell activation 4

12811095 5768

%

3
2

=i

CLIMB DESeq2

CLIMB only

Fig. 4 | Comparison of differentially expressed genes identified by CLIMB and
DESeq2. a Venn diagrams displaying overlap of differentially expressed genes
identified by both methods across all analyses. b Significance of enrichment of GO
terms in gene sets specific to CLIMB, specific to DESeq2, and in the intersection of
both methods, for each studied lineage. Presented GO terms are organized

intersect
intersect

intersect

DESeqg2 only
CLIMB only
DESeq2 only
CLIMB only
DESeq2 only

according to knowledge-driven labels. Non-hematopoietic terms related to general
cell function are above the black line. Hematopoietic-related terms, grouped
according to lineage-specific function, are below the black line.

Nature Communications | (2022)13:6874



Article

https://doi.org/10.1038/s41467-022-34360-z

(FDR=5.11%x107), iron ion homeostasis (FDR=9.46x107), and
hydrogen peroxide metabolic process (FDR=1.96 x107?). Cases of
enrichment for terms related to other cell types may result from a
process initially discovered in the other cell type being present also in
the cell type of interest.

As another example, the 298 members of the (0, 0, 0, -1, -1) class
from the myeloid lineage, corresponding to genes that are moderately
expressed in LSK, CMP, and GMP cell populations, but lowly or not
expressed in monocyte and neutrophil cell populations, are enriched
for several GO terms concerning cell fate determination, such as
microtubule cytoskeleton organization (FDR =1.36 x 107°) and mitotic
cell cycle process (FDR = 4.42 x1072), Meanwhile, the 467 members of
the (-1, -1, -1, -1, O) class, corresponding to moderate gene expression
specific to neutrophils, are enriched for GO terms immunoglobulin
mediated immune response (FDR =2.47 x107%°), defense response to
bacterium (FDR =2.59 x 1072°), and immune response-activating signal
transduction (FDR =4.92 x107%). Moreover, the 777 members of the
(-1,-1,-1,0,-1) class, corresponding to genes exhibiting moderate
expression specific to monocytes, are enriched for the GO terms for
the production of tumor necrosis factor and interleukins 1, 6, and 12, as
well as the regulation of mast cell activation (FDR=1.24x107?).
Taken together, these results demonstrate that CLIMB’s utility goes
beyond lineage-specific differential gene expression analysis; the
individual latent classes also describe interpretable gene expression
patterns.

ENCODE DNase-seq

As part of the ENCODE project, Meuleman et al.* studied DNase-seq in
733 human cell populations, partitioning accessible sites into 16 major
groups of cellular accessibility patterns via non-negative matrix fac-
torization (NMF). NMF extracts additive factors across all samples that,
when combined, approximate primary signal patterns in the data. With
a 38-sample subset of these data, we sought to examine how classes of
chromatin accessibility patterns identified by CLIMB relate to differ-
ential transcription factor (TF) binding across cell populations, and
how these results differ from those extracted via NMF. We followed
Meuleman et al. by applying NMF to a binarized version of this 38-
sample subset using singular value decomposition initialization, and
selected an optimal number of 10 factors with NMF (Supplementary
Fig. S22a). We merged classes identified with CLIMB into 10 parent
groups to match NMF.

CLIMB extracts factors of cell type-specific accessibility patterns
We used the class mean and first two principal components (PCs) of
the class covariance matrix to extract information from each CLIMB
class. These quantities can be interpreted similarly to factors identified
with NMF, capturing different cell type-specific accessibility patterns
(Fig. 5a). For example, class 4 captures signals specific to K562 cells,
while class 5 captures signals specific to T2 helper cells, GM12865,
dendritic cells and classical monocytes. Class 7 contains accessible
sites absent in differentiated erythroid, K562, HAP1, and fetal liver
hepatic cells, yet present in all others. Classes 1 and 3 both correspond
to loci broadly accessible across cell populations, although interest-
ingly they bear striking differences in their PCs. Class 1 shares much
with class 7, indicating sample-invariant trends in the first PC. The
second PC splits CD34+ hematopoietic progenitors, classical mono-
cytes, T helper cells, and regulatory T cells from CD4+ and CD8+ T cells
and B cells. Meanwhile, the first PC of class 3 indicates nearly half of the
variance in this class is explained by signals in lymphoid cells, while the
second PC splits undifferentiated from differentiated CD34+ cells.
Such differences suggest the possibility for functional differences
inherent in these two different classes of accessible loci.

Because class 3 appeared distinct from classes 1 and 7 based on the
PCs, we investigated these loci further. We classified each locus into a
PC1 or PC2 group using the first two PC scores, which assess how well

each PC describes the signal patterns across all samples for each locus.
These subgroups of class 3 contain 37,746 and 29,759 loci for PC1 and
PC2, respectively. We used GREAT to identify significant biological
processes associated with each set of loci. Interestingly, we found that
all top terms in the PC1 group relate to either brain stem morphogenesis
or male gamete function. Many of the top terms from the PC2 group
relate to lymphoid cells, such as B cell adhesion (FDR=8.06 x107),
negative regulation of eosinophil migration (FDR =1.79 x10~%) and T cell
antigen processing and presentation (FDR =1.44 x 10™*). In addition, the
median signal among lymphoid cells in the PC2 group (1.06) is sig-
nificantly higher than that in the PC1 group (0.286, two-sided Wilcoxon
signed rank test, P<2.2x107). The difference in median signal
between these two groups is much less for the non-lymphoid cells
(0.659 and 0.935 for PCs 1 and 2). This suggests that PC1 describes
signals that are more variable in lymphoid cells, while PC2 captures
signals that are stronger and more consistent in those same cells.

Classes of chromatin accessibility differentiate modes of TF
occupancy

Vierstra et al.” studied functional changes in regulation by TFs using TF
footprinting data. They showed that footprint widths track closely with
both the length of the contained canonical TF binding sequence(s) as
well as the number of bound TFs, identifying sources of cell type-
specific regulation. We interrogated whether classes of accessibility
patterns identified by CLIMB and NMF relate to functional differences
as captured by TF footprinting.

CLIMB classes bear striking TF footprinting patterns across dif-
ferent cell populations (Fig. 5b). For example, K562 shows a dramatic
change in signal for class 4, aligning with the signal enrichment in
Fig. 5a. As another example, class 5 has a relatively weak TF footprint
signal in all shown cell types except the CD14+ cell; though the mean
signal is dominated by a single T2 helper cell for this class, it is also
specific to the myeloid CD14+ and dendritic cell populations. In con-
trast, though NMF identified 10 biologically interpretable classes,
several of which have a counterpart class identified by CLIMB, differ-
ences between classes are not evident based on footprints (Supple-
mentary Fig. S22). This suggests a greater sensitivity by CLIMB to
separate weak patterns from strong, covarying ones.

We used STREME* to interrogate enrichment for canonical TF
recognition sequences in each of these classes (Fig. 5c-h). Given that
classes 1, 3, and 7 each contain broadly accessible sites, we expected to
find enrichment for sequences associated with TFs important for
general cellular maintenance. As an example, the top 4 sequences from
class 1 (Fig. 5¢) include the recognition sequences for the Spl and KLF
families, CTCF, the ETS family, and the AP1 family (Fig. 5c-f, respec-
tively), though these motifs are enriched in all 3 classes. Further, the
most significantly enriched motifin class 4 is the recognition sequence
for the GATA proteins (Fig. 5g), while class 5 is uniquely enriched in the
non-canonical recognition sequence for the octamer TFs (Fig. Sh). The
presence of class-specific motifs further suggests that classes of
chromatin accessibility patterns identified by CLIMB relate to differ-
entially regulated genomic regions.

Discussion

We present a new method, CLIMB, for joint analysis of genomic data
collected from multiple experimental conditions. CLIMB gains statis-
tical power to uncover biologically relevant signals by providing a
means to extend typical pairwise analyses to higher dimensions.
Moreover, when compared against methods designed for a higher-
dimensional setting, we demonstrated that CLIMB remains powerful,
flexible, and interpretable in many contexts.

A major benefit of CLIMB is its ability to describe various patterns
of condition-specificty in a mixture with corresponding association
vectors that are estimated from the data. The model, aided by these
association vectors, is scientifically interpretable. Estimated model
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parameters can elucidate similarity and interrelationships, and
parsimoniously characterize representative association patterns
present across experimental conditions. Importantly, the association
vectors also serve as the basis for a novel and effective means of testing
consistency of signals across several conditions or biological
experiments.

Since CLIMB’s mixture modeling framework is quite flexible, it is
effective on a wide range of input data, as long as the data can be
reported as numerical scores that reflect strengths of association.
Though we have focused on specific molecular traits, CLIMB has the
potential to be effective in other applications, such as multi-omics
molecular QTLs analysis*. The current implementation of CLIMB
supports no more than a hundred conditions for genome-wide ana-
lyses of the size similar to our DNase-seq analysis. Algorithmically

faster implementations, such as variational Bayes fitting for the final
Bayesian mixture model, will be explored in future studies for sup-
porting larger numbers of conditions.

Methods

Constrained mixture model for estimating association vectors
To estimate the association vectors, we consider the following mixture
model. Define

n := number of observations,

D := dimension of data,
H=(hy, ... hyp) : = latent association vector
hg €(-101},d e {1,...,D},
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such that the observed data follow the constrained normal mixture
model

X|H = hy, ~ (0, Biy)
& 3)

H~Mult(my, ..., my,),

where hy, is the mth latent class, m €1, ..., M, and ¢, is a D-dimensional
constrained normal distribution. Note that the number of candidate
latent classes M changes as our methodology prunes unsupported
classes (see Pairwise fitting and subsequent methodological steps).

If an observation has association label Apy=1 (hj5=-1), this
implies that it exhibits a significant positive (negative) association with
condition d. Otherwise, if an observations has association label 44, =0,
this implied that it exhibits a null association with condition d. To
capture this relationship described by the association vectors, we set
the following constrains on ¢g:

1. Null associations in dimension d are assumed to follow the stan-
dard normal distribution (uz=0, 0;=1).
2. Non-nulls that have a positive (negative) association in dimension

d have a strictly positive (negative) mean in dimension d.

3. Nullsin one dimension do not correlate with non-null associations
in any other dimension (X,,=0V ¢t #r if either ;=0 or h;=0).

4. Non-nulls that show concordant (discordant) associations across
dimensions—i.e., hyy=hy (hyy=-hy) where hyy € {-1,1}—are
positively (negatively) correlated, that is, X,,> 0 (X,,<0).

A 2-dimensional visualization of these constraints is in Fig. 1a.
Though these constraints are desirable for interpretability, imposing
them through latent association vectors leads to computational diffi-
culties as the number of dimensions grows because there are 3° pos-
sible configurations of the latent association vectors. We thus
developed CLIMB, a modeling strategy designed to circumvent the
computational intractability that arises under these circumstances. We
now describe the steps of CLIMB in greater detail.

Detailed CLIMB procedure
Pairwise fitting. Composite likelihood (CL) methods*, which have
been reviewed extensively*, are computationally efficient modeling
approaches that approximate the joint data model by making certain
conditional independence assumptions. CL methods are frequently
utilized in statistical literature. For instance, they can simplify a genetic
model of recombination rates by assuming conditional independence
given nearest neighbors along the genome*®, or sidestep specifying a
complex joint likelihood in favor of a product of bivariate models*. CL
estimators are consistent, though they exhibit some loss in efficiency.
We are seeking to reduce model complexity in the number of
latent classes by limiting the dimension of the data through pairwise
CL.Let Q={(X.1, X2), .-.. X.p-1, X.p)} be the set of all pairs of dimensions
of Xpxp, giving |Q] = ( 5 The pairwise CL is

Le@):=Lc(Xy,.... X pl0)
D-1
(18)
HH I “
D-1 D

M
> @5 Xirel0re, Hiy)

m=1

:::.

r=1t=r+li=

<
—

where X, is the n x 2 matrix of observations from dimensions r and ¢,
hD is the mth class in the set of all possible 2-dimensional latent
association vectors h,, between dimensions r and ¢, and 0,,:= {u,,, ¥} is
the parameter vector describing the normal mixture between
dimensions r and t. The signs of all elements of 6,, are governed by
h,, as in Equation (2). Note that for each pair in Q, each pairwise model,

fre is computationally tractable. This style of pairwise CL, termed
"pairwise fitting”, has been utilized most frequently to alleviate
computational difficulty when analyzing survey data with multivariate
responses**™2, Because each dimension appears in D-1 different
pairwise fits, the mean and variance of each class are estimated D -1
times, leading to D—1 not necessarily equal estimates for the same
mean and variance. It has been shown that, though these pairwise
estimates are redundant and not necessarily concordant, they carry
useful information about the true parameters™. Thus we will recycle
these estimates to inform the priors in the final step of our procedure
(see An empirical Bayesian model).

Fitting each pairwise model f,, amounts to fitting a finite normal
mixture model arising from 9 classes described by latent association
vectors h € H,, where

H={(-1,-1),(-10),(-11),(0, - 1),(0,0),(0,1), (1, - 1),(1,0), A, 1)} Vvr<t.

However, since the total number of latent classes in the full model
is less than 3°, we expect that the true number of latent classes in some,
if not all of the pairwise fits, is less than 9. Accordingly, for each pair-
wise fit, we perform model selection to filter out unsupported classes
at the pairwise level using a previously described penalized maximum
likelihood approach®. This method provides an automated model
selection procedure for normal mixture models with theoretical
guarantees of consistency in selecting the correct number of clusters
(see Supplementary Note 1).

Construction of D-dimensional association labels. Next, we assem-
ble the list of candidate D-dimensional latent association vectors by
concatenating all the pairwise association vectors of adjacent dimen-
sions estimated in the previous step. Only association vectors that are
on this candidate list are retained for downstream analyses. Example
1 shows a simple example for a 3-dimensional dataset.

Example 1: Let H,, < H,, be the set of 2-dimensional latent
association vectors present in a model of dimensions r and t. Now,
consider a three-dimensional dataset, where latent association vectors
(—1,0) € H;, and (0,1) € H,;3. These two association vectors suggest
that some observations belong to the null class in dimension 2, and
that some of these observations exhibit negative signals in dimension 1
[since (—1,0) € H,], and positive signals in dimension 3 [because
(0,1) € H,3]. Thus, the data support that (-1, 0, 1) remains a candidate
D-dimensional latent association vector.

To perform this task computationally efficiently, we construct a
directed acyclic graphical representation of the pairwise classification
results, designed in the spirit of a de Bruijn graph®®*, This novel
representation allows one to efficiently enumerate all plausible can-
didate D-dimensional latent association vectors in the concatenation
by applying a standard graph search algorithm.

Specifically, we denote a vertex in the graph as (d, a), representing
a possible association, a, at a given dimension, d. For a model with D
dimensions, the graph has D layers and 3 possible associations at each
layer: -1, 0, and 1. A pictorial view is in Supplementary Fig. S23. We
write the vertex set as the collection of all ordered pairs

V'={d,a:de{l,..D}ac{-1,01}

The edge set is defined as

E={[d a) d+l,a)]:de{l,....D—-1},a,a, € (~1,0,1},(a;, ay) € Hyg:1}-

The final graph also contains dummy source and target nodes S
and T, such that the final vertex set V=V’ U {§,T}. The source node has
edges pointing to all nodes in layer 1, while each node in layer D has an
edge pointing to the target node. The final edge set is then defined as

E=E'U{[S, @, = DLIS,1,0)[S, @, DLUD, — 1), TLID,0), TLID, 1), T1}.
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Once the graph is constructed, depth-first search with
backtracking®, a graph search algorithm that enumerates all paths in a
graph from a given source node to a given target node, is used to
enumerate all paths from S to T. Each path contains one node from
each of the D layers plus the source and target nodes, and has D +1
edges of the form

{[sQa), [Lay), 2,a)], [(2,a),3,a3)],..., [(D—-1,ap_1),(D,ap)], [(D,ap), T]}.
5)

This path corresponds to the latent association vector (aj, ..., ap).
Pairwise fit-based pruning. The initial construction of the graph in the
section Construction of D-dimensional association labels only uses
output from the D -1 pairwise fits between dimensions d and d + 1 for
d €], ..., D—1}. Certain paths may be incompatible with the remaining

2
list by checking for incompatabilities, in a manner similar to the con-
tinuation of Example 1 below.

Example 1 (continued): As shown previously, (-1, 0,1) was identi-
fied as a candidate D-dimensional latent association vector. If
(—=11)¢#H3, then the latent class (-1,0,1) is discarded from down-
stream analysis. This is because H,; shows that (-1, 0, 1) is incompa-
tible with the pairwise findings.

The graph-based enumeration and pruning algorithm is a deter-
ministic procedure that is guaranteed to produce a list of candidate
latent classes that includes all true underlying classes with the possi-
bility of additional empty classes, assuming the correct pairwise clas-
ses were estimated (Proposition 1). Further, the results are not affected
by reordering of the dimensions (Proposition 2, see Supplemen-
tary Note 9).

<D) — (D —1) fits. We next remove these paths from the candidate

Mixing weight-based class pruning. Since the pairwise fit-based class
pruning procedure is conservative, some remaining candidate classes
still may not be present in the data (e.g, the (0, 0, 0) latent association
label in the toy example in Fig. 1). To prune these classes, we estimate
the weights of the remaining classes based on the pairwise fitting, and
remove those whose weights are near zero. To elucidate which classes
are unsupported, we devise an estimator that measures the con-
cordance between the candidate list of D-dimensional association
labels against the pairwise labels for each observation. Intuitively, our
estimator is motivated by the assertion that if observation x belongs to
a given class A, then X’s pairwise latent class assignment A" should
equal (A, hyg) for most pairs r and ¢, r<t. Then, the weight for a D-
dimensional class can be estimated by computing the proportion of
observations that follow the pairwise labels of the D-dimensional
association vector closely.

To construct such an estimator, let x" be the sub-vector of the
ith observation vector corresponding to the pairwise fit between
dimensions r and ¢. Then, let HE") be the pairwise association vector
assigned to observation xg"). Assuming there are M remaining candi-
date D-dimensional latent classes h,,,, m € {1, ..., M}, let h"’ be the sub-
vector of h,, corresponding to dimensions r and t. Then, for a given D-
dimensional latent class h,,, define

st {5 (=) (3) -}

" S X ﬂ{[zmﬂ(ﬁgmzhm > <‘2’> ,5} ©

as the normalized proportion of observations whose pairwise class
labels are concordant, up to tolerance &, with h,,, where

6e€{0],... (lz))} which controls the permitted level of discordance

between an observation’s pairwise class labels and its D-dimensional
latent class. We show that & is a reasonable estimator of the proportion
of observations belonging to each class h,, given the data (see Sup-
plementary Note 9, Proposition 2).

When the list of remaining candidate latent classes is still large,
even after the pruning steps in previous section, &, may be very close
or exactly equal to O for many m resulting in a degenerated distribu-
tion for these classes in the mixture. This step will remove these clas-
ses, guaranteeing that the number of remaining classes M is bounded
above by the sample size n. In practice, we find that this procedure
often can reduce M to be less than 0.01n.

To estimate &,,, we first obtain each HE") by sampling the pairwise
labels of the x;'s according to their posterior probabilities of belonging
to each class estimated from the pairwise fits:

H!" ~ Categorical(py, ... ,Ppyro) @
where p,, = Prix"” e h}"], the estimated posterior probability that
observation x{"” belongs to class Ay’ for m € {1, ..M}, and M is the
number of pairwise latent classes estimated to be present in pairwise
fit between dimensions rand t. Because & : ={a;, ...,Q,,} estimates the
proportion of observations belonging to each class h,,, m=1, ..., M, we
treat & as the prior probabilities for the class mixing weights in the D-
dimensional model in the next and final step of CLIMB (see next
section).

The number of observations needed to obtain a good estimate &
is affected both by the dimension of the data and the accuracy of
estimates made during pairwise fitting. For datasets with well-
separated clusters, a more stringent 6 (i.e., 6<0.15 x <g>) is recom-

mended, whereas a relaxed § (i.e., 6 € [0.15% <g>,0.30>< <g>]) is

more suited for datasets with less separated clusters to avoid removing
true classes that are small in size. This heuristic guide may be refined
by then selecting & within this range where M remains constant for
6§ e{6,6+1,...,6+c} for some c>1. While this step of our metho-
dology requires user input, it requires similar levels of user input as in
existing methods.

An empirical Bayesian model. With the steps described thus far, we
are able to pare down the number of latent classes to a more com-
putationally manageable size for regular mixture modeling. Next we
reestimate the parameters in the D-dimensional model (1) using an
empirical Bayesian approach, recycling the pairwise estimates as prior
hyperparameters. We employ the following hierarchical structure to
represent the constrained mixture model:

XilHp, X, Hi=h~ @0y, 2y, h) (8a)
PulZp Hi=h~ @p(pp, T /Kp) (8b)
plH; = h~IWp(WR, vy) (8c)
H;|m ~ Mult(m) (8d)

 ~ Dir (@) (8e)

Quantities pp, X, Vh and m are estimated using MCMC. The
remaining terms i, llJ?,, and v, Vh and a are hyperparameters.

This sort of representation incorporates typical prior distribu-
tions and a constrained likelihood model, and has been exploited
frequently®*® for its desirable posterior structure which is suitable for
Gibbs sampling. Similarly here, by applying the necessary parameter
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constraints, defined by the latent association vectors, into the data
model (Equation (8a)), the parameters (u, X;) possess the correct
constraints in the posterior. That is, iy, follows a multivariate truncated
normal distribution with truncation points dictated by the constraints
defined in (8a), while X, follows the constrained inverse-Wishart dis-
tribution defined presently.

Let X be distributed according to a D-dimensional constrained
inverse-Wishart IW{, with constraints imposed by latent class A, and let
IWp be an unconstrained D-dimensional inverse-Wishart density. Then

fE W, v,h)=IWLE; W,v,h)
=Cpy IWp(E; W, v) % H 1 [Sgn(zrt) =h[r]'h[t]}

r<t

)

where Gy is a normalizing constant.

We do inference on this model using a Metropolis Hastings within
Gibbs algorithm, the details of which are in Supplementary Note 2.
With this procedure, we estimate m and g, and X, Vh. An important
feature of the mixture model used by CLIMB is that, since the labels h
explicitly define constraints on the parameters for each class, label
switching is not a concern during the inference process. Output from
the pairwise fits are used to calculate hyperparameters a, yh, and W9:
computation of & was described in Equation (6), while g, and lth are
aggregations of pairwise parameter estimates constructed using a
tactic described in Supplementary Note 2. Parameters k, and v, = nay,
where ay, is the prior mixing weight for class 4. We remove classes that
satisfy nay, < D, since such classes are unlikely to have members, and an
inverse-Wishart distribution is singular for these classes.

Testing consistency of effects

The model fit output from CLIMB can be used to conduct hypothesis
tests; in particular, we are interested in identifying consistency of
signals across conditions. We propose a new test that generalizes the
partial conjunction hypothesis test*®, a standard hypothesis used for
testing consistency, defined as

HM/D
Hf/D : = at least u out of D instances of the observed effect are non-null

10)

= less than u out of D instances of the observed effect are non-null ,versus

When seeking consistent signals, one may care not only about the
significance of the signals, but also the sign of the effect. That is, if an
observation is significantly positive in one experiment but significantly
negative in another, then the observation should not be considered as
consistent. Therefore, we propose a simple statistic for assessing the
consistency of the sign of the effect across dimensions that generalizes
the partial conjunction hypothesis to consider sign:

’H"/ D' = less than u out of D instances of the observed effect are concordant
with a specified association pattern ,versus
’H‘f/D : = at least u out of D instances of the observed effect are concordant

with a specified association pattern

an

To describe the rejection region (RR) for this hypothesis, first
define h['Z] as the dth element of latent association vector h,,. Then,

M D
pu/bT = Pr(xiehm|x)-1{z Il(hd]—l)>u}
m=1 d=1
M D
PUDO = S Pr(x; € hyylX) - ]1{2 l(hd]—0)>u} 12)
m=1 d=1
u/Df M b m _
P =3 Pr(x; e hylx)- 1|3 I(hg = —D2u
m=1 d=1

where Pr(x; € hp,|x) is the posterior probability of belonging to
the class described by association vector h,. We define
PP = max P“/D+,P”/D°,P”/D’}, and RR: ={x: P*/’>b!, where b is
the confidence threshold of at least 0.5. For each obseérvation, this
calculation sums over its posterior probabilities of belonging to classes
with association vectors indicating sufficient consistency.

Letting T be the number of MCMC iterations retained after burn-
in, the quantities in (12) are estimated as

U+ T o
Al :%;l{mﬂ“”(t)‘ m) ] [Z_: “(h[d]zl)kll}}
Au M D m
/D°=%t§{ 3 AH=hy) - Lz (h[dﬁO)zu” 1)
s I M ©_ D
P = 2 1 =y 1| S (k= 12w

for each observation i, leadm to P
and we reject those x; with P
consistent effects.

This test is flexible, and can be adapted to several purposes. For
example, to test the typical partial conjunction hypothesis, one could
modify the quantities in Equation (13) to

? - max P; P, P;

[}

~u/D+ ~u/DO AWD;
,

u/D
correspond fo

>b. Large values of P

14)

[ ——Z{ZE(H(”— - 1{21(h[d¢0)>u”

In the analysis of VISION RNA-seq data, we tested for consistency

in all -1, 0, and 1 groups. Thus, we applied our statistical test using
all quantities in Equation (12) and letting u=5, such that
PS5 =

max{IPS/ 5+ p3I30 PS/SR} Then, a consistently expressed gene is
one that falls within the R X: P5/5>0.5}, and all others were
called differentially expressed.

Simulations and comparisons

We used simulations to compare CLIMB to SCREEN' and mash", two
methods designed for a similar purpose as CLIMB, as well as DESeq2?”,
a popular method for pairwise differential expression analysis. SCREEN
was designed specifically to test for consistent signals across many
experiments. Like CLIMB, SCREEN employs a mixture model with
classes governed by latent association vectors. SCREEN tackles the
issue of computational intractability associated with these classes in
two ways. First, it assumes the association vectors to be binary, rather
than ternary. This reduces the growth rate of candidate latent classes
to 2°, but comes at the cost of eliminating the method’s ability to
detect inverse associations and signs of effects. Second, SCREEN par-
titions the data’s original conditions into clusters using a network
community detection algorithm as an initial step, fitting separate
models to each cluster. SCREEN next uses a heuristic to test for con-
sistent signals across all conditions.

Mash, on the other hand, captures the relationship between
observations across conditions through the covariances of each clus-
ter in the mixture. Mash assumes the data come from a multivariate
normal mixture, restricting each cluster to have zero mean. It sidesteps
computational issues by not explicitly specifying the latent association
vectors; instead, it models different clusters by specifying a list of
candidate covariances which are generated a priori. Since the assumed
distribution is symmetric and unimodal, model fitting is simplified to a
convex optimization problem that can be computed efficiently. Unlike
CLIMB, SCREEN, and mash, DESeq2 was not designed for joint testing
of conditions, but for testing differential expression pairwise between
conditions.

In order to simulate data that mimic empirical data, we first fit
CLIMB to real datasets (ChIP-seq, differential analysis of RNA-seq, and
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erythroid lineage RNA-seq data described in the VISION CTCF ChlIP-seq
analysis, Shukla et al.°°, and VISION RNA-seq analysis, respectively).
Parameter estimates similar to those obtained from these model fits
were used to simulate n =15,000, 15,000, and 21,303 observations with
18, 11, and 5 dimensions, respectively, according to the constrained
normal mixture model in Equation (2) (see Supplementary
Tables S4-S12 and Supplementary Figs. S24-S26 for specific para-
meter settings for all simulations). Since DESeq2 requires replicates for
each experimental condition, for Simulation 3 we simulated 2 repli-
cates per condition under the same model, but with a correlation of
0.96 between replicates. Since CLIMB is more appropriate for log-
transformed RNA-seq data, while DESeq2 is used on counts, i.e.,
untransformed data, we inputted a rounded 2%, where X is the simu-
lated data, to DESeq2 for analysis. The simulated replicates were
averaged before passing to CLIMB.

Like the real datasets, all simulated data contain shared effects
that are positively or negatively correlated across dimensions and
effects that are unique to one dimension. We applied CLIMB, SCREEN,
and mash to Simulations 1 and 2, since these analyses focus on iden-
tifying signal patterns across all conditions. We applied CLIMB and
DESeq2 to Simulation 3, since the goal of this analysis is specifically to
detect differential expression.

Though a usual goal of analyzing these types of data is to uncover
the true association patterns of observations across conditions, of all
methods, only CLIMB can report the full latent association vectors. To
provide a fair comparison among CLIMB, mash, and SCREEN, we test
the partial conjunction hypothesis across a series of levels u. We do this
as SCREEN’s sole functionality is to test this hypothesis, while CLIMB
and mash can be utilized for this purpose. By evaluating a range of u,
we can obtain a comprehensive assessment of each method’s ability to
identify consistent signals at different levels of condition-specificity.
To compare against DESeq2 in the case of multi-condition differential
expression, we identified genes that were differentially expressed
along the lineage using the same procedure as in the VISION RNA-seq
analysis.

We assessed the performance of each method by comparing the
identified consistent signals with the truth and computing the preci-
sion and recall at these thresholds (Supplementary Figs. S3-S5). Pre-
cision and recall were computed as

|significant effects N true effects N correctly signed|

recision = —
p |significant effects |

|significant effects N true effects N correctly signed|

recall =
[true effects |

where significant effects are observations that have been estimated to
be consistent, true effects are observations that truly are consistent,
and correctly signed effects are observations whose true and esti-
mated associations have the same sign. This computation is designed
such that an effect correctly identified by an algorithm as significant,
but whose effect was missigned, is considered a false positive. The sign
requirement was omitted for DESeq2. Analogous precision-recall
curves for simulations 1 and 2 that do not incorporate sign information
are in Supplementary Figs. S6-S7.

Separately, we sought to evaluate how accurate CLIMB is at the
pairwise fitting step. While the pairwise modeling need not be perfect,
it should retain true classes at the pairwise level and have reasonable
classification accuracy, such that true classes are likely to be retained in
the final model. We assessed CLIMB'’s performance during pairwise
fitting by calculating classification accuracy and counting the number
of missed classes and superfluous classes for each pairwise fit and each
simulation (Supplementary Fig. S8). Indeed, CLIMB’s pairwise fitting
was more likely to retain extra classes than it was to remove true
classes from the model.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The data analyzed in this paper are available at NCBI's Gene Expression
Omnibus [https://www.ncbi.nlm.nih.gov/geo/]°" under accession code
[GSE156074]. This GEO Series includes annotated links to all the CTCF
ChlIP-seq files, the RNA-seq files, and the DNase-seq files. The DNAase-
seq peaks were retrieved from Zenodo [https://doi.org/10.5281/
zenodo.3838751]. The list of identifiers for the subset of samples ana-
lyzed in this paper are in Supplementary Data 8.

Code availability

CLIMB is implemented in an R package, freely available on GitHub
under an Artistic-2.0 license (https://github.com/hillarykoch/CLIMB)
and via Zenodo [https://doi.org/10.5281/zenodo.7121446], [https://doi.
org/10.5281/zenodo.7121450].
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