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Modeling community standards for 
metadata as templates makes data 
FAIR
Mark A. Musen   1 ✉, Martin J. O’Connor1, Erik Schultes   2, Marcos Martínez-Romero1,3, 
Josef Hardi1 & John Graybeal1

It is challenging to determine whether datasets are findable, accessible, interoperable, and reusable 
(FAIR) because the FAIR Guiding Principles refer to highly idiosyncratic criteria regarding the metadata 
used to annotate datasets. Specifically, the FAIR principles require metadata to be “rich” and to adhere 
to “domain-relevant” community standards. Scientific communities should be able to define their own 
machine-actionable templates for metadata that encode these “rich,” discipline-specific elements. We 
have explored this template-based approach in the context of two software systems. One system is 
the CEDAR Workbench, which investigators use to author new metadata. The other is the FAIRware 
Workbench, which evaluates the metadata of archived datasets for their adherence to community 
standards. Benefits accrue when templates for metadata become central elements in an ecosystem of 
tools to manage online datasets—both because the templates serve as a community reference for what 
constitutes FAIR data, and because they embody that perspective in a form that can be distributed 
among a variety of software applications to assist with data stewardship and data sharing.

Introduction
In 2014, a small workshop of invited participants seized on the growing recognition in the scientific commu-
nity that research data should be made available in open repositories and, furthermore, that the data should be 
archived in a manner that makes them maximally usable by other investigators. The data needed to be FAIR—
findable, accessible, interoperable, and reusable by and for machines as well as people—and, after the publication 
of that fitting acronym a short time later1, funders, publishers, professional groups, and investigators themselves 
all began to see the ability to disseminate, to access, and to analyze FAIR research data as an important goal. 
Suddenly, funders adopted policies that their grantees’ data must be FAIR as well as archived in open reposito-
ries2. Some journals would not publish investigators’ papers (or even referee them) unless the data were FAIR3. 
Not surprisingly, the trend over the past few years has been for many researchers simply to assert that their data 
are FAIR, when in fact they often fail to adhere to the FAIR principles. Such claims of “FAIRness” ultimately risk 
the devaluation of the concept at a time when FAIR data and data sharing are increasingly needed.

Operationalizing the FAIR guiding principles.  Even though the terms findable, accessible, interoperable, 
and reusable have clear, vernacular meaning, the “FAIR Guiding Principles”—which were published in the same 
article that called on the scientific community to ensure that data are FAIR1—are rather loosely defined (Table 1). 
Many of the FAIR Guiding Principles relate to issues that typically are handled by the repositories where the data 
are stored (e.g., the use of globally unique and persistent identifiers, the ability to search the repository, the use 
of standard communication protocols). Such matters are therefore out of the hands of the investigators who are 
asked to place their data in a particular archive.

The FAIR principles over which investigators do have control deal with the metadata. Are the data described 
with rich metadata? Are the metadata richly described with a plurality of accurate and relevant attributes? Do 
the metadata meet domain-relevant community standards? It is therefore important that investigators pay par-
ticular attention to such considerations if they want their datasets to be FAIR. The challenge, however, is that 
most investigators and data curators don’t know how to begin to operationalize such principles in the setting of 
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annotating particular datasets. What exactly makes metadata attributes “accurate and relevant”? What qualifies 
a metadata specification as “rich”? Which community standards are the most important? The challenge with the 
FAIR Guiding Principles is that they are abstract and lack context. Although their high level of abstraction may 
have contributed to their rapid endorsement by the scientific community, it has been very hard for investigators 
to operationalize the FAIR principles, and for third parties—in particular, policy makers—to determine when 
the principles have been implemented successfully.

Faced with this confusion, investigators have tried to evaluate whether datasets adhere to the FAIR principles 
by using automated tools that examine the data records in particular repositories and grade them for “FAIRness.” 
Computer programs such as the FAIR Evaluator4, FAIRShake5, F-UJI6, and many others have attempted to auto-
mate the task of determining whether data records are FAIR. Despite the intense interest in making data FAIR, 
these systems have yet to accrue large followings because it is impossible for such programs to determine auton-
omously whether many of the FAIR principles are even being followed. How does a computer know whether 
datasets are being annotated with metadata that are sufficiently “rich”? How does a computer know which com-
munity standards for metadata are germane and whether they have been applied correctly? Entwined with the 
idea of FAIR data is the human-centered problem of ensuring that metadata include sufficient descriptors so 
that members of a particular scientific community can find the datasets that they are looking for with reasona-
ble recall and precision, and that those metadata descriptors include the kinds of standard terms that different 
groups of investigators will employ in their queries.

If the goal is to provide automated support for creating FAIR data and for evaluating existing datasets for 
FAIRness, then we need a mechanism to define for the computer all the attendant human-centered issues. We 
need a way to specify which communities and which community-based standards matter in a particular context, 
and how metadata authors are to be expected to follow them. We need a way to specify which standard vocab-
ularies are preferred for supplying the terms used in our metadata. We need a way to specify what constitutes a 
“rich” set of attributes and what represents a “rich” set of descriptions for a given attribute. Without explicit defi-
nitional knowledge, none of these notions is inferable automatically. In the work that we present in this paper, we 
propose that communities of investigators should create machine-processable metadata templates that embody 
their own relevant standards and that guide data stewards in how those standards should be applied.

Our metadata templates comprise descriptions of the attribute–value pairs that characterize standard meta-
data specifications. The templates are represented in a standard machine-readable language (JSON Schema) and 
they encode the community-based standards typically needed to create research metadata in a consistent man-
ner. The metadata templates therefore capture for the computer all the subjective elements needed to operation-
alize the FAIR principles in particular domains of science, for particular types of experiments, and for particular 
communities of experimenters (Fig. 1).

A metadata template allows an investigator to describe all the “data about the data” needed to understand the 
nature of a study, its motivation, and the means by which the study was executed. Such a template encapsulates 
in a single, machine-readable place everything that a third party—or a computer—needs in order to interpret 
what has been done and whether the data are reusable in a given context. A filled-out metadata template is 
analogous to an electronic cartridge that a user might plug into a gaming console or into a music synthesizer to 
transmit formal, standardized information quickly and completely—altering the behavior of the system receiv-
ing the information so that the system reflects the information that the cartridge is designed to communicate. 
People use electronic cartridges and similar devices all the time to bundle information and to permit informa-
tion reuse and dissemination—particularly when the information is extensive, complex, or hard to articulate. We 
see the same need for encapsulating community-dependent, context-specific information about scientific exper-
iments in order to guarantee that the metadata are “rich” and complete and that the resulting datasets are FAIR.

Metadata specifications are not physical artifacts like a cartridge or a cassette, of course, but they are discrete, 
self-contained, digital research objects. Whenever multiple computer applications are needed in a data ecosys-
tem (e.g., to create new metadata descriptions that ensure the FAIRness of the underlying datasets, to assess how 
well existing datasets adhere to the FAIR principles, to offer recommendations regarding data repositories that 
are hoping to archive FAIR data), users should be able simply to “plug in” new cartridges to transmit directly to 

The FAIR Guiding Principles

F1: (Meta) data are assigned globally unique and persistent identifiers
F2: Data are described with rich metadata

I1: (Meta)data use a formal, accessible, shared, and broadly 
applicable language for knowledge representation

F3: Metadata clearly and explicitly include the identifier of the data they 
describe I2: (Meta)data use vocabularies that follow the FAIR principles

F4: (Meta)data are registered or indexed in a searchable resource I3: (Meta)data include qualified references to other (meta)data

A1: (Meta)data are retrievable by their identifier using a standardized 
communication protocol

R1: (Meta)data are richly described with a plurality of accurate 
and relevant attributes

A1.1: The protocol is open, free, and universally implementable R1.1: (Meta)data are released with a clear and accessible data 
usage license

A1.2: The protocol allows for an authentication and authorization where 
necessary R1.2: (Meta)data are associated with detailed provenance

A2: Metadata should be accessible even when the data is no longer 
available R1.3: (Meta)data meet domain-relevant community standards

Table 1.  The FAIR Guiding Principles as presented by Wilkinson et al.1 Most of the principles relate to 
metadata. In the Table, underlining indicates subjective aspects of the FAIR principles that are community 
dependent.
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the computer the particular community-based FAIR criteria against which the users would like the computer to 
perform its analysis.

In this paper, we describe the structure of our metadata templates, and we present how these templated rep-
resentations of standard metadata frameworks drive two different applications: (1) the CEDAR Workbench (or 
simply CEDAR)7, which helps investigators to author the rich, standards-adherent metadata needed to make 
datasets FAIR, and (2) the FAIRware Workbench (or simply FAIRware), which uses metadata templates to assess 
the degree to which existing online data resources actually are FAIR. The approach demonstrates the value of 
representing data standards in a declarative, machine-readable manner, and of building applications that can 
share these representations so that community-dependent knowledge of the standards and practices regarding 
their use can be transmitted seamlessly among the various tools.

When we speak of metadata in this paper, we typically are referring to data about experimental data. 
Metadata may also refer to descriptions of other types of digital objects, such as software packages and work-
flows. Although our emphasis in this paper is on making experimental datasets FAIR, the approach is quite 
general, and it applies to all types of metadata.

Standards for encoding metadata.  Community standards for describing the data collected in the course 
of scientific experiments have been evolving since the end of the last century, and they are continuously expand-
ing in number. Work in the area of clinical research provides a good example. Practically since the advent of con-
trolled clinical trials, biostatisticians have lamented the frequent lack of methodological information in reports of 
medical experiments to offer readers detailed understanding of the experiment and to enable confidence in the 
results8. Intense discussions during the 1990s ultimately led to the CONsolidated Standards Of Reporting Trials 
(CONSORT), a 25-item checklist of the “minimal information” needed to make sense of data from randomized 
clinical trials and a flow diagram for applying the elements of the checklist9. The CONSORT criteria provided 
guidance to journal editors and reviewers who sought to know whether the reported data and methods of a clin-
ical study were complete and consistent with the intended study design, the actual execution of the study, and 
the analysis of the data. The CONSORT checklist also informed the development of ClinicalTrials.gov, the pri-
mary repository for preregistration of intervention trials in the United States10. The information about individual 
studies in ClinicalTrials.gov can be viewed as metadata for those studies, as the entries for each trial provide the 
information needed to make sense of the data that ultimately are collected11. Many of the fields in ClinicalTrials.
gov records correspond directly to items in CONSORT.

Fig. 1  Metadata template for capturing information about a tissue sample. This screen capture shows the 
template used by investigators in the NIH-supported HuBMAP consortium to specify metadata about biological 
specimens used to perform assays of cell-specific biomarkers. In the figure, the user is entering a controlled term 
from a special HuBMAP ontology to provide the metadata entry for the specimen’s preparation medium. The 
attributes of tissues are the ones that the HuBMAP community has chosen to standardize for its descriptions 
of such samples. The ontology terms used to provide values for the metadata attributes similarly represent 
community-endorsed standards for declaring this kind of information.
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After the popularization of the CONSORT minimal-information checklist, the EQUATOR Network8 built 
upon the CONSORT approach to offer the medical community more than 500 such reporting guidelines for 
enumerating the minimal information that should be provided with clinical studies, economic evaluations, 
meta-analyses, and other kinds of scholarly reports, which now are used routinely to ensure that authors record 
the kinds of things about their work that will enable third parties to make sense of the data and the way in which 
the authors have performed their analyses.

Minimal information checklists for interpreting experimental results have been increasingly important in 
other areas of science. For example, around the time that CONSORT was being described for clinical trials, 
the community of scientists studying functional genomics—exploring how gene function gets turned on and 
turned off in different situations—recognized that the then-emerging technology of DNA microarrays required 
the readers of journal articles to consider large amounts of information to make sense of the complex experi-
ments that were being reported. A group of investigators proposed their own reporting guideline—the Minimal 
Information About a Microarray Experiment (MIAME)—that offered a checklist to make sure that a publication 
contained sufficient detail for a third party to make sense of the study and to understand the results12. MIAME 
reminds investigators that a “minimal” report needs to include facts about how the experimental results are 
encoded, the subject of the study, the experimental set-up, and so on. MIAME became important not only to 
journal editors who wanted to ensure the completeness of scientific articles, but also to the developers of scien-
tific databases such as the Gene Expression Omnibus13, where the elements of the MIAME checklist have been 
used as fields in the metadata that describe the associated microarray datasets14. Thus, as with clinical trials, 
the standard reporting guideline for the microarray community both supported the editorial management of 
journal submissions and served as the basis for the metadata in the definitive repository used in the discipline.

In the biology community, the notion of minimal information checklists caught on rapidly, with research-
ers working at the grass roots proposing scores of reporting guidelines, such as Minimal Information About 
T-cell Assays (MIATA)15 and Minimal Information For In Situ Hybridization and Immunohistochemistry 
Experiments (MISFISHIE)16. Investigators in other areas of science, recognizing the direct relationship between 
rich metadata and the FAIR principles, proposed corresponding reporting guidelines for use in earth science17, 
ecology18, and other disciplines. The FAIRsharing resource maintained at Oxford University provides informa-
tion on more than 200 reporting guidelines from many disciplines within the natural sciences, generally in the 
form of minimal information checklists19.

Recently, computer scientists in the machine learning community have recognized that it is impossible to 
process datasets without minimal information about the data content. Workers at Microsoft Research have pro-
posed the idea that datasets should be accompanied by a “datasheet”20 that enumerates essential information 
about the data—metadata that have aspects similar to those of a minimal information checklist.

Traditional minimal information checklists cannot be processed by computers in a meaningful way. Most 
checklists exist as textual documents, written with all the ambiguity and imprecision of natural language21. These 
checklists enumerate the things that need to be said about experiments and their data, but they are not in a form 
that enables a computer to verify that a checklist has been followed; they are designed primarily so that humans 
can attempt to tick boxes to indicate that something has been mentioned about the given topic. In our work, 
we make it possible for scientific communities to recast minimal information checklists as machine-readable 
templates that enumerate the attributes about a type of experiment and its associated data and the types of values 
that those metadata components can take on—helping the investigator to comply with reporting guidelines 
while at the same time encoding this information in an explicit and unambiguous format. For example, Fig. 1 
shows a metadata template that defines a reporting guideline for information about a tissue specimen. The 
template was created by scientists working in the Human Bio-Molecular Atlas Program of the U.S. National 
Institutes of Health (HuBMAP)22. The template corresponds to a guideline that lists the minimal set of attributes 
that need to be reported for a tissue specimen obtained during a surgical procedure or at autopsy. The Figure 
shows the use of the template within the CEDAR workbench7, which includes a tool that enables investigators to 
create instances of metadata (i.e., metadata for a particular experiment, which, in this case, annotate data about 
a specimen). CEDAR guides the user in filling in the fields of the template with values that adhere to predefined 
types. Some of these value types might be integers or dates. Some might be arbitrary text strings. In many cases, 
the values are terms that come from standard ontologies.

The ontologies used to systematize metadata entries are collections of controlled terms that represent the 
entities in a domain, along with information about the relationships among those entities23. In the sciences, 
standard ontologies such as the Gene Ontology24 are often used by data curators to provide consistent vocab-
ularies for data annotation. In the metadata templates that form the focus of our work, curators use reporting 
guidelines (such as the one in Fig. 1) as an overall framework, and they select specific terms from appropriate 
ontologies to ensure that the elements of the guideline are filled out in a consistent way. Whenever an element 
of a reporting guideline needs to take on a standardized value, the field in the corresponding metadata template 
designates one or more ontologies (or branches of these ontologies, or set of individual terms, or a combination 
of these options) that should be used to supply the values (see the drop-down menu in Fig. 1)25.

Addressing mandates for data FAIRness.  Our work is taking place within the context of growing inter-
national sentiment that research data need to be FAIR. The European Union’s most recent program for funding 
science, Horizon Europe, requires all data generated by its grantees to be FAIR. In the United States, the Office of 
Science and Technology Policy recently provided guidance to all U.S. funding agencies to have policies in place 
by 2025 to ensure equitable, freely available access to all research results and data. National funding agencies 
increasingly view the results of the research that they support—including the data—as a public good, and they 
view the availability of FAIR data as the means to deliver to tax payers the benefit that they have paid for26. At the 
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same time, scientific communities are seeking ways to make the results of their research more valuable to other 
investigators and to comply with the new, escalating requirements for FAIR data.

In this paper, we present the notion of metadata templates as a fundamental mechanism by which groups of 
investigators can capture and communicate their requirements for the metadata needed to make their datasets 
FAIR; to enable computers to assist them in authoring, evaluating, and publishing experimental metadata; and 
to ensure that their judgments and preferences regarding guidelines for reporting experimental results can be 
propagated throughout a ecosystem of tools and processes that, together, help to guarantee that their data are 
FAIR.

Results: Putting Metadata Templates to Use
Our approach renders reporting guidelines as machine-readable templates, and it designates the controlled 
terms that can supply values for the fields in the reporting guidelines as elements of standard ontologies. When 
scientific metadata are encoded in this manner, the result is a consistent, reusable “cartridge” that can be reap-
plied in different applications. Our laboratory has developed two such applications: CEDAR and FAIRware. We 
now discuss these two applications in turn.

Authoring metadata with templates: the CEDAR workbench.  The CEDAR Workbench is a 
Web-based platform that enables users to manage a library of metadata templates, to share templates with one 
another and with designated groups, and to fill out those templates to create instances of experiment-specific 
metadata. The system includes a component that enables developers to create and edit new metadata templates. 
Users construct such templates by piecing together descriptions of each of the template’s fields, possibly adapt-
ing previously defined templates or elements of such templates. For each field, users specify the value type (e.g., 
integer, date, character string) and, when appropriate, they link string-valued fields to the ontologies (or portions 
of ontologies) archived in the BioPortal open ontology repository27 that can designate the controlled terms that 
should be used when curators later author instances of metadata. Template developers can also link metadata fields 
to common data elements (CDEs) that encapsulate defined value types (including enumerated lists of elements  
from ontologies) with the standard questions to be posed to end users to acquire those values28.

Because CEDAR provides an editor for creating these machine-actionable metadata templates, we typically 
refer to them as “CEDAR templates.” However, an important driver of our work is that templates are independ-
ent of any software system. In fact, the templates can be created by using simple text editors or by using more 
advanced applications developed by other groups21.

When a user wishes to create metadata to annotate a specific dataset, he or she selects the appropriate 
community-inspired template from the CEDAR library of metadata templates. Users obviously need to know 
which template to choose, and they use the name of the template to guide the selection (Fig. 2). CEDAR then 
employs the indicated template to generate automatically a simple Web form that allows the user to fill in the 
values of the fields in the designated template one by one. The CEDAR Workbench ensures that the user enters 
values that match the indicated value type for the field. If the field is linked to an ontology (or set of ontologies), 
then CEDAR provides a drop–down menu of appropriate controlled terms from which the user may make a 
selection (see Fig. 1). CEDAR maintains a cache of metadata that have been previously entered into the system 
and uses that cache to learn patterns in the metadata29. These patterns enable CEDAR to tailor its user interface 
to speed the entry of metadata information. For example, the drop-down menu in Fig. 1 sorts the entries from 
which the user is to make a selection so that, in the context of previously entered metadata field information, the 
most likely selections appear at the top of the menu.

Creating metadata in CEDAR is a matter of filling out templates that reflect community-specific reporting 
guidelines. If the template is created with appropriate care, then the template adheres to community standards 
because the community was responsible for creating (or at least vetting) the template in the first place; the meta-
data will be as “rich” as the reporting guideline indicates they need to be, and they will use standard scientific 
ontologies that follow the FAIR principles. The subjective elements of the FAIR principles (i.e., adherence to 
appropriate standards, “richness”) are built into the template specification. Users who complete the template will 
therefore have guarantees that their metadata instances are in full compliance with the community-determined 
standards. Thus, when CEDAR users fill in such a template and place the metadata and the corresponding data 
into a repository, the dataset will be, by definition, FAIR.

CEDAR can upload datasets to designated repositories that have application-program interfaces 
that have been mapped to the system. Depending on the setting, the dataset may be transmitted to a local 
data-coordinating center30, to a generalist data repository, or to a domain-specific repository, such as those at 
the National Center for Biotechnology Information31. In the latter case, where the domain-specific repository 
may incorporate assumptions about the semantics of uploaded metadata, it is essential that the original CEDAR 
template be constructed to match those semantics.

Investigators currently are using CEDAR to author metadata in large NIH projects such as HuBMAP22, 
the Library of Integrated Network-based Cellular Signatures (LINCS)30, and Rapid Acceleration of Diagnostics 
(RADx)32. Moreover, CEDAR is also being deployed at 88 healthcare sites in 8 African countries as part of the 
Virus Outbreak Data Network (VODAN)33,34. In all of these activities, the primary goal is to drive the authoring 
of “rich,” standards-adherent, machine-actionable metadata to ensure that the associated datasets will be FAIR.

Evaluating metadata with templates: the FAIRware workbench.  Most scientific metadata are 
crafted in an informal manner, and the vast majority of datasets, consequently, are not FAIR. Metadata authors 
typically do not adhere to community standards, and they tend to provide only a minimal number of metadata35. 
Thus, third parties, including funders and publishers, often want to assess how FAIR datasets actually are. When 
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metadata do not adhere to community standards, it would be helpful to know if there are particular standards 
that are simply hard for researchers to use reliably. Furthermore, many investigators would like to know how to 
make their metadata more standards-adherent, taking advantage of reporting guidelines and ontologies that they 
may have overlooked. The FAIRware Workbench is a system currently in prototype form that was created with all 
these use cases in mind.

The FAIRware Workbench takes as input (1) pointers to a set of online dataset records to be evaluated (gen-
erally a list of DOIs) and, optionally, (2) a metadata template (taken from the CEDAR template library). It 
generates as output (1) an analysis of how well the metadata in the datasets adhere to the standards encoded in 
the metadata template, indicating which template fields are most often noncompliant and (2) new, candidate 
versions of the metadata records that demonstrate better adherence to the standards represented by the template. 
The system thus evaluates in batch a set of datasets from a target repository, checks the metadata for standards 
adherence, reports on situations where standards were used inappropriately or omitted entirely, and produces, 
for each problematic metadata record that it detects in the original set, an alternative record that the system sug-
gests adheres better to the appropriate standards. When an appropriate CEDAR metadata template is available 
for reference, because it will have been created to reflect the standards of the relevant scientific community, the 
template serves as the “gold standard” against which to benchmark the input metadata in the FAIRware-based 
evaluation.

Figure 3 shows an analysis that the system has performed on a collection of datasets from the HuBMAP 
project—in this case indicating potential errors in one of the metadata records describing the section of a bio-
logical sample from which a specimen was taken. By comparing each metadata record in the repository against 
the standard metadata template, the FAIRware system acts like a “spell checker” or debugging tool to offer 
suggestions on how to improve the metadata36. When the template specifies that a metadata field is to be filled 
with a term from a standard ontology, the software verifies that the value for that field is indeed a term from that 
ontology. If the value does not match an ontology term, then the FAIRware system identifies the closest match 
in the ontology that it can find and it assumes that the metadata author intended to use the identified term, 
suggesting that the user replace the aberrant value with the term from the ontology. The software also verifies 
that the required field names enumerated in the template are present in the metadata record under evaluation. 
If a required field appears to be missing, then the FAIRware system will determine whether a field name in 
the current record appears to be a misspelling of the absent field name. If so, then the software will suggest 
correcting the assumed misspelling. Users have the option of requesting that FAIRware always implement its 
suggestions for metadata improvements automatically, or of having it do so only with explicit user approval on 
a record-by-record basis.

Fig. 2  A collection of metadata templates in the CEDAR library. The screen capture depicts a set of templates 
created by HuBMAP users or shared with their community members. In CEDAR, users may view and access 
their own metadata templates, templates explicitly shared with the user by others, and templates shared by 
designated research communities stored in “community folders.” Here, the user is seeking to populate the 
Sample Section template, which appears in Fig. 1.
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FAIRware is able to make certain judgments about legacy metadata even if the user is unable to indicate a can-
didate template for reference. For example, it may be possible to find in the CEDAR library a metadata template 
whose fields bear similarity to many of those listed in the metadata under evaluation. In that case, the system 
can attempt to use the template as a candidate reference for the metadata under evaluation. Even when no refer-
ence template is available, FAIRware can assess how well strings in the metadata under evaluation match terms 
in known ontologies. The system then can make guesses regarding the possibility that the original metadata  
author may have intended to use a standard term and inadvertently failed to do so.

As the FAIRware Workbench evaluates the metadata records that are input into the system, it stores in an 
output database the “cleaned up” metadata based on its analysis of the original records and the gold-standard 
metadata template. In principle, the metadata in the more standards-adherent output database should be search-
able with greater precision and recall than is possible with the original records. As a result, using the “cleaned 
up” records when searching for datasets could provide a means to make the original datasets functionally more 
FAIR. We never replace the original records with our new metadata because, like a traditional spell-checker, 
FAIRware can inadvertently introduce new errors in its attempt to correct what it identifies as mistakes. Instead, 
we make the FAIRware version of the metadata available as a separate resource for third parties who wish to 
perform dataset search and to ensure that their queries have better recall.

The FAIRware Workbench generates summary information regarding the input metadata as a whole (Fig. 4). 
The system creates reports that enable users to visualize the degree to which the metadata under evaluation 
include the fields suggested by the CEDAR template, the degree to which metadata values are taken from appro-
priate ontologies, and which metadata fields are least likely to be filled with an ontology term. Users with over-
sight responsibilities for data stewardship thus can obtain a perception of overall metadata quality in the input 
datasets, and they can learn which reporting guidelines (and which fields of reporting guidelines) may be diffi-
cult for investigators to apply. Such results can inform the evolution and improvement of the standards adopted 
by scientific communities.

Methods
Technology such as CEDAR and FAIRware, which both rely on the ability to represent metadata in terms of reus-
able templates, motivates our work to develop methods for capturing metadata standards as templates and for 
encoding them in a machine-actionable manner. These methods allow us to anticipate an ecosystem for open sci-
ence that emphasizes standard templates as the basis for disseminating metadata standards and for ascertaining  
and ensuring data FAIRness.

Formulating metadata: Metadata for Machines workshops.  FAIRware and CEDAR both operate 
on the same machine-readable representations of metadata templates. The experience with these two systems 
demonstrates the value of having metadata standards available in a format that can “plug and play” with alterna-
tive software applications. The question, of course, is how does one know what to include in a metadata template 
in the first place?

The situation may not require an inordinate amount of work when an appropriate reporting guideline already 
exists, such as MIAME or MIATA. The problem, in this case, is to transform the elements of each checklist into 

Fig. 3  FAIRware Workbench analysis of a metadata record for a tissue sample. The screen capture shows the 
analysis of one of the records in the repository, indicating where the reporting guideline may not have been 
followed or where ontology terms were not used appropriately. The system automatically corrects the string 
“208 days” to the integer 208. There is no obvious correction for the entry for “storage medium.” Because in this 
example the FAIRware workbench is in interactive mode, it offers the user a menu of ontology terms that might 
provide a standards-adherent value.
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discrete template attributes (field names), and to assign a value type to each field. When the value type is one of 
“character string,” the developer needs to determine whether the value should be selected from a pre-enumerated 
list and, if so, whether there is an existing ontology or common data element that should be used.

Sometimes, the template does not reflect a standard reporting guideline for a particular class of experiment 
but, instead, reflects the built-in metadata fields that are anticipated by a particular repository. For example, 
domain-specific databases at the U.S. National Center for Biotechnology Information, such as BioSample and 
BioProject, set up explicit expectations for their metadata fields37, and it often makes sense to create metadata 
templates that provide the list of metadata fields that the particular repositories require.

Often, however, there is no existing reporting guideline for the area of study, and there is no repository that 
can provide target metadata fields for the necessary template. In that case, developers need to create a new tem-
plate—either from scratch, or by modifying elements of existing templates. Creating such a template becomes 
an engineering problem, where the goal is not only to identify the essential elements of the class of scientific 
experiments that need to be described (the work that would be associated with authoring a reporting guide-
line in general), but also to represent those elements in a form that can be encoded using the formal structure 
assumed by our two applications.

The GO FAIR Foundation (Leiden, the Netherlands) has formalized the process of engineering new meta-
data templates, with the explicit purpose of scaling the creation of domain-relevant, standards-based metadata. 
GO FAIR has created the idea of “Metadata for Machines Workshops” (M4Ms) to help investigators to create 
computer-stored templates that are compatible with both the CEDAR and FAIRware workbenches. M4Ms bring 
together stakeholders in particular areas of science to craft machine-actionable metadata templates that are 
fit for purpose and, if necessary, ontologies that supply terms in support of those templates. These workshops 
are remarkably efficient—typically lasting one to three days—and they produce rich metadata specifications 
that, importantly, can evolve over time. Although some well-known reporting guidelines such as MIAME took 
months or years to work out, M4Ms are extremely compressed events, almost like “hackathons,” that owe their 
productivity to multiple factors. First, the participants’ familiarity with previously designed scientific reporting 
guidelines prepares them for the work before them. Second, participants come primed to work intensively, and 
the collaborative, interactive environment created by the M4M facilitators helps to tease out problems and to 
focus attention on issues that require consensus-building. Third, the workshop incorporates highly usable meta-
data and vocabulary modeling technologies such as the CEDAR Workbench to provide a shared, interactive plat-
form where the workshop participants can prototype metadata records and accompanying ontologies, and where 
they can observe the ramifications of their proposals. Finally, building a structured, computer-based reporting 
guideline has similarities to the crafting of any declarative, machine-readable knowledge base for an intelligent 

Fig. 4  FAIRware Workbench summary analysis. The Workbench provides the user with an overview of how 
well the input data adhere to the standard defined by the metadata template indicated at runtime. We can see 
that, overall, there are many records with missing required fields, and several records with field values that do 
not adhere to standards (such as the use of standard ontology terms). At the bottom of the screen, users can see 
more detail and review which metadata fields cause the most difficulty.
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system; the knowledge-elicitation techniques that were pioneered by the artificial intelligence community  
in the 1980s and 1990s turn out to be helpful in the context of M4M workshops38,39.

The GO FAIR initiative has now hosted dozens of M4M workshops, in domains as varied as studies of anti-
microbial resistance, neuroimaging for experiments related to human consciousness, and evaluation of technol-
ogy to capture wind energy40. The M4M facilitators have also demonstrated that their format can be replicated 
by other facilitators who are trained in the approach. GO FAIR construes M4M workshops as the vehicle for cre-
ating key elements of what it calls FAIR Implementation Profiles (FIPs)41—an intentionally generic term for the 
set of design choices that a given scientific community makes to implement the FAIR Guiding Principles. These 
design choices largely boil down to decisions about standards. From a practical perspective, the design choices 
inherent in a metadata template provide the FIP elements over which a group of investigators has direct control: 
the relevant reporting guideline(s), any additional metadata elements, and the ontologies used to provide con-
trolled terms. Hence, these elements, which are documented in the content stored in CEDAR and BioPortal, can 
be referenced as FAIR-enabling resources that contribute to the overall FIP. The processes of M4M workshops 
provide the foundation needed to translate the abstract FAIR Guiding Principles practically and efficiently into 
concrete, computer-stored solutions that can ensure data FAIRness.

Of course, metadata templates do not need to be developed in the setting of formal workshops. Many sci-
entific consortia have been very successful creating unambiguous metadata specifications without the need for 
external facilitators or structured processes. The Adaptive Immune Receptor Repertoire (AIRR) community31 
and the HuBMAP consortium mentioned previously22 are examples of two research organizations that have 
been successful in creating CEDAR-compliant metadata standards in a more organic fashion.

The key observation is that CEDAR metadata templates necessarily adhere to the requirements and prefer-
ences of the scientific communities that create them. Fields are included in a template because the communities 
view them as essential. Preferences regarding the distinctions to be made (1) about classes of experiments, (2) 
about the ontologies to use to specify those distinctions, and (3) about the granularity with which data need to 
be described are built into the design of the template. The templates necessarily reflect the values and beliefs of 
the given communities of practice that built the templates in the first place, and the templates provide a vehicle 
for communication—both within and without the community—that offers more precision and more perspicuity 
than is possible with reporting guidelines that are captured only in prose.

Encoding metadata: a machine-actionable model.  CEDAR and FAIRware are able to operate with 
the same metadata descriptions because the metadata are encoded in a shared, machine-readable format. Our 
approach starts with a lightweight, abstract model of the core characteristics of metadata. The model provides a 
consistent, interoperable framework for defining metadata templates and for creating and filling in instances of 
metadata that comport with those templates42.

The model assumes that templates are assembled from more granular template elements, which are them-
selves templates. Template elements are thus building blocks of more elaborate templates. The template elements 
contain one or more pieces of information, such as a text field or a date field, or a subordinate template element. 
The fields in a template represent atomic pieces of metadata, and they are rendered as blanks to be filled in by 
the CEDAR metadata editor (as in Fig. 1). The model’s nested approach to defining template elements allows 
fields such as phone number and email to be contained in a template element called Contact Information, which 
could itself be contained in a template element called Person. The model also indicates possible value types for 
metadata fields, as well as the designation that fields have textual descriptions and, in keeping with the FAIR 
principles, unique identifiers.

Our approach uses JavaScript Object Notation (JSON), an open, standard file format widely used for data 
interchange. JSON is reasonably human-readable, and it is well suited for encoding the attribute–value pairs 
that characterize scientific metadata. Our model of metadata templates, template elements, and template fields 
is represented in a JSON-based specification known as JSON Schema, which provides a structural specifica-
tion of the model’s components. Metadata instances (i.e., the metadata for particular experiments) are encoded 
using JSON-LD, in accordance with the overall template model represented in JSON Schema. JSON-LD is a 
JSON-based format that adds support for references to “linked data” (i.e., persistent identifiers on the Web), 
which in our case provide semantic descriptions of metadata entries through the use of the persistent identifiers 
associated with standard ontology terms. Thus, in the JSON-LD representation in Fig. 5, the value for prepara-
tion_medium has a precise, resolvable meaning because, in accordance with the metadata template, it relates to 
a specific term in the Medical Subject Headings (MeSH) vocabulary. The value for processing_time_unit gets its 
semantics from the OBO Units Ontology. The value for storage_temperature gets its meaning from the National 
Cancer Institute Thesaurus. When the JSON-LD representation indicates that the preparation_medium for the 
sample is methanol as defined by MeSH, then a computer can reason about the metadata and about the MeSH 
ontology (and about other ontologies mapped to MeSH) to conclude that the methanol preparation medium is 
an alcohol, or even that the preparation medium is highly flammable and also highly toxic. The approach enables 
logical analysis of the metadata and of the experiment that the metadata describe in ways that are not possible 
with simpler file formats designed primarily for human users.

Although the JSON-LD encoding for metadata can appear a bit daunting, typical users never see the 
machine-readable representation. Scientists create metadata using CEDAR Web forms that are simple and intu-
itive, and they review the metadata in legacy datasets using FAIRware in a manner that shields them from the 
internal format. Nevertheless, because the JSON-LD is a standard data exchange format that is readily parsed by 
computers, it provides a straightforward, lightweight mechanism to encode metadata with clear semantics and 
to distribute the metadata to a variety of applications.
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Discussion
We have developed a model for scientific metadata, and we have made that model usable by both CEDAR and 
FAIRware. Our approach shows that a formal metadata model can standardize reporting guidelines and that 
it can enable separate software systems to assist (1) in the authoring of standards-adherent metadata and (2) 
in the evaluation of existing metadata. By creating a framework that supports scientific communities directly 
in their work to codify which reporting guidelines and which ontologies to use in their data annotation, we 
finesse the impossible task of determining, out of context, whether metadata are “rich,” whether they adhere 
to the proper standards, and whether they use ontologies that are themselves FAIR. Instead, we adopt a formal 
computer-stored representation that enables different communities of practice to build domain-specific templates  
for the types of metadata that are appropriate for serving the needs of their disciplines.

Formal knowledge bases that capture community standards.  In a series of invitational workshops, 
Gregory and Hodson43 have proposed a Cross Disciplinary Interoperability Framework (CDIF) as a lingua franca 
for creating metadata to support FAIR data reuse. Unlike the work presented in this paper, CDIF focusses on 
generic, domain-independent implementation standards, offering a set of guidelines and best practices for rep-
resenting metadata at a level of specificity that is helpful to software developers. CDIF proposes general-purpose 
standards that might be used to encode metadata, but the framework makes no commitment to the metadata 
content needed for investigators to find datasets using discipline-specific terms and to understand the data in a 
manner that allows for reuse and for interoperability with other research results. As work on CDIF progresses, 
however, it may be appropriate for the implementation of metadata templates to evolve to incorporate ideas that 
originate from this effort.

CDIF is a component of broad work in the FAIR community to define FAIR Digital Objects (FDOs)—
machine-interpretable encapsulations of data, metadata, analytic methods, and other products of research—that 
might integrate into larger software systems. FDOs aim to address the overall goals of managing and using FAIR 
data, but FDOs are software artifacts that are at a level of abstraction beneath that of the community stand-
ards that are the focus of the metadata templates discussed in this paper. CEDAR templates certainly need to 
operate in a software environment where developers can make commitments to the necessary implementation 
standards, but such standards are quite distinct from community-based metadata standards that capture the 
knowledge of the minimal set of descriptors needed to make sense of a particular type of experiment and the 
standard terms from which investigators might fashion those descriptions. This distinction between knowledge 
and implementation is one with which the artificial intelligence community has struggled for decades44.

Our template model provides a straightforward mechanism to translate the knowledge of textual reporting 
guidelines into a machine-actionable format. Because the model can be easily read and processed by a variety 
of applications (mitigating vendor lock-in and associated blocks to interoperability), it can form the basis for a 
standard, technology-independent means to communicate reporting guidelines in a computable fashion. Our 
intention is not to introduce yet another redundant data standard to make an already complex landscape of 
standards even more confusing45. Rather, we aim to provide a mechanism for rendering an existing type of 
standard (namely, reporting guidelines) more precise and more readily actionable. There is no agreed-upon 
convention for how reporting guidelines should be rendered, and the availability of a coherent format that is 
compatible with widely used knowledge-representation standards provides an obvious advantage.

Fig. 5  The JSON-LD representation of the HuBMAP metadata seen in Fig. 1. The explicit incorporation of the 
persistent identifiers of ontology terms provides a semantic foundation for the corresponding metadata fields. 
We can see, for example, that the value for “preparation medium” refers to a term from MeSH.
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This approach enables groups of investigators to build into their templates the practice-centered elements of 
data FAIRness. Existing automated approaches that attempt to assess whether data are FAIR break down due to 
their inability to determine algorithmically the tacit data-annotation practices of particular research communi-
ties. However, when investigators construct appropriate templates, CEDAR supports the authoring of FAIR data 
and FAIRware supports the assessment of data FAIRness because the data-annotation practices of the relevant 
communities are encoded directly into the metadata templates. The standards endorsed by the community are 
precisely those standards that are used to produce the template. The fields selected for the template are precisely 
those fields that the community believes are required for the metadata to be adequately “rich.” Inevitable revisions  
to community metadata standards can be addressed simply by editing existing CEDAR templates.

The templates in our work can each be viewed as a knowledge base of the preferred data-annotation practices 
of a particular scientific community for a particular class of scientific experiment. In that sense, our methods 
build on approaches that have been practiced for decades to build knowledge-based systems46. The M4M work-
shops used to create metadata templates adopt techniques that are reminiscent of the knowledge-elicitation 
methods studied by the knowledge-engineering community38,39. These workers have built electronic knowledge 
bases to “plug and play” with different problem solvers47, enabling constraint-satisfaction engines or classifica-
tion systems or planners to reason about different aspects of the same knowledge base. By analogy, our metadata 
templates should be able to interoperate with a variety of applications well beyond CEDAR and FAIRware. One 
can speculate about computer programs that could use metadata templates to translate metadata from one com-
munity standard to another automatically, or to reason about how datasets with disparate annotations might be 
harmonized.

Our experience with CEDAR and FAIRware demonstrates the value of using formal knowledge-representation 
methods to characterize information about the annotation of experimental datasets. One would not necessarily predict 
the effectiveness of this approach from the history of the well-known MIAME standard, however. The Microarray and 
Gene Expression Data Society (MGED), after promoting the wildly successful MIAME minimal information guide-
line, went on to create the formal MicroArray Gene Expression Object Model (MAGE-OM) in UML48, and the even 
more formal MGED Ontology in OWL49. Neither of these resources gained much traction in the microarray commu-
nity. They were complicated and beyond the understanding of most practitioners, and there were no easy-to-use tools 
that could insulate investigators from that complexity—until MAGE-OM was later folded into a spreadsheet-based 
application known as MAGE-Tab50. Although CEDAR metadata are encoded in JSON-LD, our applications do 
not expose users to JSON-LD syntax, and users generally view the templates only through intuitive user interfaces. 
Our experience emphasizes the long-established importance of coupling formal, coded knowledge-representation 
approaches with applications that can shield typical users from the intricacies of the underlying models.

Deciding what to model.  Minimal information checklists such as MIAME have been criticized for their 
lack of specificity and inadequate granularity51. CEDAR metadata templates, on the other hand, can be created 
with explicit fields that can refer to arbitrarily fine-grained properties of an experiment. The metadata templates 
impose a rigidity on the description of experiments that may make some data curators feel uncomfortably con-
strained, and the templates may ask for details that the curators may not be able to provide. The challenge is to 
create templates that make minimal assumptions about the metadata that curators will be able to specify, but that 
can anticipate (1) the attributes of datasets for which third parties may want to query, (2) the features of the exper-
imental situation that need to be described to ensure replicability, and (3) the attributes of datasets that need to be 
indicated to ensure appropriate interoperability with other datasets. Scientists will naturally prefer to specify the 
most minimal metadata that they can in the most flexible manner possible. A significant risk of our approach is 
that template developers will be overambitious in their beliefs regarding what is “minimal” information, leading 
to metadata models that make too many expectations of investigators sharing their data. In practice, CEDAR 
has not been well received when scientists have been asked to provide what they consider to be overwhelming 
amounts of information about their experiments. On the other hand, for data to be FAIR, it is important for data-
sets to be searchable in domain-specific terms and to describe experimental conditions adequately. Researchers 
have learned that publishing a research paper requires them to adhere to certain conventions, and they are begin-
ning to accept that “publishing” their datasets in a FAIR manner also requires adherence to certain professional 
norms.

Our approach bears similarities to that of the ISA software suite, which models Investigations, Studies, and 
Assays52. The ISA suite of tools enables investigators to create metadata stored as separate files that reflect the 
investigations (overall projects), studies (experiments), and assays (measurements performed as part of an 
experiment) associated with their research. The ISA approach provides a general model of a kind of biological 
investigation, and it enables curators to create metadata that relate to the different aspects of the overall model. 
ISA models a specific class of scientific investigation, however, unlike our model, which models metadata. The 
model of metadata facilitates the creation of detailed metadata templates that explicitly specify the datatype 
of each metadata field and, when appropriate, the specific ontologies (or parts of ontologies) that should be 
used to provide values for that field. The CEDAR approach enables our metadata-authoring system to gener-
ate user-friendly Web forms directly from a metadata template without the need for any computer program-
ming, and it creates precise JSON-LD from the user’s entries. CEDAR does not hard code into its template 
language distinctions about the components of scientific investigations such as those represented in the ISA 
model. Instead, our template model emphasizes only what needs to be said about metadata—and thus it is appli-
cable to fashioning metadata for all kinds of FAIR digital research objects (datasets and beyond). When users 
wish to model the structure of research projects in CEDAR, they may do so by creating template elements that 
correspond to different aspects of the entities modeled by ISA. Thus, the structure built into ISA can be clearly 
expressed through design choices that CEDAR template developers make when creating template subunits, but 
the developer is not forced to adhere to ISA, or to any other overarching framework.
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Because CEDAR templates define models of metadata, the templates can structure annotations for experi-
ments that do not comply with the investigation–study–assay framework. For example, CEDAR’s generic tem-
plate model has accommodated descriptions of observational studies related to wind energy in Denmark53 and 
HIV infections in Africa33,34. The HuBMAP metadata that we present in this paper, which assume a donor–
organ–specimen–assay organization, has no obvious means to fit into an ISA model.

If the goal is simply to facilitate enhanced annotation of a singular, very specific kind of study data, then 
one does not need the sophistication of the technology that CEDAR offers. For example, developers associ-
ated with the NIH Biomedical Informatics Research Network (BIRN) created an attractive, hardcoded interface 
for annotating their particular kinds of neuroimaging data as part of their Digital Asset Management System 
(DAMS)54. The Stanford Microarray Database developed a similarly well-crafted tool, known as Annotare55, for 
entering metadata about gene-expression datasets in accordance with hardcoded MAGE-Tab descriptions50. 
Such bespoke systems have been served their users very well through interfaces that reflect the details of their 
particular experimental domains, but these systems have little to offer users beyond those for whom the systems 
were first built and whose assumptions drive the performance of the tools.

By taking on completely a model-independent view of the task of data annotation, Google has developed a 
general-purpose search engine for online datasets56 that enables retrieval of arbitrary Web pages where data-
sets are highlighted with keywords from the Schema.org terminology57. Schema.org is a comprehensive, shared 
terminology first proposed for aiding search across Google, Bing, Yahoo!, and Yandex to perform online que-
ries and to facilitate the presentation to users of relevant results. Rather than trying to sort through multiple 
domain-specific ontologies, Google’s Dataset Search engine limits itself to finding datasets for which the exper-
imenters have used Schema.org as the basis for adding annotation. Although this facility appears to be very 
useful, such Schema.org representations are not necessarily endorsed as standards by any scientific community, 
and the annotations rarely are “rich” with respect to any particular research domain. The biology community 
is working to extend Schema.org through the Bioschemas initiative58, but activity to enhance Schema.org for 
use within other areas of science is rare. In the end, the use of Schema.org in online metadata will make those 
metadata searchable using Google, but it will not make the corresponding datasets FAIR.

Thus, the landscape of automated approaches to promote data stewardship is dotted with software objects 
that encapsulate relevant information (as with CDIF43); the use of narrow, domain-specific ontologies within 
highly customized user interfaces (as with Annotare55); the use of broad, Web-encompassing ontologies (as with 
Google Dataset Search56); and the use of models of certain classes of interventional experiments (as with ISA52). 
Consequently, the landscape is replete with nonintegrated tools that attempt to address many different aspects 
of creating metadata and other digital research objects. But not one of these tools, on its own, can ensure that 
metadata adhere broadly to arbitrary community standards, that metadata are rich, and that the metadata use 
terms from ontologies that are themselves FAIR.

A Pathway to FAIR data.  The FAIR principles have provided a valuable way to think about the qualities of 
data that make the data sharable and useful to other investigators. As we have emphasized, the challenge is that 
many of the criteria cannot be evaluated by simply examining online datasets, since the FAIR principles depend 
inherently on subjective criteria. Because the whole idea of FAIRness is tied to the particular beliefs of disparate 
scientific communities, the only way to evaluate online datasets for FAIRness computationally is to codify those 
beliefs in some machine-actionable form.

In our approach, we view metadata templates and the ontology terms used to populate those templates as 
the vehicles by which we capture community standards and communicate them throughout our ecosystem. 
Because the metadata templates can encode all relevant FAIR-related standards, the templates can transmit those 
standards directly from the relevant communities and deliver them to software systems such as CEDAR and 
FAIRware that act on those standards.

As developers, we do not take a position on which distinctions about metadata a community needs to 
include in a particular template; the metadata content solely reflects the discretion of the community members. 
Similarly, it is up to the community to determine what makes metadata “rich.” There is no second-guessing the 
preferences of the given scientific community; everything is recorded directly in the template.

System builders who have attempted to develop automated systems to assess the FAIRness of online datasets 
have been hindered by the problem that so many of the FAIR Guiding Principles are dependent on subjective 
criteria, which often seem elusive and unprincipled to observers outside the relevant scientific communities. The 
discrepancy in the performance of different computer-based FAIR evaluation tools when applied to the same 
datasets59 may be a consequence of the diverse ways in which the tools attempt to respond to these subjective 
criteria. Some FAIR evaluation systems incorporate the subjective beliefs of particular communities into special-
ized assessment rules. For example, FAIRshake5 enables users to plug in discipline-specific rubrics that codify the 
community-specific constraints needed to assess particular digital objects. Users of the tool need to identify the 
relevant communities according to whose beliefs the evaluation should take place, and to identify (or create) a 
rubric that reflects those beliefs. Such rubrics are useful only in conjunction with the evaluation tool, and users 
of the tool need to have sufficient insight to know when a new rubric might be required. This situation places a 
significant responsibility on the evaluation-tool user if the tool is to generate credible results.

The CEDAR approach, on the other hand, shifts the responsibility to the scientific community, which obtains 
a direct benefit from creating the required metadata templates in the first place. The templates can be used by the 
FAIRware Workbench as a mechanism to evaluate data FAIRness, and they also can be used by CEDAR to help 
author new metadata that are guaranteed to make the corresponding datasets FAIR. The FAIRware Workbench 
offers additional benefits to the scientific community, such as identifying which community standards appear to 
be hard to use and offering specific suggestions for how to make the metadata annotating legacy datasets more 
adherent to the identified standards.
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As envisioned by the FAIR principles, the ability to encode community standards in an examinable, seman-
tically rigorous, machine-actionable format creates opportunities throughout the research enterprise. Metadata 
templates, such as those used by CEDAR and FAIRware, can provide canonical representations of the reporting 
guidelines (and associated ontologies) important to a given community, and they can enable both people and 
computers to access those representations within an ecosystem of tools that can enhance data FAIRness. Such 
templates enable rigorous specification of metadata in advance of dataset production, and they support eval-
uation and correction of existing metadata with respect to community-provided standards after datasets are 
archived.

We do not discount the considerable effort required to create such templates in the first place. To satisfy 
funding and regulatory mandates for FAIR data, scientific communities will need to mobilize to create the nec-
essary standards and to commit to the application of those standards as part of routine data stewardship60. The 
inherent rigor, precision, and reusability that accrue from machine-actionable metadata templates can support 
this activity, leading to better data and, ultimately, to better science.

Data availability
HuBMAP datasets are accessible through the HuBMAP Portal (see https://portal.hubmapconsortium.org). The 
HuBMAP metadata that we have processed using the FAIRware workbench can be reviewed at https://fairware.
metadatacenter.org/publish-data/index.html.

Code availability
The software described in this paper is available for execution at http://metadatacenter.org. All source code is 
available from the Metadata Center landing page at https://github.com/metadatacenter.

Received: 5 August 2022; Accepted: 1 November 2022;
Published: xx xx xxxx

References
	 1.	 Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).
	 2.	 Bloemers, M. & Montesanti, A. The FAIR funding model: providing a framework for research funders to drive the transition toward 

FAIR data management and stewardship practices. Data Intelligence 2(1–2), 171–180 (2020).
	 3.	 Stall, S. et al. Make scientific data FAIR. Nature 570, 27–29 (2019).
	 4.	 Wilkinson, M. D. et al. Evaluating FAIR maturity through a scalable, automated, community-governed framework. Sci. Data 6, 174 

(2019).
	 5.	 Clarke, D. J. B. et al. FAIRshake: Toolkit to evaluate the FAIRness of research digital resources. Cell Syst. 9(5), 417–421 (2019).
	 6.	 Devaraju, A., and Huber, R. An automated solution for measuring the progress toward FAIR research data. Patterns 2(11), 100370 

(Nov. 12, 2021).
	 7.	 Musen, M. A. et al. The center for expanded data annotation and retrieval. J. Am. Med. Inform. Assoc. 22(6), 1148–1152 (2015).
	 8.	 Altman, D. G. & Simera, I. A history of the evolution of guidelines for reporting medical research: the long road to the EQUATOR 

Network. J. Royal Soc. Med. 109(2), 67–77 (2016).
	 9.	 Begg, C. et al. Improving the quality of reporting of randomized controlled trials. The CONSORT statement. JAMA 276, 637–639 

(1996).
	10.	 Zarin, D. A., Tse, T., Williams, R. J. & Carr, S. Trial reporting in ClinicalTrials.gov—the final rule. New Eng. J. Med. 375(20), 

1998–2004 (2016).
	11.	 Miron, L., Gonçalves, R. S. & Musen, M. A. Obstacles to the reuse of study metadata in ClinicalTrials.gov. Sci. Data 7, 443 (2020).
	12.	 Brazma, A. et al. Minimum information about a microarray experiment (MIAME)—toward standards for microarray data. Nat. 

Genet. 29(4), 365–371 (2001).
	13.	 Edgar, R., Domrachev, M. & Lash, A. E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. 

Nucleic Acids Res. 30(1), 207–210 (2002).
	14.	 Edgar, R. & Barrett, T. NCBI GEO standards and services for microarray data. Nat Biotechnol. 24(12), 1471–1472 (2006).
	15.	 Janetzki, J. et al. “MIATA”—Minimal information about T cell assays. Immunity 31(4), 527–528 (2009).
	16.	 Deutsch, E. W. et al. Minimum information specification for in situ hybridization and immunohistochemistry experiments 

(MISFISHIE). Nature Biotechnol. 26, 305–312 (2008).
	17.	 Peng, G. et al. Global community guidelines for documenting, sharing, and reusing quality information of individual digital 

datasets. Data Science J. 21(8), 1–20 (2022).
	18.	 Nicholson, A. et al. An analysis of metadata reporting in freshwater environmental DNA research calls for the development of best 

practice guidelines. Environmental DNA 2, 343–349 (2020).
	19.	 Sansone, S.-A. et al. FAIRshairing as a community approach to standards, repositories and policies. Nature Biotechol. 37, 358–267 

(2019).
	20.	 Gebru, T. et al. Datasheets for datasets. Comm. ACM 64(12), 86–92 (2021).
	21.	 Batista, D., Gonzalez-Beltran, A., Sansone, S.-A. & Rocca-Serra, P. Machine actionable metadata. Sci. Data 9, 592 (2022).
	22.	 HuBMAP consortium. The human body at cellular resolution: The NIH Human Biomolecular Atlas Program. Nature 574, 187–192 

(2019).
	23.	 Staab, S., and Studer, R. (eds.). Handbook on Ontologies. Springer-Verlag Berlin, Heidelberg, 2009.
	24.	 Ashnburner, M. et al. Gene ontology: tool for the unification of biology. Nat. Genet. 25(1), 25–29 (2000).
	25.	 Martínez-Romero M., et al. Fast and accurate metadata authoring using ontology-based recommendations. Proc. AMIA Ann. Symp. 

1272–1281 (2017).
	26.	 Howard, A. Data for the Public Good. Sebastopol, CA:O’Reilly (2012).
	27.	 Noy, N.F., et al. BioPortal: ontologies and integrated data resources at the click of a mouse. Nucleic Acids Res. 37(Suppl 2, Web server 

issue), W170–W173, 2009.
	28.	 O’Connor, M.J., et al. Unleashing the value of Common Data Elements through the CEDAR Workbench. Proc. AMIA Ann. Symp. 

681–690 (2019).
	29.	 Martínez-Romero M., et al. Using association rule mining and ontologies to generate metadata recommendations from multiple 

biomedical databases. Database 2019 (10 June 2019).
	30.	 Stathias, V. et al. Sustainable data and metadata management at the BD2K-LINCS Data Coordination and Integration Center. Sci. 

Data 5, 180117 (2018).
	31.	 Bukhari, S. A. C. et al. The CAIRR pipeline for submitting standards-compliant B and T cell receptor repertoire sequencing studies 

to the National Center for Biotechnology Information repositories. Front. Immunol. 9, 1877 (2018).

https://doi.org/10.1038/s41597-022-01815-3
https://portal.hubmapconsortium.org
https://fairware.metadatacenter.org/publish-data/index.html
https://fairware.metadatacenter.org/publish-data/index.html
http://metadatacenter.org
https://github.com/metadatacenter


1 4Scientific Data |           (2022) 9:696  | https://doi.org/10.1038/s41597-022-01815-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

	32.	 Tromberg, B. J. et al. Rapid scaling up of COVID-19 diagnostic testing in the United States—the NIH RADx initiative. N. Engl. J. 
Med. 383(11), 1071–1077 (2020).

	33.	 Van Reisen, M. et al. Design of a FAIR digital health infrastructure in Africa for COVID-19 reporting and research. Adv. Genet. 2(2), 
e10050 (2021).

	34.	 Van Reisen, M. et al. Incomplete COVID-19 data: the curation of medical health data by the Virus Outbreak Data Network–Africa. 
Data Intelligence 4(4), 1–43 (2022).

	35.	 Gonçalves, R. S. & Musen, M. A. The variable quality of metadata about biological samples used in biomedical experiments. Sci. 
Data 6, 190021 (2019).

	36.	 Gonçalves, R.S., Kamdar, M.R., Musen, M.A. Aligning biomedical metadata with ontologies using clustering and embeddings. The 
Semantic Web. ESWC 2019. Lecture Notes in Computer Science, 11503, Springer, 146–161 (2019).

	37.	 Barrett, T. et al. BioProject and BioSample databases at NCBI: facilitating capture and organization of metadata. Nucleic Acids Res. 
40(Database issue), D57–63 (2012).

	38.	 Hoffman, R. R., Shadbolt, N. R., Burton, A. M. & Klein, G. Eliciting knowledge from experts: a methodological analysis. 
Organizational Behavior and Human Decision Processes 62, 129–158 (1995).

	39.	 Meyer, M., and Booker, J. Eliciting and Analyzing Expert Judgement: A Practical Guide. London: Academic Press (1991).
	40.	 GO FAIR Foundation. Welcome to the Metadata for Machines Resource Page. https://www.gofairfoundation.org/m4m/ Accessed 5 

October 2022.
	41.	 Schultes, E., et al. Reusable FAIR Implementation Profiles as accelerators of FAIR convergence. International Conference on 

Conceptual Modeling, ER 2020 L: Advances in Conceptual Modeling, 138–147 (2020).
	42.	 O’Connor, M. J. et al. An open repository model for acquiring knowledge about scientific experiments. Knowledge Engineering and 

Knowledge Management (EKAW 2016). Lecture Notes in Computer Science 10026, Springer, (2016).
	43.	 Gregory, A., and Hodson, S. The Cross-Domain Interoperability Framework: a proposed lingua franca for FAIR data reuse 

(discussion draft). Interoperability for Cross-Domain Research: Machine-Actionability & Scalability. Dagstuhl Seminar 22353, (28 
August–2 September 2022).

	44.	 Newell, A. The knowledge level. Artif. Intell. 18, 87–127 (1982).
	45.	 Tenenbaum, J. D., Sansone, S.-A. & Haendel, M. A sea of standards for omics data: sink or swim? J. Am. Med. Inform. Assoc. 21, 

200–203 (2014).
	46.	 Stefik, M. Introduction to Knowledge Systems. San Francisco: Morgan Kaufmann (1995).
	47.	 Gennari, J. H., Cheng, H., Altman, R. B. & Musen, M. A. Reuse, CORBA, and knowledge-based systems. Int. J. Hum.-Comp. Stud. 

49, 523–546 (1998).
	48.	 Spellman, P. T. et al. Design and implementation of a microarray and gene expression mark-up language (MAGE-ML). Genome Biol. 

3, RESEARCH0046 (2002).
	49.	 Whetzel, P. L. et al. The MGED ontology: a resource for semantics-based description of microarray experiments. Bioinformatics 22, 

866–873 (2006).
	50.	 Rayner, T. F. et al. A simple spreadsheet-based, MIAME-supportive format for microarray data: MAGE-TAB. BMC Bioinformatics 

7, 489 (2006).
	51.	 Burgoon, L. D. The need for standards, not guidelines, in biological data reporting and sharing. Nature Biotechnol. 24(11), 

1369–1373 (2006).
	52.	 Rocca-Serra, P. et al. ISA software suite: supporting standards-compliant experimental annotation and enabling curation at the 

community level. Bioinformatics 26(18), 2354–2356 (2010).
	53.	 Fernando, H. J. S. et al. The Perdigão: peering into microscale details of mountain winds. Bul. Am. Meteorological Soc. 100(5), 

799–819 (2019).
	54.	 Schuler, R.E., Kesselman, C., and Czajkowski. Accelerating data-driven discovery with scientific asset management. Proc. 12th Int. 

Conf. on e-Science (2016).
	55.	 Shankar, R. et al. Annotare—a tool for annotating high-throughput biomedical investigations and resulting data. Bioinformatics 

26(19), 2470–2471 (2010).
	56.	 Noy, N. F. Discovering millions of datasets on the web. Google: The Keyword, https://blog.google/products/search/discovering-

millions-datasets-web/ Accessed 5 October 2022 (2020).
	57.	 http://blog.schema.org (2022). Schema blogAccessed 5 October.
	58.	 https://bioschemas.org (2022). BioschemasAccessed 5 October.
	59.	 Sun. C., Emonet, V., and Dumontier, M. A comprehensive comparison of automated FAIRness evaluation tools. Proc. Semantic Web 

Applications and Tools for Health Care and Life Sciences (SWAT4HCLS), 44–53 (2022).
	60.	 Musen, M. A. Demand standards to sort FAIR data from foul. Nature 609, 222 (2022).

Acknowledgements
This work was supported by a contract on behalf of the Research on Research Institute, with funding from the 
Wellcome Trust, the Austrian Science Fund, the Canadian Institutes of Health Research, the National Institute 
of Health and Care Research (UK), and the Swiss National Science Foundation; by grant R01 LM013498 from 
the U.S. National Library of Medicine; by grant U24 GM143402 from the U.S. National Institute of General 
Medical Sciences; by award OT2 OD033759 from the U.S. National Institutes of Health (NIH) Common Fund; 
and by award OT2 DB000009 from the NIH Office of Data Science Strategy. We are grateful to Stephen Fisher for 
providing us with legacy HuBMAP datasets, to Sunteasja Billings for creating the initial templates for HuBMAP 
metadata, and to Michelle Barker and Peter Kant for helpful discussions.

Author contributions
All authors participated in the work. M.A.M. wrote the initial draft of the manuscript. All authors reviewed and 
edited the manuscript.

Competing interests
ES is the Scientific Director of Partners in FAIR (https://partnersinfair.com). There are no other competing 
interests.

Additional information
Correspondence and requests for materials should be addressed to M.A.M.
Reprints and permissions information is available at www.nature.com/reprints.

https://doi.org/10.1038/s41597-022-01815-3
https://www.gofairfoundation.org/m4m/
https://blog.google/products/search/discovering-millions-datasets-web/
https://blog.google/products/search/discovering-millions-datasets-web/
http://blog.schema.org
https://bioschemas.org
https://partnersinfair.com
http://www.nature.com/reprints


1 5Scientific Data |           (2022) 9:696  | https://doi.org/10.1038/s41597-022-01815-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2022

https://doi.org/10.1038/s41597-022-01815-3
http://creativecommons.org/licenses/by/4.0/

	Modeling community standards for metadata as templates makes data FAIR

	Introduction

	Operationalizing the FAIR guiding principles. 
	Standards for encoding metadata. 
	Addressing mandates for data FAIRness. 

	Results: Putting Metadata Templates to Use

	Authoring metadata with templates: the CEDAR workbench. 
	Evaluating metadata with templates: the FAIRware workbench. 

	Methods

	Formulating metadata: Metadata for Machines workshops. 
	Encoding metadata: a machine-actionable model. 

	Discussion

	Formal knowledge bases that capture community standards. 
	Deciding what to model. 
	A Pathway to FAIR data. 

	Acknowledgements

	Fig. 1 Metadata template for capturing information about a tissue sample.
	Fig. 2 A collection of metadata templates in the CEDAR library.
	Fig. 3 FAIRware Workbench analysis of a metadata record for a tissue sample.
	Fig. 4 FAIRware Workbench summary analysis.
	Fig. 5 The JSON-LD representation of the HuBMAP metadata seen in Fig.
	Table 1 The FAIR Guiding Principles as presented by Wilkinson et al.




