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Ontology‑based feature 
engineering in machine learning 
workflows for heterogeneous 
epilepsy patient records
Satya S. Sahoo1*, Katja Kobow2, Jianzhe Zhang1, Jeffrey Buchhalter4, Mojtaba Dayyani3, 
Dipak P. Upadhyaya1, Katrina Prantzalos1, Meenakshi Bhattacharjee3, Ingmar Blumcke2, 
Samuel Wiebe4* & Samden D. Lhatoo3*

Biomedical ontologies are widely used to harmonize heterogeneous data and integrate large 
volumes of clinical data from multiple sources. This study analyzed the utility of ontologies beyond 
their traditional roles, that is, in addressing a challenging and currently underserved field of feature 
engineering in machine learning workflows. Machine learning workflows are being increasingly 
used to analyze medical records with heterogeneous phenotypic, genotypic, and related medical 
terms to improve patient care. We performed a retrospective study using neuropathology reports 
from the German Neuropathology Reference Center for Epilepsy Surgery at Erlangen, Germany. This 
cohort included 312 patients who underwent epilepsy surgery and were labeled with one or more 
diagnoses, including dual pathology, hippocampal sclerosis, malformation of cortical dysplasia, 
tumor, encephalitis, and gliosis. We modeled the diagnosis terms together with their microscopy, 
immunohistochemistry, anatomy, etiologies, and imaging findings using the description logic-based 
Web Ontology Language (OWL) in the Epilepsy and Seizure Ontology (EpSO). Three tree-based 
machine learning models were used to classify the neuropathology reports into one or more diagnosis 
classes with and without ontology-based feature engineering. We used five-fold cross validation to 
avoid overfitting with a fixed number of repetitions while leaving out one subset of data for testing, 
and we used recall, balanced accuracy, and hamming loss as performance metrics for the multi-
label classification task. The epilepsy ontology-based feature engineering approach improved the 
performance of all the three learning models with an improvement of 35.7%, 54.5%, and 33.3% in 
logistics regression, random forest, and gradient tree boosting models respectively. The run time 
performance of all three models improved significantly with ontology-based feature engineering 
with gradient tree boosting model showing a 93.8% reduction in the time required for training and 
testing of the model. Although, all three models showed an overall improved performance across 
the three-performance metrics using ontology-based feature engineering, the rate of improvement 
was not consistent across all input features. To analyze this variation in performance, we computed 
feature importance scores and found that microscopy had the highest importance score across the 
three models, followed by imaging, immunohistochemistry, and anatomy in a decreasing order of 
importance scores. This study showed that ontologies have an important role in feature engineering 
to make heterogeneous clinical data accessible to machine learning models and also improve the 
performance of machine learning models in multilabel multiclass classification tasks.

The growing role of artificial intelligence (AI) and in particular machine learning algorithms in biomedical 
research domains have highlighted both opportunities as well as challenges in effectively using large-scale 
biomedical datasets1–3. The availability of large volumes of clinical data together with a variety of machine 
learning models represent key opportunities; however, data heterogeneity and the availability of limited data 
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harmonization techniques present critical bottlenecks. These challenges were recently highlighted by the US 
National Institutes of Health (NIH) Bridge2AI initiative4. The Bridge2AI initiative focuses on the critical need 
to make biomedical data “Artificial Intelligence/Machine Learning (AI/ML) ready” using ontologies and termi-
nologies as a core component for “AI/ML readiness”.

The challenge of data heterogeneity is particularly acute in epilepsy neurological disorder due to its dispa-
rate clinical phenotype, etiologies, mechanism of seizures, genetics, and related medical conditions5,6. Existing 
machine learning applications in epilepsy have primarily focused on using numeric data values such as elec-
troencephalogram (EEG) recordings and imaging data for seizure detection tasks7–10. However, a rich set of 
data elements are available in the patient registries, Electronic Health Record (EHR) systems, and clinical notes 
describing molecular, pathological, surgical, and laboratory findings, which have not been widely used in machine 
learning workflows due to feature engineering challenges. A machine learning workflow can be conceptualized 
with three primary components: (1) input data; (2) feature engineering that creates representations of the input 
data for use by machine learning models; and (3) mathematical models that generate new insights from the 
data11. Feature engineering involves transformation of raw data into learning features by preprocessing data into 
appropriate format that can be used for characterizing feature importance and feature interaction, among other 
tasks; therefore ontologies have an important role in feature engineering tasks12.

Biomedical ontologies play a central role in harmonizing disparate datasets for precision medicine, query-
ing large-scale EHR data, and performing multi-dimensional analysis13,14. Biomedical ontologies have been 
widely adopted to reconcile terminological heterogeneity, for example Gene Ontology (GO)15, the Systematized 
Nomenclature of Medicine Clinical Terms (SNOMED CT)16, and RxNorm for clinical drug names17. Since 2012, 
we have been developing the Epilepsy and Seizure Ontology (EpSO), which is currently the largest open-source 
epilepsy-focused ontology, to support comparative analysis of patient record data, differential diagnosis among 
other applications18–21. In addition to these traditional ontology applications, EpSO, as a rigorously designed 
ontology, has a key role in enabling machine learning workflows to access large volumes of heterogeneous epi-
lepsy clinical data through ontology-based feature engineering.

In this study, we expanded and validated the use of EpSO for feature engineering task in a machine learning 
workflow using three learning models for multilabel multiclass classification of neuropathology reports with diag-
nosis as output and using immunohistochemistry, microscopy, imaging, and anatomy as input features (Fig. 1).

In the rest of the paper, we describe the context of this work with relation to existing methods in feature 
engineering using ontologies. In the “Method” section, we describe the details of the engineering approach used 
to develop the epilepsy ontology and implementation of the ontology-driven generation of features for learning 
models. We present the results of a comparative evaluation of the effectiveness of ontology-based mappings in 
machine workflows in the next section followed by discussion and conclusion.

Research in context: related work and implications of the current study.  We performed a key-
word-based search in PubMed on February 11, 2022, using the terms “ontology machine learning feature engi-
neering epilepsy” and our search yielded no results. We modified our search by removing the term “epilepsy” 
with two query expressions with and without the AND logical connective, that is, “ontology machine learning 
feature engineering” and “ontology” AND “feature engineering” AND “machine learning”. The search query 
yielded 89 and 5 results respectively with only one paper by Garla et al. describing the use of the Unified Medical 
Language System (UMLS) as an ontology structure for feature ranking in text classification22. Two other papers 
described the use of controlled terminology for computing semantic similarity in opinion mining from movie 
reviews and a review paper describing the use of ontologies for feature selection23,24. In contrast to these applica-
tions, the method described in this paper performs feature engineering in terms of transforming raw input data 
into learning features, which has a direct impact on both the accuracy as well as the run time performance of the 
machine learning models. In summary, the new method described in this paper:

1.	 Performs input data transformation to ontology-based learning features, which is distinct from feature rank-
ing and feature selection applications described in previous work.

2.	 Implements a systematic three-step ontology-mapping process that uses the formal semantics of the ontology 
to generate context-aware features (described in the “Method” section). This approach has not been described 
in any published paper and generating learning features from epilepsy clinical data is a unique challenge that 
has been addressed in this study.
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Figure 1.   Visualization of a machine learning workflow and the role of epilepsy ontology in feature 
engineering.
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3.	 Presents an ontology-driven approach to bridge the differences between two widely used epilepsy and seizure 
classification systems for improving feature generation from epilepsy clinical data (described in the “Discus-
sion” section).

To our knowledge, this is the first study to investigate the use of ontology for feature engineering in multi-label 
multi-class classification of epilepsy patient records using non-numeric clinical data. This is also the largest study 
that analyzes the potential of using compositional ontology class expressions and semantic transformations to 
create learning features in machine learning workflows. This study provides an assessment of the importance of 
individual learning features and the impact of ontology-based feature engineering on the performance of machine 
learning models. In the long term, this ontology-based feature engineering approach is likely to enable machine 
learning workflows to access large volumes of epilepsy clinical data in EHR systems and patient registries beyond 
numeric data such as EEG recording for classification and prediction tasks. This feature engineering approach 
also improves the performance of machine learning models applied to epilepsy data and expand the application 
of existing biomedical ontologies to machine learning workflows.

Method
Study design and participants.  We performed a retrospective, proof-of-concept study using de-iden-
tified records from the German Neuropathology Reference Center for Epilepsy Surgery at Erlangen, Germany. 
The study cohort included 315 patients who underwent epilepsy surgery and were diagnosed with dual pathol-
ogy (n = 5), hippocampal sclerosis (HS) (n = 36), noHS (n = 10), malformations of cortical development (MCD) 
(n = 136), brain tumor (n = 81), gliosis (n = 20), encephalitis (n = 11), cyst (n = 3), encephalopathy (n = 2), caver-
noma (n = 2), Alzheimer’s Disease (n = 1), arteriovenous malformation (n = 1) and otherwise not specified (NOS) 
(n = 7). Three of the patients were excluded from the study due to the lack of neuropathology diagnosis values in 
their records; therefore, 312 patients were included in the final analysis. The ground truth for the diagnosis was 
the original finding recorded in the reports.

We obtained written informed consent from all participating patients or their legal guardians for surgical 
tissue and clinical data collection in the European Epilepsy Brain Bank (EEBB) hosted at the Department of 
Neuropathology, Universitätsklinikum Erlangen, which includes the use of tissue and clinical data in medical 
and scientific investigations, and publication of the results. The Ethics Committee of the Medical Faculty of the 
Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Germany, approved the study (AZ 160_12B, AZ 
92_14B, AZ 193_18B), and all research was performed in accordance with the Declaration of Helsinki.

Modeling epilepsy neuropathology using ontology engineering methods.  As part of the ILAE 
big data–open data task force, we formed an international collaborative team of neuropathologists, epileptolo-
gists and computer scientists, and this team held regular, bi-weekly remote meetings over 18 months between 
2020–2021 for this study. We used peer-reviewed publications and a textbook on surgical neuropathology of 
focal epilepsies by Blumcke et al.25, together with both formal as well informal feedback from domain experts 
outside of the task force for ontology modeling decisions. We focused on modeling four neuropathology topics, 
that is, HS, MCD, brain tumors, and encephalitis together with immunohistochemistry, microscopy, anatomy, 
genetics, and imaging terms, which were needed for feature engineering in the machine learning workflow used 
in this study.

Modeling hippocampal sclerosis.  HS is a prototypic focal epilepsy syndrome, and the most common cause of 
temporal lobe epilepsy. Correctly identified and investigated, it is also one of the most surgically remediable 
syndromes. HS is histopathologically characterized by specific patterns of neuronal cell loss and gliosis within 
hippocampal subfields. The most common subtype, the classical HS (HS ILAE Type 1; 60–80%) refers to severe 
neuronal cell loss and gliosis predominantly in cornu ammonis’s (CA) sectors CA1 and CA4, compared to CA1 
predominant neuronal cell loss and gliosis in HS ILAE type 2 (5–10% rate of occurrence), or CA4 predominant 
neuronal cell loss and gliosis in HS ILAE type 3 (4–7% rate of occurrence)25. Surgical hippocampus specimens 
obtained from patients with Temporal Lobe Epilepsy (TLE) may also show normal content of neurons with reac-
tive gliosis only (no-HS).

In EpSO, we used the international consensus classification system developed by the ILAE to describe the 
type of astrogliosis (e.g., moderate astrogliosis or fibrillary astrogliosis) and the level of neuronal loss in specific 
locations (e.g., CA1–CA4, dentate gyrus)25. EpSO models the four subtypes of hippocampal sclerosis: HSType 
1, HSType 2, HSType 3, and Gliosis without hippocampal sclerosis (we use italics to distinguish ontology terms in 
EpSO from clinical terms). However, instead of modeling a large number of subclasses of these terms correspond-
ing to their neuronal loss or astrogliosis values, such as “HSType1 with fibrillary astrogliosis in CA2”, we used a 
flexible “compositional modeling” approach using existential and universal quantifiers defined over OWL object 
properties26. Figure 2 shows the modeling of HSType3 with details of astrogliosis and degree of neuronal loss in 
specific locations, such as CA3, CA4 and dentate gyrus. The brain location terms are modeled as ontology classes 
in EpSO and mapped to the comprehensive Foundational Model of Anatomy (FMA) ontology with information 
about their organization based on brain segments and synonymous terms27.

The ILAE international consensus classification system assigns numeric values between 0 and 2 based on the 
type of astrogliosis and degree of neuronal loss28. This semiquantitative grading system was introduced to provide a 
simplified but practical method of assessing neuronal loss as quantitative neuronal density measurements are time 
consuming and are often not available despite being more accurate. The descriptive assessment ranges include 
no obvious neuronal loss or moderate astrogliosis (value = 0), moderate neuronal loss and gliosis (value = 1), and 
severe neuronal loss (majority of neurons lost) and fibrillary astrogliosis (value = 2) in hippocampal subfields 
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CA1–CA4. In the dentate gyrus the grading is used to describe additional histopathological patterns of either 
granule cell dispersion (value = 1) or severe granule cell loss (value = 2) that can be found in about 50% of cases 
with hippocampal sclerosis or a normal dentate gyrus (value = 0). EpSO explicitly models these numeric values 
associated with the different categories of astrogliosis and degree of numeric values, which can be used for clas-
sification, ranking, and computation of similarity scores between patient records.

Modeling malformations of cortical development.  These are an important category of intractable epilepsy, with 
strong genetic underpinnings. Many types of MCD are amenable to surgical interventions, and thus neuro-
pathological tissue analysis is a standard practice. EpSO models 11 subtypes of MCD, including Polymicrogyria, 
Schizencepahly, with additional subcategories of focal cortical dysplasia (FCDType 1, FCDType 2, and FCDType 
3), and heterotopia (e.g., Nodular heterotopia, Band heterotopia, and cortical dyslamination). The modeling of 
staining results in the ontology, for example detection of Balloon Cell using Vimentin or Phosphor-S6 Riboso-
mal Protein epitopes in Focal Cortical Dysplasia Type IIB was a significant engineering challenge. To address 
this challenge, we developed and used OWL object properties such as hasNeuroPathologyFinding together with 
object property restrictions that were linked with distinct classes of epitopes (n = 53) and cell types (Fig. S1 in 
supplementary document).

The protein functions of the epitopes were mapped to the existing Protein Ontology with their function 
modeled as a restriction on object properties, for example Glutamate Decarboxylase 65 (GAD65) is involved 
in neurotransmitter synthesis. This interlinking of EpSO terms to external resources is an important ontology 
engineering best practice that enables interoperability across ontologies. The ILAE consensus neuropathologi-
cal classification system for focal cortical dysplasia was used as the reference for modeling the relevant terms 
in EpSO25. For example, the co-located neuropathology findings such as occurrence of cortical dyslamination 
adjacent to vascular malformation were modeled for Focal Cortical Dysplasia Type IIIC using an existential 
quantifier with the AND logical connective.

Modeling of brain tumors associated with epilepsy.  Tumoral epilepsy is a common finding, and tissue diagno-
sis is important for accurate classification of tumors, as well as prognostication and outcomes from treatment 

Figure 2.   EpSO uses a compositional modeling approach to represent multiple dimensions of neuropathology 
findings using description logic quantifiers together with OR, AND connectives.
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interventions. Although any brain tumor based on their anatomical location may cause epilepsy, the majority 
of epilepsy-associated tumors are benign, mainly of neuronal or mixed glial-neuronal origin, and are frequently 
located in the temporal lobe25. Characteristic entities comprise the ganglioglioma, the dysembryoplastic neu-
roepithelial tumor, and low-grade neuroepithelial tumors like the angiocentric glioma, which together account 
for the vast majority of tumors identified in retrospective surgical epilepsy case series25. In EpSO, our objective 
was to model the different categories of brain tumors based on their phenotypes, including tumors with predom-
inant glial-neuronal phenotypes such as ganglioglioma and astrocytic phenotype including glioma. Table S1 in 
the supplementary materials lists EpSO ontology classes corresponding to the seven categories of brain tumors 
namely Brain Glial Neuronal Tumor, Brain Glial Tumor, Brain Neuronal Tumor, Hamartoma, Epithelial Cyst, 
Meningioma, and Metastatic Tumor together with their subcategories as well as the associated World Health 
Organization (WHO) grading and gene mutation information29,30.

The increasing focus on epilepsy genetics as part of the wider precision medicine (PM) initiative in epilepsy is 
marked by an increased understanding of the pathogenic variants in genes and how the gain or loss of function 
mutations result in specific phenotypes31. For example, mutation in GLI3 gene is associated with Hypothalamic 
Epilepsy with an etiology of Hypothalamic Hamartoma. Similarly, Dravet Syndrome is associated with a loss of 
function mutation in SCN1A, which has multiple sequence variants as listed in the National Center for Biotech-
nology Information (NCBI) ClinVar database32,33. ClinVar is a public database with records of human genetic 
variations and the associated phenotype that also stores the evidence associated with the reported association.

EpSO models the genetics of epilepsy by linking gene classes with: (1) the NCBI Gene database; and (2) the 
sequence variants of the genes in ClinVar database with details of the molecular consequence, phenotype, and 
variant type of the gene. For example, SCN1A variant with variation ID 68500 is linked to its phenotype Dravet 
Syndrome, Missense variant as its molecular consequence, and single nucleotide variant as its variant type. The 
modeling of epilepsy genetics terms in EpSO is aimed to facilitate its continued role in semantic integration of 
medical data, which increasingly feature genetic variations and their role in epilepsy phenotype (Table 1).

Feature engineering using epilepsy ontology.  We selected microscopy, imaging results, immunohistochemistry, 
and anatomical locations as input features to three machine learning models, which assigned one or more neu-
ropathology diagnosis labels to each of the patient records. The raw data elements from the 312 neuropathology 
reports featured significant terminological heterogeneity with 1328 distinct terms used to describe both input 
features and output diagnosis labels. The occurrence of a relatively high number of learning features in compari-
son to the size of dataset is a common challenge in machine learning workflows, which often leads to overfitting 
and low generalization of the trained model.

Therefore, feature engineering approaches, including the use of embeddings for dimensionality reduction, 
play an important role in machine learning workflows. In this study, we leveraged the detailed modeling of 
neuropathology terms in EpSO for feature standardization and for the reduction in variability across both input 
as well as output features. The ontology-driven feature engineering was implemented manually (Fig. 3) and 
consisted of three approaches:

1.	 Multiple terms mapped to a standard ontology term: For example, terms “microglia nodules”, “periventricular 
nodular heterotropia”, “multinodular lesion”, “Heterotropic neuronal nodules at periventricular site”, and 
“Bilateral periventricular heterotropia” were mapped to Nodular Heterotropia.

2.	 A term mapped to composition of ontology terms: For example, “depletion of neuron in CA2”, “segmental cell 
loss in CA2”, “neuronal cell loss in CA2”, “reduced neuronal density in CA2” were mapped to a composition 
of Neuronal Loss and CA2.

3.	 Semantic transformation of term to map to ontology terms: For example, “astroglial phenotype” was mapped 
to composition of GlialCell, Astrocyte, and BrainGlialTumor.

Additional details of the ontology-based feature engineering are described in supplementary document Sec-
tion 1.1. Table 2 shows the results of mapping the original list of features extracted from the neuropathology 
reports and the number of EpSO classes that were mapped to these features. All the mappings were reviewed by 
a neuropathologist for consistency and accuracy.

We used machine learning libraries from the open source Scikit library34, and the details of the model archi-
tecture, parameters, binary relevance transformation method for multilabel classification, and validation methods 
are described in supplementary document Section 1.2.

Table 1.   Ontology metrics including classes representing epilepsy related genes.

Ontology metrics (EpSO version 2.1 available at the National Center for Biomedical Ontologies, BioPortal) Count

Total logical axioms 2592

Class count 1957

Property count (OWL object and datatype properties) 43

Annotation axioms 3318

Gene class count 154
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Results
Comparative evaluation of ontology‑based feature engineering.  We compared the impact of 
ontology-based feature engineering on the three machine learning models with baseline results computed with-
out any mapping to ontology terms. In the first stage, only input features were mapped to ontology terms and 
in the second stage, both input features as well as output labels were mapped to ontology terms. The results (in 
Table 3) are categorized into two types: (1) correct results, where the diagnosis results of a machine learning 
model match the ground truth (original diagnosis in patient reports); and (2) partially correct results, where the 
diagnosis results consist of a subset of the ground truth diagnosis terms; which may include incorrect diagnosis 
labels.

Figure 3.   Feature engineering workflow used to map terms in patient reports to epilepsy ontology with a three-
step approach. The first step uses syntactic matching, followed by mapping a composition of ontology terms, and 
finally semantic transformation. All the mappings were manually reviewed. The final list of terms after the three-
step matching process is used as input features and output labels to the machine learning models.

Table 2.   Result of feature engineering using mappings to EpSO terms.

Original number of terms in 
patient reports

Number of terms after ontology 
mapping

Decrease in the number of terms 
(in %)

Microscopy 802 125 84.41

Immunohistochemistry 141 84 40.4

Imaging results 218 82 62.38

Anatomical location 167 61 63.47

Diagnosis 149 80 46.30

Table 3.   Comparative evaluation of ontology-based feature engineering in the logistic regression, random 
forest, and gradient boosting tree models.

Logistic regression Random forest Gradient tree boosting

Baseline

Mapping ontology 
terms to input 
features

Mapping ontology 
terms to input 
and output 
features Baseline

Mapping 
ontology terms to 
input features

Mapping ontology 
terms to input 
and output 
features Baseline

Mapping 
ontology terms to 
input features

Mapping ontology 
terms to input and 
output features

Correct results 14 17 19 11 16 17 9 10 12

Partially correct 
results 45 41 37 50 44 43 40 42 41
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The values reported in Table 3 are based on the result of a five-fold cross validation process. The logistic 
regression, random forest, and gradient tree boosting models show 35.7%, 54.5%, and 33.3% improvements in 
the generation of correct results respectively when both input features and output labels were mapped to ontology 
terms. The results also show that even partial mapping of input features to ontology terms leads to improvement 
across all the three machine learning models, including reduction in the mixed results category that consists of 
both correct as well as incorrect diagnosis terms.

Evaluation of ontology‑mapping on individual learning features.  We used three common perfor-
mance metrics for multilabel multiclass classification tasks, namely Hamming loss, balanced accuracy, and recall 
to evaluate the effect of ontology mappings on individual features35 (details of the three metrics are described in 
supplementary document Section 1.3). Figure 4 shows the performance of the three models as each of the four 
input features and output feature are progressively mapped to ontology terms. The accuracy values (Fig. 4A) 
improve as an increasing number of input features are mapped to the ontology terms with mappings to both 
input features and output labels showing the highest improvement. We note that there is a marginal decrease in 
recall values as an increasing number of input and output features are mapped to ontology terms thereby reduc-
ing the total number of features (Fig. 4B).

However, we note that the accuracy and recall values do not consistently increase or decrease as individual 
input features are mapped to ontology terms. For example, the mapping of immunohistochemistry and brain 
anatomical region terms to ontology terms results in a decrease in accuracy values for logistic regression model, 
whereas the mapping of these two categories of input values to ontology terms results in an increase in accuracy 
values for random forest model. This pattern is also seen for recall values in all the three machine learning models. 
Figure 4C shows that there is improvement in hamming loss values as microscopy and immunohistochemistry 
terms are mapped to EpSO for logistic regression and random forest models; however, the performance of the 
three models measured by hamming loss decreases as diagnosis values are mapped to ontology terms.

Importance of individual learning features.  To investigate these variations in performance of indi-
vidual features after ontology mappings, we evaluated the contribution of each of the features to the classifica-
tion task. There are multiple approaches for measuring feature importance that estimate the importance of a 
feature to provide an improved understanding of how machine learning models use input features to generate 

Figure 4.   Comparative evaluation of the effect of ontology-based feature engineering using three metrics of 
balanced accuracy (A), recall (B), and hamming loss (C), for all three machine learning models. The baseline 
values do not have any ontology mappings and Cases I to V correspond to the addition of ontology mappings 
to Microscopy, Immunohistochemistry, Imaging results, Anatomical location, and Diagnosis (output label) 
respectively. (D) Feature importance score of the input features that affect the performance of the three machine 
learning models.
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results36,37. Feature importance scores are used in feature engineering to address bias, and allow users to interpret 
results in terms of the contribution of individual input features38. We used the Scikit-learn libraries to compute 
feature importance scores for each of the four input features without any ontology mappings for all the three 
models (Fig. 4D). The results show that the input feature microscopy has a consistently high feature importance 
score across all three machine learning models. We note that applying an ontology-based feature engineering 
approach on microscopy terms resulted in the highest reduction in total number of terms (84.41% in Table 2), 
which combined with its high feature importance score may be correlated to the improvement of balanced accu-
racy measure across all three learning models as shown in Fig. 4D.

In contrast, the feature importance score for immunohistochemistry is low across all the three models and we 
also note that the use of ontology mappings resulted in the lowest reduction of terms (40.4% in Table 2) for this 
input feature (labeled as Case II in Fig. 4D). The feature importance score of imaging is relatively high across all 
the three models whereas the score for the anatomy feature is the lowest. These feature importance scores provide 
an overview of the contribution of each of the input features to the performance of the three machine learning 
models. However, these scores are not adequate to characterize the interactions between different features and 
their impact on the performance of the machine learning models. For example, the importance of individual 
features such as microscopy and combined features such as imaging results and anatomy requires additional 
evaluations over a larger dataset12,39. A detailed evaluation of feature interaction and the feature importance 
analysis could enable us to explore additional feature engineering steps, such as decomposing anatomy into 
features based on brain lobes or immunohistochemistry values into individual features based on epitope target 
(e.g., proliferation index or marking of cellular patterns).

Impact of ontology‑based feature engineering on run time performance of machine learning 
models.  There has been significant focus on the run time performance of machine learning implementation, 
including the use of specialized hardware such as Tensor Processing Units (TPU) or Graphics Processing Unit 
(GPU), for reducing the time required to execute machine learning workflow40,41. In this study, we evaluated the 
effect of ontology-based feature engineering on the run time performance of the implemented workflow, which 
showed significant improvement across all three machine learning models. The tests were performed on a server 
with 32 GB memory, Intel® Core™ i7-9700K CPU (3.60 GHz × 8) processor running 64-bit Ubuntu 20.04.4 LTS. 
The results were based on the average of seven executions. Figure 5 shows that there is an improvement of 93.8% 
for gradient tree boosting, 67.2% for random forests, and 77.6% for logistic regression with ontology-based 
feature engineering as compared to the baseline. It is important to note that the reduction in run time of all the 
three models corresponded to consistent improvement in the balanced accuracy of all three machine learning 
models. A key reason for the significant impact of ontology-based feature engineering on run time performance 
of the learning models may be due to the standardization of input features using the epilepsy ontology, and we 
propose to develop a benchmark evaluation to characterize this effect in our future work.

Discussion
Reconciling heterogeneous epilepsy and seizure classification system in epilepsy ontol‑
ogy.  The ILAE classification system (ILAE-EC) and the four-dimensional classification system (4D-EC) are 
two widely used classification systems for epilepsies and seizure5. Due to the inherent complexity of epilepsy 
as a heterogeneous condition, the use of two classification systems further exacerbate data harmonization and 
feature engineering challenges in machine learning workflows. A recent paper by Rosenow et al. proposed to 
use five common axes of seizure type, etiology, epilepsy type, comorbidity, epilepsy syndrome, and epileptogenic 
zone to reconcile the ILAE-EC and 4D-EC classification systems5; however, there were no existing implemen-
tations of the proposed approach. We implemented the proposed approach in EpSO that can support feature 
engineering over datasets using either of the two commonly used classification systems.

Figure 6 shows the modeling of two epilepsy types (Chronic Progressive Epilepsia Partialis Continua of 
Childhood and Autosomal Dominant Partial Epilepsy with Auditory Features) with a set of attributes mapped to 

Figure 5.   Run time performance of the three machine learning models without ontology-based mappings 
(baseline) and with mappings of both input as well as output values.
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ILAE-EC and 4D-EC. These ontology mappings in EpSO are accessible to software tools for automated pars-
ing; therefore, applications that use EpSO terms can also identify specific ILAE 2017 seizure types associated 
with the ontology term. Ontology properties defined in the OWL specifications26 allow us to flexibly update the 
mappings of ontology terms to reflect future revisions that may be proposed by the ILAE-EC and these updates 
can also be automatically propagated to machine learning workflows through the use of embedding libraries. 
These embedding libraries with ontology mappings could be made available for reuse across machine learning 
workflows through version control platforms such as GitHub.

Ontology‑based feature engineering with support for explainable AI.  The computation of feature 
importance scores and quantifying the interactions between features are important steps to help understand the 
results generated by machine learning models, including the association of reliability score that can be shared 
with users36,37. There are multiple frameworks for explaining the performance of machine learning models, 
including interpretability frameworks for tree-based models, such as random forests and gradient boosted trees, 
using game theory to explain the effect of input features on a single output result36,37. Some of these frameworks 
are based on the path used by a model to generate an outcome, which can be augmented by the interlinked struc-
ture of an ontology. Further, the interaction between different features can also be characterized using reasoning 
algorithms that traverse the ontology structure using isA, part of, hasEtiology, and other ontology properties as 
modeled in EpSO. The use of description logic-based reasoning algorithms could improve the interpretability of 
results generated by different models. However, this proposed approach will require addressing the challenges of 
bias in mapping of input features to ontology terms, including the use of multiple ontology classes to represent 
a single input feature.

Limitations.  This study is limited to a single site dataset and the selection of patient reports was based on 
a criterion that the reports were available in English; therefore, the study cohort does not address bias in terms 
of demography, clinical findings, and subcategory of epilepsy patients who were considered for neuropathology 
evaluation. The mapping approach used in this study was verified by a single neuropathologist, which may lead 
to bias in feature generation and the corresponding results generated by the machine learning models. The fea-
ture importance metric used in this study does not account for feature interactions and any correlation between 
the features.

In conclusion, our findings demonstrate that ontology-based feature engineering is effective in improving 
the performance of learning models and it can be used to unlock the value of large volumes of heterogeneous 
epilepsy clinical data in patient registries and EHR systems. As a next step, we plan to expand this study to multi-
institution datasets and apply deep neural network models together with Shapely values for explainable results 
that may be integrated into clinical decision support systems.

Figure 6.   Modeling of two epilepsy syndromes in EpSO that includes attributes based on both ILAE 2017 
classification system and the four-dimensional classification system.
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Data availability
The ontology was engineered using the open source Protégé ontology development application. The new ver-
sion of EpSO (version 2.1) was released through the National Center for Biomedical Ontology BioPortal portal 
in October 2021 (https://​biopo​rtal.​bioon​tology.​org/ ontologies/EPSO). The machine learning workflows and 
performance metrics were implemented using the Scikit libraries. The individual patient records cannot be made 
publicly available due to regulatory reasons. Models and data can be made available on request; however, this 
requires the execution of a data transfer agreement approved by the participating institutions together with an 
Institutional Review Board (IRB) or equivalent ethics approval for the proposed study.
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