Skip to main content
. 2022 Oct 23;22(21):8114. doi: 10.3390/s22218114
AC Autocorrelation LPCC Linear predictive coding coefficients
AF Average frequency LMS Log-energy
BC Binary classifier MF Mean frequency
BF Butterworth filter MFCC Mel-frequency cepstral coefficients
BT Bagged tree MPT Maximal phonation time
CF Crest factor MxF Maximum frequency
CV Chroma vector NHR Noise-to-harmonic ratio
CAD Cough automatic detection NLE Non-linear entropies
CNN Convolutional neural network NLF Non-linear features
CQT Constant-Q transform NMFC Non-negative matrix factorization coefficients
CPP Cepstral peak coefficients NVB Number of voice breaks
DCN Dense convolutional network O Onset
DT Decision tree PCR Polymerase chain reaction
DVB Degree of voice breaks PSD Power spectrum density
E Energy of the signal RASTA-PLP Relative spectra perceptual linear prediction
EE Entropy of the energy RF Random forest
ET Extremely randomized trees RMS Root mean square
EVR Eigenvalue ratios RNN Recurrent neural network
FBC Filter bank coefficients SB Spectral bandwidth
FNN Feedforward neural network SC Spectral centroid
F 0 Fundamental frequency SCn Spectral contrast
F n Formant frequencies SE Spectral entropy
GBF Gradient boosting framework SI Spectral information
GTCC Gamma-tone cepstral coefficients SF Spectral flux
HD Hjorth descriptors Sh Shimmer
HFD Higuchi fractal dimension Sk Skewness
HNR Harmonic-to-noise ratio SP Spectral flatness
HR Harmonic ratio SR Spectral roll-off
J Jitter s-RQA Symbolic recurrence quantification analysis
K Kurtosis SVM Support vector machine
KFD Katz fractal dimension TC Tonal centroid
k-NN k-Nearest neighbors TECC Teager energy cepstral coefficients
LE Log-energy TFM Time-frequency moment
LMS Log-Mel spectrogram ZCR Zero crossing rate