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Abstract: Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a substantially
increasing incidence rate. It is characterized by repetitive behavior, learning difficulties, deficits in
social communication, and interactions. Numerous medications, dietary supplements, and behavioral
treatments have been recommended for the management of this condition, however, there is no cure
yet. Recent studies have examined the therapeutic potential of the sodium-glucose cotransporter 2
(SGLT2) inhibitors in neurodevelopmental diseases, based on their proved anti-inflammatory effects,
such as downregulating the expression of several proteins, including the transforming growth factor
beta (TGF-β), interleukin-6 (IL-6), C-reactive protein (CRP), nuclear factor κB (NF-κB), tumor necrosis
factor alpha (TNF-α), and the monocyte chemoattractant protein (MCP-1). Furthermore, numerous
previous studies revealed the potential of the SGLT2 inhibitors to provide antioxidant effects, due
to their ability to reduce the generation of free radicals and upregulating the antioxidant systems,
such as glutathione (GSH) and superoxide dismutase (SOD), while crossing the blood brain barrier
(BBB). These properties have led to significant improvements in the neurologic outcomes of multiple
experimental disease models, including cerebral oxidative stress in diabetes mellitus and ischemic
stroke, Alzheimer’s disease (AD), Parkinson’s disease (PD), and epilepsy. Such diseases have mutual
biomarkers with ASD, which potentially could be a link to fill the gap of the literature studying
the potential of repurposing the SGLT2 inhibitors’ use in ameliorating the symptoms of ASD. This
review will look at the impact of the SGLT2 inhibitors on neurodevelopmental disorders on the
various models, including humans, rats, and mice, with a focus on the SGLT2 inhibitor canagliflozin.
Furthermore, this review will discuss how SGLT2 inhibitors regulate the ASD biomarkers, based on
the clinical evidence supporting their functions as antioxidant and anti-inflammatory agents capable
of crossing the blood-brain barrier (BBB).

Keywords: autism spectrum disorder; sodium-glucose cotransporter 2 inhibitors; canagliflozin;
neurological disorders; oxidative stress; anti-inflammatory

1. Introduction

Autism spectrum disorder (ASD) is a common neurodevelopmental disorder that
affects about 1% of the population [1]. The reported global prevalence of ASD is one in
161 people, while in the UAE it affects one in 89 people [2,3]. The reported incidence of ASD
has increased substantially in recent years, as it is estimated that one child is diagnosed with
ASD every 20 min in the United Arab Emirates [2,3]. ASD is characterized by repetitive
behavior, deficits in interactions, social communication, and activities [1]. Currently, there
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is no definitive cure for this disorder, and most therapies aim at ameliorating the symptoms,
improving the children’s functioning and supporting their learning and development.
In fact, various pharmacological agents, dietary therapies, and behavioral interventions
have been utilized to benefit this condition [4]. Sodium-glucose cotransporter 2 (SGLT2)
inhibitors are considered as oral glucose-lowering medication that work by inhibiting
the reabsorption of the renal glucose [5]. The list of SGLT2 inhibitors that are Food and
Drug Administration (FDA) approved, include dapagliflozin, ertugliflozin, empagliflozin,
canagliflozin, ipragliflozin, tofogliflozin, luseogliflozin, and remogliflozin [6]. The available
evidence from preclinical studies and clinical studies showed that the SGLT2 inhibitors
have distinctive morbidity and mortality reduction benefits in patients with type 2 diabetes
mellitus (T2DM) and heart failure (HF). Accordingly, the European Association of the Study
for Diabetes (EASD) and the American Diabetes Association (ADA), recommend SGLT2
inhibitors as the mainstay treatment of T2DM and the first line of T2DM treatment, in case
of heart failure (HF) [7,8], and as an independent treatment of HF with a reduced ejection
fraction, regardless of the diabetes status, according to the European Society of Cardiology
(ESC) [9].

In addition to their blood glucose lowering effect, SGLT2 inhibitors have several
pleiotropic benefits (Table 1), such as improving the visceral adiposity, reduction of body
weight, lowering blood pressure, anti-inflammatory, anti-oxidant, as well as normalizing
the serum uric acid levels and lipid profile [10–13]. Based on these reported benefits of the
SGLT2 inhibitors, researchers are tempted to further examine the utility of these agents in
the management of other diseases that are characterized by abnormal elevated levels of
inflammation and oxidative stress, and more specifically, in neurological disorders.

Table 1. Comparison between the SGLT2 inhibitors affinity and pleotropic effects.

Sotagliflozin Canagliflozin Dapagliflozin Empagliflozin Ertugliflozin

Affinity for SGLT2 over SGLT1 20 fold [14] 250 fold [14]
(Dual inhibitor) 1200 fold [14] 2500 fold [14] 2500 fold [14]

AChE inhibition Ki 5.6 µM [15] Ki 0.13 µM
(most potent) [15] Ki 25.02 µM [15] Ki 0.177 µM [15] Ki 31.69 µM [15]

Anti-inflammatory Not applicable Yes [16] Yes [17] Yes [18] No [19]
Oxidative stress inhibition Yes [20] Yes [21] Yes [22] Yes [23] Yes [24]

Nervous system remodeling Not applicable Not applicable Not applicable Yes [25] Not applicable
mTOR signaling reduction Not applicable Yes [26] Yes [26] Yes [27] Yes [28]

2. Etiology and the Pathophysiology of Autism

The etiology of ASD is complex in nature. It could be associated with genetic factors
and/or environmental components, such as infection, toxins, or medications, which in turn
might induce several epigenetic changes [2]. Moreover, recent findings indicated a positive
correlation between the brain development and the intestinal microbiota [29]. This explains
why infants fed on cow’s milk formula had a drastically increased plasma osmolality which
affected the homeostasis hemodynamics of the brain development negatively, compared to
the breast-fed infants, emphasizing the gut microbiota-brain axis association to neurode-
velopmental disorders [30,31]. The microbiome is essential for the microglial maturation
process and taking control of the CNS glial activation, thus regulating the inflammation
in the CNS, as the gut dysbiosis impacts the immune system homeostasis, which leads to
developmental delays and to the developmental pathway disruption [32].

The risk of developing drug- induced ASD is increased during the second trimester
of the fetal development, when exposed to neurotoxic or teratogenic drugs of various
pharmacological classes of interest [33]. The pathological process of ASD remains unclear,
but the neurological findings, during the first year of the child’s life, confirm the premature
brain overgrowth, as a result of the excessive neuron numbers, which leads to defects in the
neural wiring and patterning, with short cortical interactions hindering the function of the
long-distance interactions within the brain regions in a large-scale. These networks underlie
the communication and socio-emotional functions, such early alterations in the brain might
be linked to the ASD clinical manifestations [34]. According to the literature, medications
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such as anticonvulsants and antidepressants have the potential of causing ASD during
pregnancy, for instance, valproic acid (VPA) is an anticonvulsant drug used primarily in
bipolar disorder and epilepsy [35]. During pregnancy, and at a vital stage of the nervous
system development (second trimester), it was found to increase the risk of developing
intellectual disorders, including ASD in children [35]. Moreover, preclinical studies showed
that when rodents are prenatally exposed to VPA, they displayed neurodevelopmental
characteristics which are comparable to those observed in the human setting [36]. When
pregnant rodents were injected intraperitoneally (IP) to this drug on gestational day (GD)
12.5, the delivered pups were found to display social interaction impairments, anxiety, and
recognition memory deficits, which are categorized as typical ASD-like behaviors [37–39].
Furthermore, it has been reported that VPA was capable of inducing dendritic spine loss in
the prefrontal complex and the CA1 region of the hippocampus in the mouse model [40].
Furthermore, in a rat preclinical model, VPA was reported to significantly decrease the
number of positive Nissl bodies in the lower layers of somatosensory cortex, as well as
in the middle and lower layers of the prefrontal cortex (PFC), while it increased the apop-
totic cell death and the histone levels in the neocortex [41,42]. Other medications, such
as selective serotonin reuptake inhibitors (SSRIs) have been controversial in this case. An
investigation which included 117,737 patients detected a significant association between SS-
RIs exposure across all trimesters and offspring ASD development [43,44], while it has been
challenged by a retrospective study of 35,906 births confirming no relation between SSRIs
exposure and ASD [45], which concludes that SSRIs exposure solely is not a confounding
variable in causing ASD [46]. In addition to the behavioral testing, several biochemical
assays showed that autistic children display elevated levels of plasma lipid peroxidation,
reactive oxygen species (ROS), and a significant inhibition of antioxidant enzymes and ATP
levels [47,48]. The mechanistic target of rapamycin (mTOR) is a substantial signaling node
that receives input from the regulatory type proteins to send signals from the nutrient stores,
the growth factors, energy, and the ambient oxygen levels [49]. Such involvements make
mTOR a sensor for cell survival and growth cellular resources. Furthermore, mTOR has
been implicated in the pyrimidine and purine nucleotide biosynthesis, the phosphorylation
of other protein substrates, and the DNA transcription [50]. The mTOR enzyme plays
a vital role in the brain, to establish the spine morphology, the axon development, the
dendritic arborization, and the synaptic flexibility [51]. Brain malformations are associated
with the mTOR regulatory genes mutations as the activation of the mTOR pathway in the
hippocampal neurons, elevates the branching and growth of the dendritic arbors, while
their complexity was decreased in such cells by the mTOR removal in vitro [52]. Signals
of the mTOR complex 1 and the mTOR complex 2 were found to be crucial for a healthy
dendritic arbor development of the rat hippocampus in vitro [53]. In mice models, mTOR
have shown to play role in regulating the axon outgrowth in the mouse dorsal root gan-
glion, as it is upregulated after injury, which leads to the increased capacity of the axonal
growth [54]. Moreover, the mTOR pathway regulates the balance in the brain between
the cellular activation and the inhibition, thus the supply network integrity, the synaptic
plasticity, and the learning capability [55]. Hence, numerous neurodevelopmental disorders
are associated with the deviant mTOR pathway activation. Particularly, a subset of the
cortical development malformations is directly caused by the mTOR activity regulators’
genes mutations [56]. An abnormal mTOR activity has been identified in brain develop-
ment disorders, including the defective connectivity or synaptogenesis, such as epilepsy
and ASD, and can be associated with intellectual disability [57]. Since abnormalities and
dysregulations of mTOR have been identified in ASD; establishing this association would
be of a significance from a therapeutic point of view, as the mTOR inhibitors are clinically
available [58]. Accordingly, interventions that target these mechanistic pathways would
plausibly impact the progression of the disease, thus improve the overall behavioral symp-
toms. Additionally, the preceding studies proposed a relation between the neurogenic
disorders, including ASD and maternal infections [59]. Pregnant mice and rats infected
with human influenza led to offspring with autistic behaviors [60]. Other viruses, such as
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the mumps, cyto-megalovirus, and measles are unlikely to be associated with current ASD
cases because of the vaccination programs that effectively reduced their prevalence [61],
while there is no evidence for vaccination to increase the risk of causing autism [62]. Toxic
exposures, such as to heavy metals, pesticides, air pollutants, persistent, and non-persistent
organic pesticides demonstrated a neurotoxicity by interacting with the genetics factors,
hence modifying the neurodevelopment of the synapses, increasing the oxidative stress and
neuroinflammation [63,64]. Genetic research discovered that the ASD etiology is robustly
heterogenic and multigenic by sequencing technology, as hundreds of peril genes were
identified, mainly those involved in the transcriptional regulation, chromatin remodeling,
and synapse formation [65,66].

3. SGLT2 Inhibitors Decrease Oxidative Stress

Oxidative stress, defined as the imbalance between the antioxidants production and
the pro-oxidants levels, is a vital element underlying the pathogens of nephropathy, neural
disorders, cardiovascular disorders, diabetes mellitus, liver conditions, and cancer [67].
SGLT2 inhibitors were found to perform as antioxidants indirectly because of their ability
to reduce the generation of free radicals [68], to upregulate the antioxidant systems, such
as glutathione (GSH) and superoxide dismutase (SOD) [69–71], to suppress pro-oxidants,
such as thiobarbituric acid-reactive substances (TBARS), to reduce nicotinamide adenine
dinucleotide phosphate oxidase 4 (NOX4) [72,73], and decrease the glucose-induced ox-
idative stress [74]. Moreover, canagliflozin, dapagliflozin, and empagliflozin were found
to decrease oxidative stress in many types of cancer, by suppressing the cellular prolifera-
tion [75–79] (Figure 1).
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Figure 1. Mechanisms of action for the SGLT2 inhibitors. ↑—increase, ↓—decrease,
glutathione—GSH, malondialdehyde—MDA, senile plaques—SP, amyloid β—Aβ, hypoxia-
inducible factor 1α—HIF1α, brain-derived neurotrophic factor—BDNF, vascular endothelial growth
factor A—VEGF-A, interleukin 6—IL-6, tumor necrosis factor α—TNFα, vascular cell adhesion
protein—VCAM-1, reactive oxygen species—ROS, monocyte chemotactic protein-1—MCP-1 [75].

4. The Anti-Inflammatory Characteristics of the SGLT2 Inhibitors

The process of inflammation has a significant role in neurodevelopmental diseases,
metabolic diseases, lifelong kidney disorder, liver disease, cardiovascular disease, and
cancer [80,81]. SGLT2 inhibitors have shown anti-inflammatory effects in multiple pre-
clinical disease models [82]. SGLT2 inhibitors have been reported to downregulate the
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pro-inflammatory mediators, including transforming the growth factor beta (TGF-β),
interleukin-6 (IL-6), c-reactive protein (CRP), nuclear factor κB (NF-κB), tumor necro-
sis factor alpha (TNF-α), and the monocyte chemoattractant protein (MCP-1) [83,84]. The
SGLT2 inhibitors were found to attenuate the inflammation by their capability to regulate
the imbalanced redox state, the tissue hemodynamic alterations, and the renin-angiotensin
system (RAS) [85,86]. Furthermore, the expression of proinflammatory cytokines could
be the result of the activated transcription factors activated by oxidative stress, including
the nuclear factor erythroid 2–related factor 2 (Nrf2), peroxisome proliferator-activated
receptor (PPAR) γ, hypoxia-inducible factor (HIF)-1α, and NF-κB [87,88]. SGLT2 inhibitors
reduced oxidative stress in many diseases, and they may also reduce inflammation caused
by the chemokines regulation and cytokines transcription factors (Figure 2).
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Figure 2. Inflammatory signals promote inflammation by activating the microglia and astrocytes
within the brain in ASD. SGLT2 inhibitors influence on the inflammation and neuroinflammation,
SGLT2 inhibitors decrease the inflammatory factors levels, such as the M1 macrophages, STAT1
inflammatory transcription factor, cytokine interleukin-1β (IL-1β), tumor necrosis factor (TNF-α),
and vascular cell adhesion protein (VCAM) in neurodevelopmental diseases [43,44]. (Created with
BioRender.com).

5. Pleiotropic Perspective of the SGLT2 Inhibitors in ASD

The effects of the SGLT2 inhibitors have been extensively studied [6,10,13,89–91],
and the assessment of the design, limitations, and outcomes of the SGLT2 inhibitors
trials have been comprehensively discussed [6,92,93]. Different from other reviews on
SGLT2 inhibitors, this review aims thoroughly at focusing on the studies that assessed the
SGLT2 inhibitors benefits from a neurodevelopmental point-of-view. Databases, such as
PubMed, MEDLINE, and Google Scholar have been searched using the following terms:
SGLT2 inhibitors, antioxidants, oxidative stress, and neurodevelopmental diseases, up
to 31 January 2022. This review will discuss how the SGLT2 inhibitors regulate the ASD
biomarkers, based on the clinical evidence supporting their function as antioxidants and
anti-inflammatories that can cross the blood-brain barrier (BBB). This disease-specific review
will provide a better understanding of the potential of antioxidant and anti-inflammatory
roles of the SGLT2 inhibitors in ASD. The potential therapeutic role of the SGLT2 inhibitors
in ASD have not yet been studied. Therefore, this review aims at providing the theoretical
evidence about their plausible efficacy in these disorders, which would encourage further
research in this area.



Molecules 2022, 27, 7174 6 of 17

6. Role of the SGLT2 Inhibitors in Neurodevelopmental Disorders

Glucose is the primary metabolic substrate of the neural function [94]. It is transported
across the BBB into the brain and made available to the glial cells and neurons via several
glucose transporters (GLUTs) [95]. Of notable importance in the CNS, are the GLUT1 which
is expressed in the glial cells and BBB, and the GLUT3 which is expressed in the neurons [96].
SGLT receptors were originally found to be expressed in the intestines and kidneys, but
later protein expression studies showed that the SGLT receptors are distributed in different
brain areas, such as the hippocampus, putamen, frontal cortex, hypothalamus, parietal
cortex, and brainstem [97]. Moreover, it has been shown that the SGLT2 inhibitors can cross
the BBB as they are partially lipid soluble. Accordingly, numerous studies have underlined
the protein expression of the SGLT2 receptors in the encephalon of APP/PS1xd/db mice,
emphasizing their potential therapeutic benefits in neurodevelopmental disorders [98,99].

6.1. SGLT2 Inhibitors in Diabetes Mellitus and Ischemic Stroke

Diabetes mellitus and obesity are risk factors for cognitive disorders [100]. It has been
reported that a dose of 10 mg/kg of empagliflozin given for a period of 22 weeks, notably
improved the cognitive status of db/db mice, by increasing the cerebral brain derived
neurotrophic factor and the reduction of the cerebral oxidative stress [101]. In addition, a
previous study has shown that receiving of 10 mg/kg of empagliflozin 24 h following a
reperfusion, has decreased the parenchymal microglial burden of APP/PS1xdb/db mice
and db/db mice [102]. Another preclinical study showed that the exposure to 10 mg/kg
of empagliflozin at 24-hour following the reperfusion, ameliorated the neurological ob-
struction in ischemic stroke rat model in a dose-dependent manner [103]. Similarly, a
decrease in the malondialdehyde (MDA) levels, elevated the catalase activity, and increased
the GSH levels were observed in rat brain cells, following the systemic administration of
empagliflozin leading to the suppressed levels of inflammation and the cerebral oxidative
stress [103].

6.2. SGLT2 Inhibitors’ Ameliorative Impact in AD and PD

Parkinson’s disease (PD) and Alzheimer’s disease (AD) are common age-related neu-
rodegenerative conditions. Currently, the available pharmacotherapeutic options for AD
and PD merely provide symptomatic relief without curing the process [104]. The main
pathological characteristics of AD, are the intra- and extra-cellular plaques accumulation,
which is composed of neurofibrillary tangles (NFTs) and beta-amyloid. Recent studies
have stated that the inhibition of the SGLT receptors may provide a beneficial effect on
this process. A previous APP/PS1xdb/db mouse model study reported that empagliflozin
reduced the insoluble and soluble levels of amyloid β in the hippocampus and the cortex of
tested mice, with an overall reduction of the senile plaque density [102]. Moreover, in the
scopolamine-induced memory impairment in the rat model, canagliflozin was found to pre-
vent the memory impairment [105]. Such observed therapeutic effects might be attributed
to the inhibition of the acetylcholinesterase enzyme, which is a property of canagliflozin
and other SGLT2 inhibitors [66]. Furthermore, several previous studies have shown that the
oxidative stress-induced neuroinflammation can lead to a mitochondrial dysfunction and
glial cell activation, causing multiple molecular events in the brain, including the neural cell
dissolution in PD and AD [106]. In a recent preclinical study involving a rotenone-induced
PD in a rat, it was shown that a dose of 150 mg/kg of dapagliflozin was able to enhance
PD motor activity in the rotarod and open-field tests [106]. In addition, dapagliflozin at the
same dose, was found to alleviate the neuronal oxidative stress, through the reduction of
the lipid peroxides [106]. Furthermore, dapagliflozin was reported to upregulate the glial
derived neurotrophic element and its phosphatidylinositol 3-kinase protein kinase, and the
glycogen synthase kinase-3β (GSK-3β) pathway, which affects the regulation of numerous
key cellular operations, such as proliferation, senescence, differentiation, motility, and
survival [106].
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6.3. Application of the SGLT2 Inhibitors in Epilepsy

Erdogan et al. 2018 illustrated that the activity of a pentylenetetrazol-induced seizure
in a rat model was decreased significantly, following exposure to the SGLT2 inhibitor
dapagliflozin in a dose-dependent manner (75–150 mg/kg, i.p.), which has been attributed
to the reduction in the sodium transport across the neuronal membranes, and the decreased
glucose availability, hence stabilizing against the depolarization and excitability [107]. Col-
lectively, the impact of the SGLT2 inhibitors in the neural disorders have shown promising
therapeutic potentials, and some of the most significant observations are summarized in
Table 2.

Table 2. Preclinical evidence of the reparative implications of the SGLT2 inhibitors in neurological
disorders.

Disorder Animal Species Medication Results References

Cognitive impairment Mice Empagliflozin Increase the cerebral brain derived neurotrophic factor and
reduce the cerebral oxidative stress. [61,62]

AD Rats Canagliflozin Reduce amyloid β levels, plaque density, and
acetylcholinesterase. [66]

PD Rats Dapagliflozin Upregulate the GDNF/PI3K/AKT/GSK-3β pathway and
reduce the ROS-dependent neuronal apoptosis. [67]

Epilepsy Rats Dapagliflozin Reduce sodium and glucose transported across the neurons. [68]

Stroke Rats Empagliflozin Upregulate VEGF and HIF-1α; decreased MDA, elevated GSH
and activity of catalase. [63,64]

7. SGLT Receptors as a Potential Target for Neurological Disorders

SGLT co-transporters contain spanning monomer proteins, including a single N-
glycosylation site and 14 transmembrane domains. They transport galactose and glucose
against a concentration gradient alongside the simultaneous Na+ ions transportation [108].
Numerous reports have stated the presence of the SGLT receptors in a mammalian cen-
tral nervous system (CNS) [97,109]. Furthermore, studies have proven that the SGLT2
receptors are significantly expressed in the cerebellum, the BBB endothelial cells, and the
hippocampus, while the SGLT1 receptors are expressed in the CA1 and CA3 regions of the
hippocampus [110–113] (Figure 3).
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Such a distribution of the SGLT2 receptors [114] could potentially be responsible
for their intriguing neuroprotective qualities, which could be beneficial in several neuro-
logical disorders, including ASD [99]. The SGLT2 inhibitors’ proposed mechanisms are
presented in Figure 3. The antioxidant effect of the SGLT2 inhibitors can be attributed
to their stimulatory action on the nuclear factor erythroid 2 (Nrf2)- related factor 2 path-
way [115]. This displays the antioxidant activity because of their genetic expression of
the antioxidant proteins, including glutathione-s-transferase (GST), SOD, and NADPH
quinone dehydrogenase-1 to protect against cellular apoptosis [116]. The anti-inflammatory
characteristics of the SGLT2 inhibitors could be accredited to the downregulation of NF-KB,
which decreases IL-1β and the TNF-α expression [117]. Empagliflozin has the highest
selectivity for the SGLT2 receptors (2500-fold) when compared to dapagliflozin which has
(1200-fold) selectivity, and canagliflozin (250-fold) [118,119]. Therefore, in the context of
the neuroprotective effects associated with the SGLT1 and SGLT2 receptors’ inhibition,
canagliflozin was hypothetically preferred over other SGLT2 inhibitors, due to its dual
SGLT1/SGLT2 inhibition capability [120].

8. Mutual Oxidative Biomarkers of ASD and the Potential Therapeutic Utility of the
SGLT2 Inhibitors

ASD is a neurodevelopmental disorder characterized by diverse range of the impaired
social abilities and communication, stereotypic and repetitive behaviors [121]. ASD could
be diagnosed in early childhood, with a female-to-male ratio of 1:4, and an increasing
prevalence over the past 20 years, as the current estimate is one in 160 children worldwide
has an ASD [2,122]. There is no definitive curative medication for ASD yet, as the currently
available pharmacological or behavioral therapies cannot enhance the core parameters
of ASD [123–125]. Early detection of the autism symptoms is crucially impacting chil-
dren’s adaptive skills development, and social intelligence, which have been reported in
many studies practicing advanced imaging methods [126]. Finding validated biomarkers
for the ASD screening or treatment follow-up have been attempted in many prospective
studies, as the Autism Birth Cohort, has considered the proteomic, genetic, metagenomic,
microbiological, and immunological parameters to utilize in a case-control study [127].
Moreover, the 1-Year Well-Baby Check-up Approach investigated various endpoints in
autistic patients, including the gene expression, the immune system functionality, early
brain growth, and cerebellar functions, to identify the biomarkers of the disease [128].
In neurodevelopmental diseases, such as ASD, oxidative stress was found to change the
intracellular balance between the antioxidant defense mechanisms and the reactive oxygen
species (ROS) [129]. Accordingly, both the enzymatic and nonenzymatic mechanisms of pro-
tection have been reported to exist. Enzymes include catalase (CAT), SOD, ceruloplasmin,
and glutathione peroxidase (GPX) [130]. In contrast, other systems include phenolic com-
pounds, glutathione (GSH), and the antioxidant nutrients (vitamins, A C, E, B6; folate) [131].
Moreover, elevated oxidative stress was found to trigger the activation of the mast cell,
which in turn increases the production of the proinflammatory, neuro-sensitizing, and
vasoactive molecules connected to ASD, such as histamine, IL-6, bradykinin, tryptase, and
the vascular endothelial growth factor (VEGF) [131]. These factors interrupt the BBB [132],
permitting the entero-toxic molecules into the brain inducing neuroinflammation [133].
Oxidative stress has a central function in the ASD pathogenesis as it upregulates the neu-
ral deterioration in the genetically susceptible patients. The mammalian brain reacts to
oxidative stress deterioration, as it accounts for 20% of the basal oxygen consumption,
whereas it is responsible for a few percent of body weight [134]. Numerous animal studies
have assessed the impact of the oxidative stress on the CNS in different models [135–137].
The imbalance between the antioxidant and oxidant systems involved in the neurode-
generative pathologies, e.g., AD [138], and mental disorders, including bipolar disorder
and schizophrenia [139–141]. In a postmortem analysis study, brain tissues from autistic
patients were found to display higher levels of oxidative stress biomarkers than healthy
individuals [142–146]. The association between ASD and oxidative stress was disclosed in
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various studies with different biomarkers, as illustrated in Table 3, head-to-head with the
mutual antioxidative ability of the SGLT2 inhibitors [147,148].

Table 3. Comparison of the oxidative stress biomarkers’ blood levels in autistic patients with a mutual
therapeutic biomarker impact of the SGLT2 inhibitors. ↑—increase, ↓—decrease.

ASD Biomarkers Result Reference SGLT2 Inhibitor
Name/Subject of Study Result Reference Number

GSH
Statistically significantly lower level
of GSH in the ASD group than in the

control group.
[148–151] Empagliflozin/Wistar rats ↑ GSH [103]

CAT
Lower CAT activity in the

erythrocytes of autistic patients than
in the healthy controls.

[152,153] Empagliflozin/Wistar rats ↑ CAT [103]

GPX

GPX activity in the erythrocytes is
significantly lower in the ASD group

than in the control group after the
meta-analysis.

[152,154–157] Dapagliflozin/Wistar rats ↑ GPX [158]

TNF-α ASD children produced more TNF-α
than those obtained from the control. [159–161] Empagliflozin/ApoE-/-mice ↓ TNF-α [83]

IL-6 Autistic mice displayed elevated IL-6
in the brain. [155–162] Empagliflozin/ApoE-/-mice ↓ IL-6 [83]

Caspase-3
Assessed the active caspase-3 levels

and determined the significant
elevation in children with ASD.

[156–166] Empagliflozin/Wistar rats ↓ caspase 3 [102]

HIF-1α Serum HIF-1α levels were borderline
significantly lower in the ASD group. [167] Empagliflozin/Wistar rats ↑ HIF-1α, [102]

Aβ

Severe ASD patients produced
beta-amyloid at twice more than the
control group and four times more

than the mild ASD group.

[168,169] Empagliflozin/APP/PS1xdb/db mice ↓ Aβ [101]

SGLT2 inhibitors have the potential to improve ASD patients’ behavioral and brain
disruptions by increasing the cerebral brain derived neurotrophic factor and reducing the
cerebral oxidative stress, including elevated the GSH and catalase activity, reduced MDA,
amyloid β levels, plaque density, and acetylcholinesterase [101–104].

9. Conclusions

ASD remains a global health dilemma, as it is a chronic condition, and is incurable,
leading to a reduced quality of life. It is crucial to find the mutual molecular mecha-
nisms of ASD and redefine the indications for the well-studied medication with numerous
pleiotropic effects to find a solution. This review has disclosed the impact of the SGLT2
inhibitors in neurological diseases, which could relate to ASD as it shares multiple path-
ways and mutual biomarkers. SGLT2 inhibitors display several neuroprotective properties,
highlighting their therapeutic potential for ASD patients, as these agents have the capabil-
ity to inhibit the acetylcholinesterase enzyme, reduce the elevated levels of the oxidative
stress in the brain, and restore the anabolism and catabolism balance. Moreover, clinical
intervention studies are vital to determine whether the displayed methods are useful as
the SGLT2 inhibitors have never been tested on ASD directly. Currently, our research
team is conducting a preclinical experiment to assess the effects of canagliflozin on the
VPA-induced ASD in Wistar rats.

Author Contributions: A.A. and B.S. created the study concept and design, as well as revising the
work critically for publishing approval. M.M.N. drafted the work and substantially contributed to
the analysis and interpretation of the data. S.A. critically revised the manuscript. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the UAE University’s Office of Graduate Studies and Research,
as well as the Zayed-Center for Health Sciences, respectively (21M132 and 12M099) and the APC was
funded by UAE University’s Office of Graduate studies and Research (21M132).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Molecules 2022, 27, 7174 10 of 17

Data Availability Statement: The data in this study were not created nor analyzed by the authors.
Data sharing is not applicable to this article.

Acknowledgments: We would like to thank our colleagues Ali Saad and Petrilla Jayaprakash for
helping us with creating the figures.

Conflicts of Interest: Authors have no conflict of interest to declare.

Abbreviations

ADA American Diabetes Association
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ASD Autism spectrum disorder
BBB Blood-brain barrier
CNS Central nervous system
CRP C-reactive protein
db/db Diabetes mellitus most widely used mouse model
EASD European Association of the Study for Diabetes
ESC European Society of Cardiology
FDA Food and Drug Administration
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GSK-3β Glycogen synthase kinase-3β
HF Heart failure
HIF-1α Hypoxia-inducible factor
IL-6 Interleukin-6
i.p Intraperitoneally
MDA Malondialdehyde
mTOR Mechanistic target of rapamycin
MCP-1 Monocyte chemoattractant protein
NFTs Neurofibrillary tangles
NADPH Nicotinamide adenine dinucleotide phosphate-reduced
NOX4 Nicotinamide adenine dinucleotide phosphate oxidase 4
Nrf2 Nuclear factor erythroid 2–related factor 2
NF-κB Nuclear factor κB
PD Parkinson’s disease
PFC Prefrontal cortex
PPAR Peroxisome proliferator-activated receptor
ROS Reactive oxygen species
RAS Renin-angiotensin system
SSRIs Selective serotonin uptake inhibitors
SGLT2 Sodium-glucose cotransporter 2
SOD Superoxide dismutase
TBARS Thiobarbituric acid-reactive substances
TNF-α Tumor necrosis factor alpha
T2DM Type 2 diabetes mellitus
VPA Valproic acid
VEGF Vascular endothelial growth factor
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