Skip to main content
. 2022 Oct 31;11(21):6454. doi: 10.3390/jcm11216454

Table 8.

Benchmarking with State-of-the-Art CNNs.

Method Class Data Validation Performance (%)
Accuracy Sensitivity Specificity
Ensemble Neural Network [9] 2 classes (normal vs. and HLHS) intra-patient - 89 92
2 classes (normal vs. TOF) intra-patient - 71 89
Residual learning [13] 2 classes (normal vs. CHDs including HRHS, HLHS, highly RAS) intra-patient 93 93 -
2 classes (normal vs. CHDs including HRHS, HLHS, highly RAS) inter-patient 91 91 -
Deep learning model [14] 2 classes (normal vs. TOF) intra-patient - 75 76
2 classes (normal vs. HLHS) intra-patient - 100 90
DGACNN [15] 2 classes (normal vs. CHD) intra-patient 85 - -
Proposed 2 classes (normal vs. CHDs including ASD, VSD, AVSD, EA, TOF, TGA, HLHS) intra-patient 100 100 100
2 classes (normal vs. CHDs ASD, VSD, AVSD, EA, TOF, TGA, HLHS) inter-patient 92 91 92
8 classes (normal, CHDs ASD, VSD, AVSD, EA, TOF, TGA, HLHS) inter-patient before augmentation 71 62 68
8 classes (normal, CHDs ASD, VSD, AVSD, EA, TOF, TGA, HLHS) Inter-patient after augmentation 99 97 98