Skip to main content
. 2022 Nov 2;23(21):13409. doi: 10.3390/ijms232113409

Table 3.

Summary of studies’ data mining (from newest to older).

Author AI Area AI Sw Sw Class Data-Mining Methods Validated Validation Test
Chen et al. [44] ML Pyton software and Pyradiomics module OS RF, SVM, SGD, KNN Yes 5-fold cross-validation
Umutlu et al. [35] DL Matlab C SVM Yes 5-fold cross-validation
Eifer et al. [43] ML Pyradiomics, Scikit-learn, TensorFlow libraries OS KNN and RF Yes 5-fold cross-validation
Jo et al. [51] nd NA NA NA No NA
Cheng et al. [42] ML R-software OS Multivariable regression with the Akaike’s information criterion (AIC) Yes 10-fold cross-validation
Castaldo et al. [62] ML R-software OS Additive logistic regression (LogitBoost), RF, LDA Yes 3-fold cross-validation
Araz et al. [45] ML WEKA OS SVM, Hoeffding tree, J48, and MLP Yes 10-fold cross-validation
Satoh et al. [56] DL Pytorch OS CNN based on Xception No NA
Takahashi et al. [63] DL Pytorch OS CNN based on Xception No NA
Moreau et al. [46] DL Python and Phytorch OS U-Net Yes 5-fold cross-validation
Chen et al. [71] ML Python OS MLP, SVM, RF and XGBoost Yes 3-fold cross-validation
Umutlu et al. [72] ML Matlab C SVM Yes 5-fold cross-validation
Krajnc et al. [28] ML NA NA RF Yes 100-fold MC-cross-validation
Weber et al. [53] ML Matlab C CNN Yes bootstrap Gauss test
Aide et al. [76] ML XLSTAT Software C RF Yes OOB
Li et al. [48] DL DCNN-based diagnosis method IH 3D CNN Yes 5-fold cross-validation
Song et al. [49] ML R OS XGBoost Yes NA
Choi et al. [37] DL CNN-based sofware OS CNN Yes 3-fold cross-validation
Satoh et al. [60] ML scikit-learn and data mining framework in Pyton OS SVM Yes 2-fold cross-validation
Li et al. [38] ML Scikit-learn, numpy, scipy and math packages in Pyton OS/C RF Yes 10-fold cross-validation
Ou et al. [29] ML PYTHON and IBM SPSS OS/C LDA Yes 10-fold cross-validation
Antunovic et al. [39] ML STATA/R C/OS Univariable and multivariable logistic regression Yes 10-fold cross-validation
Aide et al. [64] ML XLSTAT Software C RF Yes OOB
Lee et al. [40] ML R OS Multivariable logistic regression Yes Cross-validation 10-fold, 5-fold, and leave-one-out methods
Huang et al. [77] ML Python IH SVM, RF, logistic regression Yes 3-fold cross-validation

AI: artificial intelligence; BC: breast cancer; CNN: convolutional neural network; DL: deep learning; FTs: features; KNN: k-nearest neighbors; LDA: linear discriminant analysis; IH: in-house; ML: machine learning; MLP: multi-layer perceptron; NA: not applicable; nd: not defined; OOB: Out-Of-Bag; RF: random forest; SGD: stochastic gradient descent; SVM: support vector machine; Sw: software; TA: texture analysis; XGBoost: eXtreme Gradient Boosting.