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Abstract: The mechanical properties and wear resistance of carbon black/natural rubber (CB/NR)
composites are significantly influenced by the degree of CB dispersion in rubber. Here, we present a
novel reinforcement theory using atomic force microscopy (AFM) to quantify the adhesive thickness
of rubber molecules around the CB particles as well as the height, area, and volume in NR. The
thickness of the bonded rubber (BR) was found to vary between 3 and 7 nm depending on the values
of the nitrogen surface area (NSA) for CB. This indicates that a higher BR content is a result of a
higher CB NSA with a smaller particle size, showing a higher number of active positions to anchor
rubber molecules. The nanoindentation of AFM was used to determine the surface hardness of CB
in NR; the value decreases with increasing BR height. In this study, we demonstrate a well-defined
reinforcement mechanism of CB in NR with the factors of BR, surface hardness, 100%/300% modulus,
and tensile strength.

Keywords: carbon black; natural rubber; surface hardness; bonded rubber; atomic force microscopy

1. Introduction

Filler-reinforced rubbers have been widely used in a variety of applications, particu-
larly in the tire industry for several decades. However, their reinforcement mechanisms
and filler-rubber-bounded structures have long been studied and are still undefined [1–3].
The improved mechanical properties of rubber compounds for tire applications, e.g., wear
resistance, rolling resistance, and wet traction are primarily determined by the type of
filler, carbon black (CB), silica, or other species. CB is commonly used as a reinforced
filler in rubbers to improve their mechanical properties. Meanwhile, adding CB to the
rubber matrix can improve its elastic modulus, fracture strength, and wear resistance
significantly [4,5]. As a result, various CBs, e.g., N115, N330, N550, N660, and others,
have been used to improve the mechanical properties of various rubbers. CB/natural
rubber (NR) has been widely used in a wide range of practical applications, and numerous
theories exist about CB improving rubber wear resistance. Normally, the theory of bound
rubber is commonly used to describe the interaction between CB and rubber molecules [6,7].
Conceptual models of bound rubber have generally focused on the insoluble rubber phase
as the adhesive center between CB and rubber [6,7]. Previous research has demonstrated
that bound rubber is a useful index for understanding CB dispersion in rubber matrixes for
mechanical reinforcements. The reinforcing effect was found to be closely related to the CB
primary particle size, structures, and activities [8,9]. Many studies have shown that when
the specific surface area of CB is greater than 50 m2 g−1 and the particle size is less than
50 nm, it is an active reinforcing filler for rubber [10].
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Previously, the reinforcing mechanism in CB/rubber systems was primarily reported
using elastic modulus predictions, stress–strain simulations, and considerations for the
strengthening mechanism [11–13]. Saowapark et al. [11] established a link between the
amplitude dependence of the filled rubber elastic deformation and the structural properties
of the filler. Huber et al. [12] described the mechanical deformation behavior of rubbers
filled with rigid filler particles. Liang et al. [13] revealed the relationship between the
local nanoscale stress distribution and macroscopic tensile properties. Robertson et al. [14]
recently reported that a strong reinforcement of the filler–elastomer system results in
the formation of a glassy layer covering the filler surface. Kohjiya et al. [15] observed CB
networks in the rubbery matrix using a three-dimensional transmission electron microscopy
(3D-TEM) skeletonization image. The accomplishments listed above were primarily focused
on using the physical/chemical combination network of the microstructure of the CB
surface and the rubber polymer chain reinforcement to clearly explain the improvement of
rubber tear resistance and modulus. However, no accepted theory exists that fully explains
the CB reinforcement mechanism, particularly the spatial dispersion and interactions of CB
in the rubber matrix. A simple and logical explanation for how CB-reinforced rubber can
improve the wear resistance and service life of rubber is unknown.

The bonded rubber around the CB must be studied in order to investigate the CB
strengthening mechanism in rubber. Until now, the dispersion of CB in rubbers has been
primarily studied using electron and atomic force microscopes (AFM) [16–24]. Le Diagon
et al. [20] investigated the dispersion of fillers in a composite using AFM. Using an AFM
nanomechanical mapping technique, Wang et al. [21] discussed the topography, modulus,
and adhesive energy distribution maps of the resulting composites in terms of carbon
nanotube loading. Vera-Agullo et al. [22] proposed studying the microstructure of filled
rubber using optical microscopy and AFM. Xu et al. [23] employed AFM to characterize the
structure and morphology of CB. A large number of works have presented the AFM results
of filled polymer structures in various ways [24]. Although these reported AFM results
can reveal several filler–rubber reinforcing behaviors, e.g., morphology and filler spatial
dispersion, there is, however, no comparison has been made between different types of CB
when rubber using AFM to determine the spatial properties of the CB-filled rubber.

The thickness of bonded rubber formed by different types of CB was investigated
using AFM and TEM in this study. Furthermore, nanoindentation was used to determine
the hardness of various CBs in rubber. More importantly, our approach has the potential to
provide new insights into the microscopic reinforcement mechanism of CB/NR composites.

2. Experimental
2.1. Materials

Zinc oxide (ZnO), stearic acid (SA), sulfur (S), mercaptobenzothiazole disulfide (MBTS),
which are purchased from Merck, Kenilworth, NJ, USA. CB (N115, N330, N550, N660),
and NR were supplied from the Carbon Black Research and Design Institute, Zigong,
Sichuan, China.

2.2. Preparation of the CB/NR Composites

Rubber composites were prepared by the mill-mixing method according to ASTM
D 3192: 2005, as shown in Table 1. For a typical run, the roller temperature was kept
at 70 ◦C and the total run time was maintained at 17 min. NR was placed on a two-
roller mill (model zg-200dr, China Two Roll Mill, Shanghai, China) and masticated for
2 min. Sequentially, 3 phr (parts per hundred of rubber) SA, 2.5 phr S, 0.6 phr MBTS,
5 phr commercial microscale ZnO (denoted as c-ZnO), and 50 phr N115 were added. The
(N330/NR, N550/NR, and N660/NR) composites were prepared using the same procedure.
The structural properties of CB are listed in Table 2. Sulfur (normally in the form of crown-
like structure-S8) is used as a cross-linking bridge between CB and NR, a process known as
vulcanization. During the vulcanization process, ZnO and SA are used as activators, and
the MBTS function is prompted to shorten the vulcanization time.
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Table 1. Formula of the CB-filled NR compounds.

Component Composition (phr)

NR 100
Sulfur 2.5

Steric acid 3
c-ZnO 5

CB (N115, N330, N550, N660) 50
MBTS 0.6

Table 2. Structural properties of CB used in this study.

CB
Item Particle Size

(nm)
NSA

(m2 g−1)
STSA

(m2 g−1)
Oil Adsorption Number (OAN)

(mg g−1) Ash (%)

N115 16 ± 2 140 124 115 0.3
N330 32 ± 4 78 75 100 0.4
N550 47 ± 8 40 36 121 0.6
N660 63 ± 6 34 29 90 0.6

Note: The particle size of CB was measured by TEM, and the nitrogen surface area (NSA) was determined by the
nitrogen adsorption/desorption profiles at −196 ◦C from P/P0 = 0.05 to 0.30 according to the Brunauer–Emmett–
Teller (BET) method based on ASTM D6556. STSA means statistical thickness surface area, which represents the
external surface area of CB according to ASTM D6556. Oil adsorption number (OAN) stands for the particle
packing style of CB according to ASTM D1765. Ash content was measured based on the method in ASTM
D1506-15.

Tensile measurements were conducted based on the ASTM D412 Standard Test Method
with a type C dumbbell die. Three specimens were tested for each sample using an Instron
Model 3400. The tensile rate was 500 mm/min, the initial grip distance was 60 mm. A video
system was used to measure strain to determine the 100/300% modulus.

2.3. Sampling and TEM/AFM Characterization

The samples were cut into 200 µm× 200 µm sections of about 50 nm thickness using an
ultra-microtome cryostat (Leica EM UC7, Leica Microsystems Trading Co., Ltd., Shanghai,
China) at−30 ◦C to obtain a smooth surface, and they were subjected to high-vacuum AFM
(E-SWEEP, Hitachi High-Tech Science Co., Ltd., Tokyo, Japan). All of the AFM samples
were tested at 25 ◦C. The nanoindentation hardness of all samples was measured using
a nano-indenter (Anton Paar, UNHT, Torino, Italy). For a typical test, the loading speed
remained constant at 30 s with a force of 0.8 Nm and a 5 s delay at peak load with a 30 s
unloading time.

The microscopic and macroscopic morphologies of CB were observed with TEM
(FESEM, Inspect F50, FEI Company, Eindhoven, The Netherlands). The structural char-
acterization and dispersion of CB in the CB/NR composites were evaluated, and the
protruding height of the CB aggregate in the rubber was assigned as the bonded rubber [13].
The preparation process of all the samples for AFM/TEM measurements is illustrated in
Scheme 1.
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Scheme 1. Preparation of CB/NR composites and their structural samples used in AFM/TEM
measurements.

3. Results and Discussion

AFM measurements for four types of CB (N115, N330, N550, and N660) in NR are
shown in Figure 1a–l. The black and white parts represent CB aggregates or NR-covered ag-
gregates of CB, while the purple regions represent the non-CB-reinforced zone. Apparently,
in Figure 1a–d, the N115/NR system (Figure 1a) shows the highest CB/NR dispersion
with a dimension of 5 µm × 5 µm. The CB/NR dispersion status decreases in the order of
N115/NR, N330/NR, N550/NR, and N660/NR. The enlarged areas (1 µm × 1 µm) of the
four CB/NR systems are presented in Figure 1e–h. It is clear to note that while the NSA
or STSA value of CB decreases, the obvious isolated particles and chain-like agglomerate
are distributed in the AFM micrographs, as shown in Figure 1b–d (see yellow arrow) or
enlarged parts of Figure 1f–h (see yellow arrow). This shows that the key active sites of
CB are related to the surface structures rather than the particle packing styles, which are
typically described with different OAN values. Figure 1i–l depict the 3D surface profiles of
all CB/NR systems, indicating that the nanoparticles of N115 (Figure 1i) were well covered
and dispersed within the NR molecular chain. Because of their lower NSA values, the
other three CB/NR samples have more agglomerate-like structures, as shown in Figure
(Figure 1j–l).

Figure 2 also depicts the average volume and area of all CB/NR systems. As shown
in Figure 2a, the average protruding heights of N115/NR, N330/NR, N550/NR, and
N660/NR samples are 12.9, 14.5, 16.1, and 19.4 nm, respectively. This demonstrates that
the height of the protrusion increased as the particle size of CB increased (as shown in
Table 2). The extruded volume and area of N115, N330, N550, and N660 in NR were
also investigated, as illustrated in Figure 2b. The extruded volumes of N115, N330, N550,
and N660 were 1.87 × 108, 1.15 × 108, 8.98 × 107, and 8.73 × 107 nm3, respectively. This
indicates that a smaller CB particle can strongly interact with NR molecules, resulting in
a higher CB/NR dispersion, which also increases the protruding volume. Similarly, the
extruded area of N115, N330, N550, and N660 were 1.18 × 107, 8.33 × 106, 8.31 × 106, and
8.22 × 106 nm2, respectively. This demonstrates that decreasing the CB particle size can
improve dispersion in the NR matrix. Figure 3 depicts the morphologies, phase diagrams,
and section profiles of the four types of CB analyzed by AFM.
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Figure 3. AFM height and phase images of the various CB in NR (a) N115, (b) N330, (c) N550, and
(d) N660.

The boundary between N115 and the rubber matrix is hazy and blurry (Figure 3a), in-
dicating that N115 particles interact strongly with NR molecules. As shown in Figure 3b–d,
the boundary between CB and NR is more distinct owing to the larger particle sizes and
lower NSA values. The AFM phase diagrams of all CB/NR samples reveal that decreas-
ing the primary particle size of CB improved microscopic dispersion, indicating that CB
with smaller particle sizes had better reinforcing behaviors in NR. The wear resistance
of CB-filled rubber was also reported to be similar due to a higher micro-dispersion of
CB in rubber. The bonded rubber thicknesses for the four samples were estimated using
the results shown in Figure 3. To accurately analyze the positions of the structures, AFM
analysis software was used to mark the same line at the corresponding positions of the
topography and phase diagrams, and the CB edge points of the line in the topography were
marked with points designated by the two marks inside the two graphs. Simultaneously,
the position of the rubber was marked on the phase diagram’s middle line by the two
points outside the line, indicating that the brown structure was between the CB aggregate
and the natural rubber. The phase value of the inner marker remained essentially constant
in the section contour curve, while the height value of the area from the inner marker to
the outer marker gradually decreased. Thus, the hardness of CB/NR was measured in
the brown area, which also indicated the bound rubber phase. Figure 3a–d show that the
bonded rubber of N115 was as thick as 7 nm, N330 and N550 were 4 and 3 nm, respectively,
and N660 was barely visible. This is because N115 had a larger specific surface area which
allowed for more rubber anchor sites [22]. The glassy state of the bond rubber attached to
the CB particle sizes, as well as the various bonded rubbers formed by the interaction of
different CB particle sizes and rubber molecules, would accompany the change in hardness.

Figure 4 depicts the physical properties of the CB/NR composites. The modulus
values of the CB/NR composites at 100% and 300% appear to have gradually decreased
as the CB particle size increased. This was due to the smaller spacing between the CB
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aggregates with small particle sizes, as well as the more uniform adhesive distribution,
which played a better role in fixing the CB [25,26]. This results in a higher wear resistance
of CB and rubber. The tensile strength and hardness of CB/NR composites decreased
progressively as the CB particle size increased. (Figure 4b) [27–30]. Figure 4c shows that
N115/NR had the greatest elongation at break, owing to the thicker bond rubber generated
by N115. The typical load–displacement curves of all CB/NR composites are shown in
Figure 5a.
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The displacement of the probe in the N660/NR composite was the smallest when
the same load was applied to the surfaces of the rubber composites, indicating that the
hardness of the N660/NR composite was higher than that of the other composites. Recent
studies have discovered that the interphase between nanoparticles and the rubber matrix
has an inhomogeneous elastic modulus and plastic deformation [31,32]. This interphase
heterogeneity is important in the macroscopic mechanical properties of CB-reinforced
rubbers. The elastic modulus and plastic deformation of spherical CB and its surrounding
bound rubber in NR are predicted using a comprehensive micromechanical framework
developed in this study. A loading force of 0.8 mN was chosen after a series of loading–
unloading process tests at an indentation point using the basic standard method. The
elastic modulus (Es) of all CB/NR composites was calculated using the following Equation
(1), where Er is the elastic modulus of pattern loss, Ei is the elastic modulus of indenter, Vi
is the Poisson’s ratio of pattern materials, and Es and Vs are the elasticity and Poisson’s
ratio of pattern material, respectively. According to Equation (1), the hardness of N115/NR,
N330/NR, N550/NR, and N660/NR are 2.37, 2.75, 7.24, and 19.72 GPa, respectively. The
N660/NR had the highest hardness, reaching 19.72 Gpa, because the thickness of the
bonded rubber surrounding the surface of CB-N115, N330, and N550 gradually decreased,
and the bonded rubber was a combination of rubber polymer chains and CB, with some
elasticity. As our findings show, the N660/NR had a higher hardness because there was
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no existing bonding rubber. Therefore, the AFM test probe made direct contact with the
N660′s surface. Accordingly, N115 had the smallest particle size of all samples, resulting in
the highest bound rubber content and the lowest hardness.

Er
−1 = 1 − Vi

2/Ei + 1 − Vs
2/Es (1)

CIT = h2 − h1/h1 × 100% (2)

Furthermore, the creep of the CB/NR composites was also assessed. The common
macroscale method to study the creep of the samples is to measure the displacement under
a fixed load, and by using Equation (2), the microscale status was estimated, where h1 is
the indentation depth at the maximum load in overload loading, and h2 is the indentation
depth at the end of the retaining load. The CIT values for N115, N330, N550, and N660 were
5.75%, 5.65%, 7.46% and 8.22%, respectively. It can be seen that with the increasing particle
size of CB, the composite was more prone to creep. This could be related to the content of
the bonded rubber around the CB. Aside from the N660/NR sample (see Figure 5b), the
samples exhibited similar hardness behaviors at shallow indentation depths. The hardness
of the four composites gradually dispersed as the indentation depth increased.

The TEM photographs of the N115/NR composite are shown in Figure 6a–d, the
darker part belongs to the nanoparticles of N115, while the light-colored area is the rubber
matrix of NR.
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A clearer outline of the CB particles can be seen in Figure 6a–d, and the darker the
color, the more overlapping the CB particles. Figure 6d shows that the binding bonded
rubber around the CB is approximately 7 nm, which supports our findings in the AFM
measurements shown in Figure 3.

4. Conclusions

Our findings suggest a novel approach to understanding the nanoscale BR and re-
inforcing mechanism of automobile tires. CB with higher specific surface areas provides
more anchor sites to bind with rubber. As a result, the bound rubber thickness of N550,
N330, and N115-based NR samples increased from 3 to 7 nm. However, due to a lower
NSA value, the N660-based NR sample showed no existence of bound rubber. The results
of our AFM/TEM measurements can provide new insights into the clear interaction of
reinforced filler-CB and rubber molecules.
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