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Abstract: Most cultivated potatoes are tetraploid, and the tuber is the main economic part that is
consumed due to its calorific and nutritional values. Recent trends in climate change led to the
frequent occurrence of heat and drought stress in major potato-growing regions worldwide. The opti-
mum temperature for tuber production is 15–20 ◦C. High-temperature and water-deficient conditions
during the growing season result in several morphological, physiological, biochemical, and molecular
alterations. The morphological changes under stress conditions may affect the process of stolon
formation, tuberization, and bulking, ultimately affecting the tuber yield. This condition also affects
the physiological responses, including an imbalance in the allocation of photoassimilates, respira-
tion, water use efficiency, transpiration, carbon partitioning, and the source–sink relationship. The
biochemical responses under stress conditions involve maintaining ionic homeostasis, synthesizing
heat shock proteins, achieving osmolyte balance, and generating reactive oxygen species, ultimately
affecting various biochemical pathways. Different networks that include both gene regulation and
transcription factors are involved at the molecular level due to the combination of hot and water-
deficient conditions. This article attempts to present an integrative content of physio-biochemical
and molecular responses under the combined effects of heat and drought, prominent factors in
climate change. Taking into account all of these aspects and responses, there is an immediate need for
comprehensive screening of germplasm and the application of appropriate approaches and tactics to
produce potato cultivars that perform well under drought and in heat-affected areas.

Keywords: Solanum tuberosum; heat tolerance; drought tolerance; bulking; climate change

1. Introduction

Potato (Solanum tuberosum spp. tuberosum L.) is the third most important food crop
after rice and wheat, with increasing popularity in terms of human consumption. Its annual
production was 388.19 million tons (MT) in the year 2019, which is expected to increase
further in several regions [1]. Potato is a popular staple vegetable in many countries. Potato
is also a staple food in European countries, adding carbohydrates to the human diet and
nutrients and minerals [2]. As the human population continues to rise, the accessibility of
food may emerge as a major concern on a worldwide scale, and thus potato can help to
provide food and nutritional security [3]. This crop is also vital in light of ongoing climate
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change, which is already exerting intense pressure on the human population’s food and
grain supply. In the coming decades, climate change will become a major rising problem
for governments and policymakers to devise ways to combat the adverse effects of climate
change and ensure food and nutritional security [4].

About 10,000 years ago, the domestication of potato took place in the highlands of the
Andes in South America [5]. In the early 16th century, explorers from European countries,
such as Spain, England, and the Netherlands, introduced potatoes to Europe [6]. Potatoes
are grown extensively in two primary regions. The first zone is between 45◦ N and 57◦ N,
where potato is cultivated as a summer crop; while the second zone is the subtropical
lowlands between the latitudes of 23◦ N and 34◦ N, where potato is cultivated during the
winter [7]. In the subtropical and tropical regions, the potato is grown as a winter crop
where the night temperatures remain below 22 ◦C. However, a temperature below 20 ◦C
is usually required for tuberization in potato [8]. The term “tropicalization” refers to the
process of breeding and developing suitable production techniques for vegetable crops that
may be grown at lower latitudes [9].

The importance of potatoes in securing food and nutritional security was identified by
the Food and Agriculture Organization (FAO) of the United Nations when it declared the
year 2008 as the “The International Year of the Potato” [10]. This initiative was pursued to
attract the world’s attention toward the importance of potatoes and their more significant
role in food and nutritional security in nonconventional areas. Most developing countries
are on the Asian and African continents, where the production and demand for potatoes
have increased in recent years [11]. The tropicalization of the potato crop is vital, as potato
serves as a cheap source of energy and nutrition. The potato can help overcome food and
nutritional insecurity and contribute to improving economic growth [12].

Environmental factors such as heat, drought, salinity, flood, and cold are the major
causes of adverse effects on the growth, development, and productivity of horticultural
crops [13]. Abiotic stressors are the major cause of crop loss on a global scale, since they
can reduce the average yield of most crops by more than 50 percent [14]. The rise in
global temperature is a threat to agriculture in general. The increase in temperature poses
significant abiotic stress for crop plants that adversely affects their survival, adjustment,
and performance [12]. Under such a changing climate scenario, potato cultivars need to be
developed that can thrive under high temperatures and give reasonably good production
and productivity [15].

Heat stress negatively affects the plant’s growth, and developmental, biochemical,
and physiological processes, leading to a reduction in yield and productivity. The critical
developmental stage affected by heat stress is the reproductive and bulking stages [16].
Similarly, plant response to drought stress is detrimental and impacts morpho-physiological,
anatomical, and biochemical parameters. Climate change is detrimental to tuber and root
vegetable crops, which are also considered staple foods in many countries. It has been
predicted that there will be a decrease in global potato production by 18–32% due to global
warming by the middle of this century [12,17]. Therefore, to cope with this climate change
problem and ensure food security, it is essential to understand the responses of crops
to climate change. Understanding the mechanism of plant response to abiotic stresses
could be a viable strategy for developing crop varieties through selection, breeding, and
biotechnological approaches, with the goal of developing varieties tolerant to heat or/and
drought stress [18]. Regions in tropical areas suffer from unprecedented seasonal heat
and drought stress [19,20]. These stresses lead to a detrimental effect on physiological and
biochemical mechanisms in the plant that ultimately hamper the growth and development
of potato plants [21] and reduce yields and tuber quality [22]. The potato crop originated in
borderline subtropical/alpine climates and performed best in places with warm days and
cool nights. Potato production in tropical and sub-tropical regions is challenging. However,
potato breeders and physiologists are trying to develop thermo-insensitive varieties which
may be suitable for tropical regions [23].



Plants 2022, 11, 2857 3 of 22

Potato cultivation is expanding to non-traditional regions with water-deficient con-
ditions and facing heat stress. In addition, heat and drought spells are becoming more
frequent in temperate zones [12,16]. Thus, an integrated approach is required to under-
stand better the morphological, physiological, biochemical, and molecular network at the
whole-plant level pertaining to drought and heat stress tolerance. This is then used to de-
velop potato cultivars suitable for abiotic stress conditions. This review highlights various
physiological, biochemical, and molecular aspects and responses of potato plants under
tropical conditions where the potato plant is exposed to several types of abiotic stresses.

2. Production and Productivity of Potato Affected by Heat and Drought Stress

Potato crop species are highly prone to different abiotic (high-temperature stress,
drought, salinity, and mineral stress) and biotic stresses (insect and pest attacks) [13,24–26].
Heat stress is a significant issue for temperate countries and potato production locations
in the semi-arid Middle East and the Sub-Saharan, subtropical, and tropical regions [27].
Temperature is the most critical uncontrollable factor affecting potato growth, development,
production, and productivity. Tropical areas experience high-temperature stress, where
plants undergo several anatomical, morphological, physiological, biochemical, and molec-
ular changes. Growth and development are seriously affected, leading to a substantial
decrease in potato production [16]. Due to high temperatures, the environment of the
tropical region alters the morphological features and the physiological and developmental
processes of potato plants. For instance, high temperatures may cause a reduction in the
leaf area index, specific leaf area, size and number of leaves, and canopy development,
an increase in the plant’s lateral branching and height, and a decrease in the number and
size of tubers. The alarming rate of increase in temperature due to climate change causes
more frequent heat stress to plants during the summer and high night temperatures in
the winter, which hampers crop yield and quality in any region of the world [27]. Heat
stress mediates imbalances in source–sink activity, allocation of photoassimilates, necrosis,
and malformation of tubers [27]. Furthermore, the soil temperature in which the potato
is grown affects the process of stolon formation, tuberization, and bulking, ultimately
reducing the tuber yield [28,29].

High-temperature and water stress conditions affect the yield and quality of potato
tubers, where the severity, duration, and timing of both heat and water stress adversely
affect sprout emergence, stolon formation, tuberization, and final yield of the potato
tubers [30]. The potato tuber yield depends on tuber bulking [29], which occurs in the late
stage of growth. The production may decrease due to bulking reduction, which is affected
by heat and water-deficient conditions [28]. As per Obiero et al. [30], the high-temperature
treatment affects the whole plant’s dry matter and potato tuber yield. They reported that
high-temperature treatment (30 ◦C) compared to a control (temperature of 22 ◦C) before
and after tuber initiation leads to 45% smaller tubers (less than 2.5 cm diameter).

Planting time (spring and autumn) affects potato yield [31]. High temperatures in
the subtropical climate, particularly during the spring season, are more detrimental than
autumn because of the combination of low humidity (higher atmospheric evaporative
demand) and higher temperatures. An average yield reduction of 68% and 42% was ob-
served in spring and autumn plantings [22]. This difference may also be due to water
availability during the spring and autumn seasons [32]. Under tropical conditions, high-
temperature stress negatively impacts potato tuber quality and yield through the inhibition
of the transport of photoassimilates to the developing stolons [12]. It was reported by
Fleisher et al. [33] that the optimum temperature for photosynthesis and biomass accu-
mulation in potato is 20 ◦C. Additionally, it was reported that the optimum daily mean
temperature might be as low as 13 ◦C [12]. An increase of every 5 ◦C above the optimum
temperature causes a reduction in the photosynthetic rate by 25%, which ultimately affects
biomass accumulation and, later, the sink activity [15,30,34].

As previously documented, potato production decreases due to heat and drought
stress in most East African countries [35]. Additionally, Jarvis et al. [36] anticipated about
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a 15% reduction in potato yield in Africa by 2030. Across Asia, India and China are at
constant drought and heat stress risk. Moreover, periods of high temperatures and drought
are becoming more frequent in Central and Western Europe. US potato production was also
severely affected due to drought and heat stress during the last 2–3 years. In Mediterranean
regions, the problem of dry spells in potato cultivation is also a major concern [37]. Likewise,
the major potato-growing areas of the world under consistent risk of drought and heat
stress are highlighted in Figure 1.
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Figure 1. The area shown in brown color depicts the major potato-growing areas affected due to heat
and drought stress.

3. Physiological Changes and Responses of Potato Plants under Heat and
Drought Conditions

The changing climate in temperate, subtropical, and tropical regions affects the physi-
ological process of the potato plant [38]. As potato is now adopted for the tropical region,
it faces high-temperature and drought stress. Thus, potato plants grown under these
conditions may have to acclimate to the situation and alter their growth and development
process; however, the final response depends mainly on the intensity of high-temperature
and/or drought stress [39]. The adverse effects of the combination of high-temperature
and drought conditions lead to a reduction in canopy mass of the potato plant, reduction
in photosynthesis and water use efficiency, chlorophyll degradation (Table 1), and an ac-
celeration of leaf senescence [40]. The average optimum daily temperature conditions for
potato stolon formation and tuberization are 15–20 ◦C [8,27,41]. Temperatures above 22 ◦C
have an adverse effect on vegetative, as well as on the reproductive, growth of the potato
plant [33,42]. The tolerance to high-temperature stress in potato depends mainly on some
critical parameters such as the genotype, developmental stage at which it is exposed, level
of stress faced, and the ability to form stolons, initiate tubers, and bulk [15,30,34]. Other
physiological aspects such as anatomical features (morphology of vascular bundles), total
biomass production, respiration, transpiration, carbon partitioning, and the source–sink re-
lationship are dependent on extrinsic, as well as intrinsic, factors of the potato plant [43–45].
Besides physiological responses, biochemical responses are also presented in Table 1.
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Table 1. Physiological and biochemical responses of potato under heat/drought stress.

Trait Response to Tropicalization (Heat/ Drought Stress) Reference

Yield and total biomass production Reduction in both yield and biomass [46]
Root growth Root growth was stimulated under drought stress [46]

Photosynthesis Reduction in the PSII efficiency and ultimately reduction
in photosynthesis [40,47]

Clorophyll and carotenoid content of leaves and tubers Significant reduction in both chlorophyll and
carotenoid content [48]

Membrane stability index (MSI) and cell membrane stability (CMS) Reduction in membrane stability index under heat and
drought stress [40,48]

Relative water content (RWC) Reduced under both heat and water-deficient conditions [40]
Water potential Significant reduction in water potential [49]

Water use efficiency (WUE) Reduction in WUE mainly under drought conditions [49]

Tuber bulking
Reduce dry matter partitioning, reduce tuber filing, increase

the production of secondary tubers, increased
russeting and cracking

[21]

Tuberization High temperature reduces tuberization [16]

HSP20
ATP-independent molecular chaperones inhibit the

irreversible aggregation of denaturing proteins, thus
enhancing the thermotolerance of the plant

[50]

Starch synthesis Heat leads to the production of reactive oxygen species that
interfere with starch synthesis [51]

Sucrose synthesis A decline in sucrose content [47]
Proline content Acts as osmotic agent, protecting plant cells from dehydration [52]

Glycine betaine Acts as osmoprotectant in potato under heat and
drought stress [53]

Sucrose synthase Degradation of sucrose into hexoses [47]

Superoxide dismutase Scavenges superoxide molecule under stress conditions and
prevents oxidative damage in potato [53]

Ascorbate peroxidase Activity increased under heat and drought stress and
provides tolerance in potato [53]

3.1. Anatomy and Morphology

The major challenge for the breeder is to make the potato suitable for the tropical
climate with maintained production [27]. In this direction, when selecting and developing
suitable potato cultivars for these areas, they need to be phenotyped for tolerance/resistance
to various abiotic stresses [54]. The tropicalization of potatoes is mainly affected by heat
and drought stresses, which are known to alter the anatomical structure and morphology
of the potato plant [55,56]. The development of vascular bundles under high-temperature
stress may affect the transport of nutrients and photoassimilates in the xylem and phloem,
respectively [34]. It was noticed that the cultivars with a reduction and enhancement in
the size of the xylem and phloem, respectively, can better withstand high-temperature
conditions. The increased size of the phloem enhances the sink capacity to store more
photoassimilates and convert them into starch, which ultimately increases tuber yield [34].
In the tropical climate, high temperatures lead to the development of tall plant with small
leaves, thin stems, long stolons, increased internodes (elongated internodes), inhibition of
tuber development, and reduction in the ratio of tuber fresh weight to total fresh weight [57].

The leaf is the primary source of potato plants that might be affected in many ways
under various abiotic stresses [42]. Under heat stress (30 ◦C), the leaf area of the potato
plant was reported to reduce by 35% compared to the control (22 ◦C). Several wild cultivars
of potato are known to be cultivated extensively in altitudes between 2000 to 4000 m (above
sea level), where the season is generally represented by long day length, high light intensity,
and cooler temperatures. However, the globalization of potato was achieved by different
voyagers in different parts of the world. The modern cultivars were selected over time
and adopted for long-day conditions. The branching pattern of the shoot in the potato
plant was also reported to be affected under high-temperature stress [30]. The growth of
lateral shoot branches was affected by heat stress. The number of lateral branches and their
diameter were reported to be enhanced under high-temperature stress. The canopy of the
potato plant also changes under high temperatures. As the temperature rises over 23 ◦C,
the number of axillary branches increases, resulting in more leaves and a faster rate of
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senescence. Recent reports suggested that the length of the main branch was reduced under
heat stress, which ultimately leads to the stunted growth of the potato plant (Table 1). The
change in the ratio of growth hormones such as auxin and gibberellins is responsible for
developing lateral and main shoots [58]. Moreover, potato genotypes with the stay-green
trait may better alleviate the adverse effects of heat and drought stresses [59].

The root is the important organ responsible for water and mineral nutrient uptake and
is highly influenced by abiotic stress [60]. The average optimal temperature required for the
growth of roots, tubers, and stolons varies with the growth stages of the plant [8]. The root
is the first organ that senses water-deficient conditions and responds accordingly based
on physiological, biochemical, and molecular phenomena. The root system architecture
and its morphology in potato are significantly affected by both heat and drought stress [61].
The modification of the root architecture occurs by forming more lateral roots and root
hairs [62]. High-temperature stress (33 ◦C) also delays adventitious root initiation in
potato. Water-deficient conditions affect potato root system morphology by increasing the
proliferation of lateral roots, root thickness, inhibition of root elongation, and increasing
root hair formation [63]. Potato cultivars with a deep root architecture may prove beneficial
in combating both drought and high-temperature stress.

3.2. Role of Photoperiod

The photoperiod substantially affects the potato’s developmental stages, from the
emergence through tuber initiation phases. Short photoperiods (10–12 h) enhance the tuber
initiation compared to longer photoperiods (14–18 h). Moreover, it has been previously
documented that the photoperiod has little or no effect after tuber initiation. Thereafter,
temperature plays a crucial role in the tuberization process [31]. Higher temperatures
are inhibitory to tuberization, irrespective of photoperiod, viz., short-day and long-day
conditions, although the adverse effect is much more significant in long photoperiods.
Higher temperatures affect the partitioning of the assimilates by reducing the amount
delivered to tubers and enhancing the content of other parts. These effects are observed
in both long and short photoperiods. The longer photoperiods coupled with heat and
drought stress adversities might significantly delay and reduce tuberization along with
excessive vegetative growth of the haulm [31,33]. Thus, potato crops face a higher yield
reduction in heat and drought stress-affected areas encountering shorter day lengths
(mainly subtropical lowlands).

3.3. Carbon Partitioning and Source–Sink Relationship

Potato is an indeterminate crop with respect to its growth habit, where the vege-
tative growth can continue even after flowering and tuber formation; this reduces the
sink ability and activity [33]. Drought and heat stress also affect the source–sink relation,
carbon partitioning, and potato tuber development [64]. Environmental stress often im-
pacts these parameters, which affects the photosynthetic rate, xylem and phloem transport,
sugar metabolism, and photoassimilate diversion away from sink tissues [43,64,65]. Any
stress during the early stages is particularly damaging because it decreases carbon as-
similation, reduces partitioning, and ultimately impacts tuberization, bulking, and final
tuber production [28]. The relationship between the source and sink can be disturbed by
high-temperature stress, which further delays the process of tuberization and can result
in tuber necrosis and deformities. When the temperature rises above the optimum, the
photoassimilates are translocated away from the tuber [66].

As potato originated in the hills of the Andes, it has the inherent ability to tuberize in
temperature ranges between 14 ◦C to 22 ◦C. Nonetheless, the tuber formation remained
limited to the particular temperature (14 ◦C and 22 ◦C), and accelerated under short-day
conditions [67,68]. It is now well understood that there is more shoot growth with more
consumption of assimilates under high temperatures and, as a result, the tuber yield is
drastically reduced [69,70]. In this context, physiologically efficient potato cultivars capable
of early tuberization (even at relatively high temperatures and extended photoperiods) and
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a higher rate of photoassimilates being translocated to developing tubers may be beneficial.
Variable photoperiods influence tuberization, which may be a micro-evolutionary indicator
of the differential transduction of cell-to-cell signalling molecules under the spatial and
temporal expression of regulatory genes involved in tuberization [71]. According to reports,
the optimal conditions for potato tuberization are high irradiance, low temperature, and a
short photoperiod. It is anticipated that regulatory genes encoding transcriptional activa-
tors or cell-to-cell communication molecules change more rapidly than structural genes.
Increasingly, future studies will focus on identifying the putative regulatory elements in
signal transduction pathways driving potato tuberization [72]. In the signal transduction
pathway, the leaves perceive an adequate environmental cue, which is mediated by phyB
and gibberellins, and then produce a systemic signal that is sent to the underground stolons
to induce tuberization [73]. phyB-mediated perception of gibberellic acid (GA) response
is controlled by a novel arm repeat photoperiod-responsive 1 protein (PHOR1), which
is believed to be a general component of GA-signalling pathways [74,75]. Gibberellins
and cytokinins are the two most important phytohormones that regulate the formation
of potato tubers. GA also plays a function in the photoperiodic control of tuberization,
and its endogenous levels are regulated by sucrose and abscisic acid (ABA). However, at
high concentrations, it inhibits tuber induction in potato [76,77]. Efforts in this direction
are necessary because they can compensate for the crop cycle being shortened due to high
temperatures by utilizing the tropical region’s prevailing long photoperiod.

3.4. Tuber Development

Potato grown under long days with high temperatures may face delayed stolon and
tuber initiation, with a reduction in the partitioning of photoassimilates to the developing
tubers, which ultimately reduces the bulking (the size) and dry matter content (the quality)
of tubers [12,78]. Potato is generally vulnerable to high-temperature stress, and the yield
of the tuber is inversely proportional to the temperature. The optimal temperature for
the growth and development of the haulm of potato plants is 20–25 ◦C, whereas the ideal
temperature for tuberization and tuber growth is 15–20 ◦C [70]. The higher temperature
during the potato growth stages leads to higher yield losses and more incidence of de-
terioration in the quality of tubers. High temperatures above 20 ◦C interfere with the
partitioning of assimilates into the potato tubers, resulting in a low tuber yield. Lower tuber
productivity under tropical regions with high temperatures leads to an increase in higher
sugar retention in leaves, indicating that the translocation of photoassimilates is poor for
the sinks (tubers) [12,79]. One of the reported reasons for this is the distorted phloem due
to high temperatures, which adversely affects the source–sink relationship (mobilization of
photoassimilates to tubers) [34]. Studies on tuber growth and development suggest that,
under high temperatures, there is a reduction in the translocation of photoassimilates to
the tubers and thus a declining production and productivity of potato. Accumulation of
photoassimilates in the tuber tissues increases cell expansion and ultimately causes massive
deposition of starch and storage proteins, thereby making strong storage sinks during the
tuber development and bulking phases [80].

3.5. Photosynthesis

Many studies suggest a reduction in photosynthetic efficiency and tuber yield under
high-temperature and drought stress [70,79,80]. In other studies, it was reported that
temperatures of more than 30 ◦C completely inhibit photosynthesis in potato. Wahid [39]
reported that photosynthesis is the most sensitive process under elevated temperatures.
Under high temperatures, there is impairment in photosynthetic machinery, and other
related physiological functions are often inhibited. The decrease in the photosynthesis rate
caused by heat stress is associated with an increase in non-photorespiratory activities [39].
The key enzyme of carboxylation is RuBisCo, which is inhibited by high-temperature
stress. Salvucci et al. [81] suggested that the reduction in the activity of RuBisCo under
high-temperature stress might be due to the inhibition of Rubisco activation via a rapid
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and direct effect on RuBisCo activase (RCA). The heat stress leads to the denaturation and
aggregation of the RCA protein, which further fails to activate Rubisco. Moreover, under
heat stress, the fluidity of thylakoid increases, which leads to a reduction in the electron
transport in the photosystem II (PS II) and its dislodging [78].

The investigations linking RuBisCo (ribulose-1,5-bisphosphatase) with photosynthesis
reveal that, at elevated temperatures, soluble proteins such as RuBisCo and RuBisCo-
binding proteins are reduced [82]. In leaves, the content of RuBisCo under elevated
temperatures was found to correlate with the decrease in the photosynthetic rate of potato
crop [47]. RuBisCo concentration was found to decrease under high temperatures sup-
plemented by a corresponding decrease in its affinity for carbon dioxide. The effect of
topicalization on potato could result in heat injury, protein synthesis suppression, and a
loss of membrane integrity [83]. Under heat stress conditions, the respiration rate increases
in proportion to the decrease in photosynthesis, and the combined result of these two
processes is a decrease in net photosynthesis [84].

Carboxylation is catalyzed by ribulose bisphosphate carboxylase/oxygenase (Ru-
BisCo), which can constitute up to 50% of the soluble protein in a leaf. Along with carboxy-
lation, the RuBisCo protein is also involved in oxygenase activity. Heat stress can affect
both carboxylation and oxygenation processes. High-temperature stress can enhance the
oxygenase activity of RuBisCo, which leads to an increase in the production of H2O2, which
is toxic to plant cells [85]. Meanwhile, photosynthesis was significantly affected under
drought stress, mediated by the inactivity of stomatal and photosystem components [78].
Water-deficient conditions lead to a decrease in the quantum yield (Fv/Fm), electron trans-
port rate, and photochemical quenching (Qp) [79]. In addition, the stomatal closure under
water-deficient conditions reduces CO2 availability, which hampers the photosynthetic rate.
The decrease in carboxylation efficiency and activity of RuBisCo was also reported under
water stress conditions. Therefore, further study must be conducted with an emphasis on
integrating features that can improve the efficacy of essential activities such as photosyn-
thesis and respiration. This may be effective for the modulation of components that can
also balance the source–sink features in order to achieve higher tuber yields with improved
quality characteristics under tropical conditions [85].

3.6. Senescence

The leaf senescence of the plant was enhanced when exposed to heat, particularly at the
time prior to or at the maturity stage of the plant, due to loss of chloroplastic integrity and
chlorophyll synthesis, inhibition of PSII-mediated electron flow, and destruction of antenna
pigments [86]. The recent report also suggested the same, where cultivars sensitive toward
both high-temperature and water stress conditions show retarded sprout emergence, root
growth, and low water potential, resulting in desiccation and early senescence [55].

3.7. Respiration

One of the critical characteristics affecting potato plant growth under heat stress
conditions is mitochondrial respiration. When the temperature rises above the optimal
temperature, gross photosynthesis is reduced, but normal respiration and photorespiration
rates increase significantly [87,88]. The high respiration rate under elevated temperatures
contributes to lowering potato yields [30,33]. Under high temperatures, the stored starch in
the developing potato tuber is also utilized for respiration, contributing to a substantial
decrease in the production and productivity of potato tubers [39,89]. Additionally, because
of the high temperature, the rapid development pace results in a shortening of the entire
growth cycle. In aggregate, the plant receives less time to collect photoassimilates, resulting
in decreased yields [90].

3.8. Transpiration

Transpiration is another parameter that is strongly affected by heat and drought
conditions in the potato plant. Due to rising temperatures, potato plants experience water
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stress as the plant’s transpiration rate increases, leading to greater demand for water
from the soil. This raises the water requirement of potato crops [15]. If the water is not
limiting, the high-temperature conditions result in a higher rate of CO2 assimilation, but
this usually leads to a significant increase only in above-ground biomass production, with
no net enhancement of photoassimilates portioned into the tubers [47]. The combination
of heat and drought stress affects the transpiration rate significantly by affecting leaf area,
root-to-shoot ratio, the orientation of the leaf, leaf thickness, leaf surface characteristics,
and distribution of stomata on the leaf [55]. Growing potatoes in the tropical region will
be challenging, where the plant will confer higher biomass production with lower tuber
production due to improper allocation of photoassimilates.

4. Biochemical Changes and Responses of Potato Plants

The climate-related changes in temperate in subtropical and tropical regions have
affected various biochemical events and processes in plants. The potato plant perceives
abiotic stress such as heat and drought and responds dynamically by shifting its sugar and
starch metabolism, ionic and osmolyte balance, synthesis of heat shock proteins, home-
ostasis of ROS, and other biochemical pathways [91–93]. Under heat and drought stress,
the biochemical response includes accumulating reactive oxygen species (ROS), damage
to cell membranes, electrolyte leakage, degradation of nucleic acids, and denaturation of
proteins and enzymes [94]. The potato plant develops various strategies to mitigate the
harmful effect of drought and heat stress to defend against damages caused by ROS and
reactive nitrogen species [95]. The enzymatic (superoxide dismutase, ascorbate peroxidase,
peroxidase, and catalase) and non-enzymatic (glutathione, ascorbate, polyphenols, vita-
mins, carotenoids) defence mechanisms effectively scavenge the ROS generated under heat
and drought stress in potato [65,96]. Some of the key biochemical changes and responses in
variable environments are as follows.

4.1. Carbohydrate Metabolism

The optimum temperature for photosynthesis and sugar and starch metabolism in
potato leaves is about 24 ◦C [8]. Carbohydrate metabolism was reported to be severely af-
fected by high-temperature stress, resembling one main condition in the tropical region [45].
During tuber development, sucrose produced by physiologically and photosynthetically
active source leaves is transported to the developing tubers via the phloem [97]. The change
in carbohydrate metabolism due to high-temperature exposure usually causes an increase
in the levels of reducing sugars in the tubers. This ultimately affects the processing-related
quality of potato tubers, as higher levels of reducing sugars adversely affect the chipping
quality of processed potato products, even in processing-grade cultivars [98]. Starch syn-
thase is the rate-limiting enzyme responsible for starch synthesis and its deposition in
tubers [99]. Under high temperatures, the activity of the starch synthase enzyme decreases,
resulting in a slower rate of starch deposition and a slower rate of tuber growth [99]. It was
also reported that increased gibberellins due to high temperatures reduces starch synthase
activity in developing tubers, preventing the sucrose from re-partitioning away from the
tuber. Furthermore, enhanced levels of gibberellin synthesis due to high temperatures also
influence tuber initiation and their further development [100].

During the nighttime, the plant’s sucrose is transported from the leaf and gets stored in
sink tissue (tuber). Sucrose phosphate synthase (SPS) is the enzyme that controls photoas-
similate partitioning by catalyzing the synthesis of sucrose, which ultimately contributes
to the osmotically active driving force for phloem translocation [101]. SPS activity was
increased under high temperatures in potato, whereas its activity is suppressed in tomato
(>40 ◦C/25 ◦C, day/night) [53,102]. Metabolites are found to increase when potato is culti-
vated under high temperatures [103]. Under heat stress, hexose increases significantly in
leaves and conversely decreases in tubers [47]. On the other hand, when sucrose and starch
levels in the tuber were estimated, both metabolites were shown to decrease significantly in
both the tuber and leaves of the potato plant under high-temperature stress. This suggests
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that the efficiency of sucrose-to-starch conversion in tubers is diminished as a result of
decreasing sink strength [47]. Along with the metabolites, it was discovered that some
hazardous compounds increased in concentration under high-temperature circumstances.
For instance, the level of steroidal glycoalkaloid increased, resulting in bitterness in the
tuber [104]. Plant breeders should consider this case when they develop potatoes for
tropical climates.

4.2. Ionic and Osmolyte Balance

Potato plants grown in the tropical region are exposed to heat and drought stress, caus-
ing certain organic compounds of low molecular mass to accumulate. These compounds
are referred to as compatible osmolytes [105,106]. In abiotic stress conditions, the potato
plant accumulates various osmolytes such as sugar, sugar alcohol (mannitol and sorbitol),
proline, and glycine betaine, which also confers tolerance to heat and drought stress [53,63].
They all help maintain the osmotic balance of the cell. The presence of compatible osmolytes
helps cope with the high-temperature and drought stress by scavenging ROS generated
due to stressful conditions [107]. Furthermore, these osmolytes also stabilize the protein
structure, acting like molecular chaperones [108].

Glycine betaine is a soluble-compatible solute that plays an essential role in tolerance
against high-temperature stress [109]. A higher concentration of glycine betaine was
reported in a heat-tolerant cultivar of potato (Kufri Surya) compared to susceptible cultivars
such as Kufri Chipsona 3 [53]. Accumulation of proline leads to protein stabilization. Due to
its metal chelator properties, it acts as a molecular chaperone or chemical protein chaperone.
It also acts as an antioxidative defense molecule that scavenges reactive oxygen species
(ROS) and has signaling behavior to activate specific gene functions that are crucial for plant
recovery from abiotic stresses [110,111]. Additionally, it acts as a supply of carbon, nitrogen,
and energy during periods of water-deficient conditions [49]. As a result, biosynthesis of
osmolytes is controlled, especially during times of stress, so that they can help plants grow
and develop in the tropical climate.

4.3. Heat Shock Proteins (HSPs)

Heat shock proteins (HSPs) are major proteins which act as molecular chaperones
and are the key components responsible for protein folding, assembly, translocation, and
degradation under abiotic stress conditions [112]. As chaperones, these proteins prevent the
irreversible aggregation of other proteins and play a role in the refolding of proteins under
heat stress conditions [113]. The synthesis and accumulation of HSPs under heat stress in
the plant have been shown to provide tolerance against high-temperature stress [114]. HSPs
are categorized into six different families based on their molecular weight and sequence
homology, which include Hsp110 (>100 kDa), Hsp100 (90–100 kDa), Hsp90 (80–90 kDa),
Hsp70 (66–78 kDa), Hsp60 (50–60 kDa), and Hsp20 (15–39 kDa) [115]. Hsp20s in potatoes
(StHsp20) are sensitive and positively regulated under heat stress and they provide ther-
motolerance to potato plants [50]. Hsp90s are reported as a highly conserved molecular
chaperone among all the HSPs, where it is distributed in the cytoplasm, chloroplasts, and
mitochondria [116]. Earlier reports revealed that heat shock cognate 70 (HSc70) expres-
sion was increased in the Désirée cultivar of potato and positively correlated with the
improved tolerance and tuber yield in heat stress conditions [51]. Savić et al. [117] sug-
gested that electrolyte leakage assay in combination with immunoblot measurement of
HSP accumulation under heat stress conditions could be a reliable method for screening
potato genotypes for heat tolerance and identifying heat-tolerant potato cultivars. Other
reports also suggest that the exogenous application of phytohormones such as salicylic
acid in potato microplants showed a higher expression of HSPs that provide tolerance
to high-temperature stress [118]. Thus, HSPs can play a significant role in maintaining
the growth and development of potato plants and tubers under tropical and subtropical
conditions. Therefore, this area holds promising aspects with respect to the ability of potato
plants to cope with high-temperature stress.
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4.4. ROS, RNS, RSS, and Antioxidant System

Under heat stress, reactive oxygen species (ROS) accumulate, which causes severe
oxidative damage to the plant, thus inhibiting growth and development-related activi-
ties [119]. When ROS production increases more than the cellular scavenging capacity,
there is an imbalance in redox homeostasis, resulting in more membrane damage (Figure 2).
Consequently, more electrolytes are leaked and disrupt the functioning of the cell [40]. Be-
sides the ROS, there are other reactive molecules which originate from other elements, such
as nitrogen and sulphur, and they are referred to as reactive nitrogen species (RNS) [120]
and reactive sulphur species (RSS) [121]. Overall, the reactive species viz. ROS, RNS, and
RSS cause oxidative stress-like conditions in the plant or plant part.
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potato plants.

The ROS include hydroperoxyl radical (HO2
•), superoxide anion (O2

•−), alkoxy radi-
cal (RO•), and hydroxyl radical (•OH), and also non-radical molecules such as hydrogen
peroxide (H2O2) and singlet oxygen(1O2). Likewise, RNS include nitric oxide (NO) [120]
and RSS include thiol, disulphide, sulfenic acid, thiosulfinate, and thiosulfonate [122]. They
also act as potential signalling molecules under oxidative stress conditions. The enzymatic
components are involved in scavenging different types of reactive species formed in the
plant under drought and heat stress conditions [120,123]. The antioxidant enzymes such as
SOD, CAT, and APX were reported to increase significantly under heat and drought stress
conditions (Table 1). The potato plant can cope with the increased levels of reactive species
in the cellular system [55,124]. In addition to this, it was reported by Arora et al. [125] that
O2
•− can react with NO, and this leads to the production of peroxynitrite (ONOO–), which

is a powerful oxidant and is involved in post-translational modification of protein through
tyrosine nitration. Researchers need to decipher whether the mitigation of oxidative stress
is caused due to ROS, RNS, and RSS in potato grown in non-conventional tropical areas.
This strategy will help design potato plants that are more suitable and adaptable to the
new environment.

5. Approaches for Adaptation of Potato Plant

Potato plants have insufficient abiotic stress tolerance due to the limited genetic
diversity of present potato cultivars [126]. Thus, in order to withstand varied environmental
stressors, the current commercial cultivars must be modified accordingly. However, little is
known about the distinct molecular pathways involved in potato tuberization in response
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to heat stress. Understanding the role and network of different genes involved in heat
stress resistance requires a full characterization from an agrobiotechnology standpoint.
Under a changing climate, sustainable potato production necessitates an interdisciplinary
strategy that includes innovative technologies, molecular biology, agronomy, breeding,
and agrometeorology.

5.1. Agrometeorology-Based Crop Modelling and Agronomic Practices

With the advances in climatology and information technology, it is now simple to
analyze genotypes by environmental interactions and create crop models [127]. A compre-
hensive model of the growth and development of potatoes called LINTUL-POTATO was
published in 1994. The mechanistic model recreated the early stages of crop development,
such as emergence and leaf growth, as well as the process of light absorption, which contin-
ued until extinction [128]. The aforementioned model was enhanced and improved with
unique computations to investigate tuber quality features such as tuber size distribution
and dry matter concentration in relation to crop environment and management, known
as LINTUL-POTATO-DSS [127]. Statistical analysis and records of weather trends may
be able to assist us in locating new places that are ideally suited for potato cultivation.
Similarly, the DSSAT SUBSTOR-Potato model [129] was used to simulate potato tuber yield
in Indian conditions, suggesting that, if planting is postponed beyond November, all of the
cultivars in the experiment (Kufri Jyoti, Kufri Pukhraj, and Kufri Himalini) are likely to see
a significant decrease in tuber production [130,131]. Out of these cultivars, Kufri Pukhraj
was projected to remain a viable cultivar under subtropical conditions until 2050 and can
be planted until the first week of December. Modulating potato planting time by using
different cropping models might be a strategy to understand the exact date of sowing in
tropical areas.

Potato cultivation under changing climatic scenarios requires improved potato cultiva-
tion techniques. Appropriate agronomic practices such as planting date, soil management,
tillage, mulching, irrigation, intercropping, and superior genotypes tolerant to high tem-
perature and drought can contribute to higher yields [49,132]. Aeration, infiltration, and
nutrient uptake are all things that can be improved by tilling the soil. The soil’s moisture and
temperature are directly related to the yield and quality of potatoes, and these factors can
be controlled by the use of organic and biodegradable mulches [133]. Rykaczewska [134]
demonstrated that two weeks of heat and drought stress during the flowering phase of
potato plants can diminish their yield by more than 35%, which is also a factor for the
development of secondary tuberization. Due to the shallow nature of the root architecture,
potato plants are susceptible to drought [135]. Therefore, improved irrigation techniques
such as drip irrigation can increase potato output and quality traits under abiotic stress.
Moreover, plants exposed to moderate temperatures over a brief period of time can build a
memory for stress tolerance, allowing them to live at temperatures where normal plants
cannot, this process is known as acquired thermotolerance [51]. The acclimatization of
potato plants to 25 ◦C for two hours is connected with changes in the expression of several
heat shock proteins, modifications to the cell wall, abnormalities in hormonal signalling,
and chromatin remodelling. Later, when these plants were exposed to 40 ◦C, their growth
was superior to that of control plants [51]. In addition to the adaptation, which includes
the development of heat-tolerant cultivars, adjusting plant and harvesting time might help
to shift the location of where potato production will be higher. In certain tropical highland
regions, potato growing is limited to higher zones (Puna and Pramo zones of Andes; Nilgiri
hills of southern India) [27,136].

5.2. Exploring Genetic Diversity and Breeding

Due to the fact that thermotolerance is a multigenic trait, it is imperative that appro-
priate methods be utilized in order to evaluate the genetic diversity in both inherent and
acquired tolerance [136,137]. Due to their resilience to pests and diseases and their ability
to adapt to harsh climates, wild potato species are of great interest to potato breeders [138].
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Wild potato species inhabit a wide variety of settings and could be anticipated to have
varying genetic degrees of stress tolerance [137]. Several wild potato species can withstand
high temperatures, including S. kurtzianum, S. sogarandinum, S. chacoense, S. stoloniferum,
S. demissum, and S. berthaultii, and these wild potato species can be utilized in breeding
programs to create heat-tolerant lines [139]. The selection of superior phenotypes or parents
is the most important phase in breeding schemes for crop improvement. According to
Rykaczewska [134], the impacts of heat stress are more detrimental during the early growth
phases. Nevertheless, with the recurrent method of selection, the frequency of desirable
alleles can be increased by selecting the superior genotypes over the base population.
Knowledge of the molecular pathways involved in heat tolerance can serve as a foun-
dation for producing high-yielding, stress-tolerant cultivars through molecular breeding,
transgenic, and genome-editing techniques.

5.3. Molecular and Transgenic Approaches

A complex biochemical pathway and gene network contributes to the plant’s tolerance
to drought and heat stress. Most significantly, tuberization is impaired considerably in
potatoes when heat and drought stress are combined, which is mediated by various tran-
scription factors [140]. The molecular network of various transcription factors, hormones,
and signalling molecules is involved in coping with climatic conditions and changes when
potato plants grow under tropical conditions [55]. The increased expression of starch-
degrading genes under drought and heat stress is one of the detrimental factors involved
in the degradation of potato tuber quality in terms of carbohydrate metabolism [46]. The
tuberization signal in potato is highly dependent on StSP6A, an orthologue of the Ara-
bidopsis protein FLOWERING LOCUS T (FT). StSP6A is highly regulated by elevated
temperatures, and it also affects the accumulation of photoassimilates in the tuber in the
form of starch [141]. The tropicalization of potato will involve various interactions, includ-
ing at the gene level. The future implications of the interactions that can assist in coping
with the harsh environment and resist the negative impact of such an environment need
the attention of researchers.

The transgenics approach has been used to develop tolerance against drought and heat
stress [40]. The genes such as C-repeat Binding Factors/Dehydration-responsive element
binding (CBF/DREB) play an essential role in signal transduction and gene expression
under heat and drought stress in potato plants [52]. They reported that overexpression of
the ScCBFI gene in transgenic Solanum tuberosum from Solanum commersonii results in better
root development and plant growth under water-deficient conditions (Table 2). Targeting
such genes in potato plants can prove beneficial in terms of making the potato plant suitable
for growing in tropical and subtropical regions with minimum effect on its production
and productivity. Other reports on transgenic potatoes showed an increase in the level
of ascorbate in the plant, providing tolerance against water and salt stress. The tolerance
was achieved by overexpression of the Arabidopsis thaliana Dehydroascorbate Reductase
gene (AtDHAR1) in the transgenic potato plant, with 4.5 times more DHAR activity in
comparison to the wild type [142].

Table 2. Role of the different genes influencing various traits during the process of subtropicalization.

Genes Expressed Role of Gene and Molecular Response Reference

DHAR1 Synthesis of ascorbic acid, which acts as a strong antioxidant, protecting chlorophyll against degradation, and
allowing faster removal of H2O2

[142]

DREB1B TF involved in enhancing drought tolerance [49]

ScCBF1
The CBFs bind to the cold/dehydration-responsive regulatory motif (CRT/DRE) and are present in the promoter

of many drought and cold-responsive genes, such as those associated with osmoprotectant, cold-responsive
(COR), and late embryogenesis-abundant (LEA) proteins

[52]

HSPs Molecular chaperones prevent denaturing and aggregation of proteins under heat stress [47]
SAM-DC Mediates the polyamines, spermidine, and spermine involved in providing tolerance against stress [143]
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Table 2. Cont.

Genes Expressed Role of Gene and Molecular Response Reference

StSP6A Master regulator of tuberization and is significantly affected by temperature [16,47,144]
StCOL1 Suppresses tuber formation by activation of FT-like StSP5G repressor [145]

ABRE and DRE/CRT The promoters of drought-tolerant gene. ABRE is a major cis-acting element in ABA-responsive gene
expression. [146]

LEA5 Provides tolerance against drought stress [46]
MYB96 Involved in ABA and auxin cross-talk, increasing lateral root formation [147]

DHAR, Dehydroascorbate reductase; ScCBF1, Solanum commersonii C-repeat Binding Factors; SAM-DC,
S-adenosylmethionine decarboxylases; StCOL1, StCONSTANS-like1; FT, FLOWERING LOCUS T;
CO, CONSTANS; ABRE, ABA-responsive element; DRE, Dehydration-responsive element; CRT, C-RepeaT; LEA,
Late Embryogenesis-Abundant.

As discussed earlier in this section, SP6A is an essential gene that is involved in
temperature-mediated tuberization in potato. The favorable condition triggers the process
of tuberization by perceiving the signal (StSP6A) from leaves and transporting it to stolons.
The tuberization was reported to be suppressed when StSP6A was silenced using RNAi-
based downregulation of this gene, while its upregulation promoted the tuberization [141].
Kloosterman et al. [148] identified CYCLING DOF FACTOR 1 (CDF1), a transcription factor
required for the maturity and initiation of tuber development under long-day conditions.
CDF1 was found to involve direct regulation of SP6A expression. An illustration related to
the regulation of the SP6A gene is presented and described in Figure 3.
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Figure 3. Schematic model of the effect of tropicalization on tuberization. Temperature plays an
important role in the expression of essential genes responsible for tuberization. The master regulator
for tuberization in potato is the FT(StSP6A) gene responsible for tuberization under normal/ambient
temperature conditions. Different TFs and miRNA also control the process of tuberization through
an StSP6A-mediated mechanism. TFs such as CDF1 and StBEL5 upregulate the expression of StSP6A,
whereas miR172 also upregulates this gene, leading to tuberization. However, when the potato is
grown in tropical conditions and is subjected to high temperatures, tuberization is inhibited. An FT
family member, SP5G downregulates the expression of the StSP6A gene. The former SP5G is reported
to be regulated positively by StCOL1 expression. Moreover, miR156 also negatively controls the
expression of StSP6A, which ultimately inhibits tuberization. CONSTANS-LIKE protein 1: StCOL1;
CYCLING DOF FACTOR 1: StCDF1; BELLRINGER-1 LIKE 5: StBEL5.
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TFs such as WRKY, AP2, NAC, DREB, bZIP, and BELL are involved in the activa-
tion/inactivation of various metabolic pathways, plant hormones, and transcriptional and
post-transcriptional regulation under heat and drought stress (Figure 2; Table 2). In potato
plants, 70 and 21 TFs were differentially expressed after short (6 h) and prolonged (3 days)
exposure to heat, respectively [103]. Under short heat exposure, 14 TFs were upregulated
and 56 TFs were downregulated significantly, whereas prolonged heat exposure to potato
plants showed upregulation and downregulation of 7 and 14 TFs, respectively. The analysis
of TFs and the network of the genes in potato helps to gain insight into the molecular
level, working in terms of mechanisms and responses under heat and drought stress
conditions. These parameters mentioned above help to provide an essential knowledge
base for designing potato breeding programs and strategies suitable for tropical and other
non-conventional areas on the globe.

5.4. CRISPR Approach for Molecular Insight and Functional Gene Analysis

Plant genome editing (GE) has advanced rapidly in recent years, opening up new
opportunities and intriguing possibilities for both fundamental research and plant breed-
ing. The type II CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats
and CRISPR-associated protein 9)-mediated GE system from Streptococcus pyogenes has
been widely used by plant scientists. It consists of two parts: the RNA-guided DNA
endonuclease SpCas9 and a single-guide RNA (sgRNA) [149]. It looks for a 5′-NGG-3′

PAM (protospacer-adjacent motif) in the genome, which triggers melting of nearby DNA
and a search for a spacer sequence that matches the 5′ end of a sgRNA. This results in
a double-stranded DNA break (DSB) about 3bp upstream of the PAM, which is caused
by the combined activity of the RuvC and HNH endonuclease domains [150]. NHEJ
(Non-homologous end joining) DNA repair is activated upon a DSB, which can lead to
small indels at the breaking site, which results in gene knockout through frameshift muta-
tions [151]. While most research has focused on the generation of loss-of-function alleles,
novel CRISPR tools, such as the CRISPR-mediated base-editing system, which allow precise
base conversion without the need for donor DNA or the development of a DSB, have re-
cently been created [152]. There have so far been two types of base editors (BEs) discovered
and developed: adenine base editors (ABEs) and cytosine base editors (CBEs). Both of
these types of base editors (BEs) are composed of an RNA-independent Cas9 with impaired
DNA cleavage activity, typically nCas9 (nickase Cas9) for plant crop applications, and a
catalytic domain associated with adenine or cytosine deamination, respectively [153,154].

GE has a lot of potential for improving crops, but it has not been fully realized in
clonally propagated tetraploids such as the potato, despite its widespread use. In potatoes,
CRISPR/Cas experiments have increased tuber starch quality, carotenoid biosynthesis,
glycoalkaloids, and enzymatic browning [155–157]. Functional mutants were generated
to investigate phenotypic and herbicide tolerance differences [158]. Furthermore, the
efficacy of Cas9 prime editing and base-editing tools for tolerance to herbicides in potato
has been successfully established by researchers [159,160]. Additionally, self-compatible
regenerants were generated via Agrobacterium or virus-induced genome editing using
Cas9 (VIGE) [161,162]. However, there are several challenges to CRISPR implementation
in potato.

Only a few potato cultivars are responsive to transformation; others must be exam-
ined in tissue culture for regeneration and transformation. Protoplast transformation
and regeneration from leaf protoplasts might result in somaclonal variation, which can
negatively influence crop growth and development. Transformation techniques such as
agrobacterium, biolistic or particle bombardment, and the floral-dip method have been
used regularly in potato [163]. For CRISPR/Cas in potato, sgRNA dicot-origin promoters
such as Arabidopsis (AtUp)/potato (StU6p)/U3p and plant promoters such as CaMV 35S
are the most often used in protoplasts and Agrobacterium-mediated transformation [164].
Furthermore, the genetically complex tetraploid potato crop, on the other hand, makes it
challenging to utilize the A. tumefaciens-mediated technique to deliver ribonucleoprotein



Plants 2022, 11, 2857 16 of 22

(RNP) complexes and to remove Cas9 from the crop genome through backcrossing or
selfing [165]. Potato breeders are actively striving to re-invent the crop to speed up progress
in understanding the complex genetic characteristics such as quality, yield, and tolerance to
stress. CRISPR/Cas-mediated GE will be a game changer in terms of genetic improvement,
opening up new opportunities for developing a stronger potato breeding pipeline.

6. Conclusions

The potato plant is vulnerable to high-temperature and water-deficient conditions.
Therefore, the high-temperature and drought stress in potato growth and development
lead to alterations in morphological, physiological, biochemical, and molecular responses.
Tuberization is one physiological process that is adversely affected by high-temperature
and water-deficient conditions. In addition, there is a change in shoot growth, reduction
in the root-to-shoot ratio, and increase in the incident of senescence. The biochemical
changes in potato plants under tropical conditions include accumulation of osmolytes such
as proline and glycine betaine, decreased starch accumulation in tubers, increased reducing
sugar content, synthesis of HSPs, generation of ROS, and activation of various protective
and scavenging mechanisms. The network of genes and TFs are involved in response
to stressful conditions at the molecular level. Tuberization is a complex multigenic trait
induced under short-day and low-temperature conditions via the interactions of various
hormones, genes, and TFs. Various TFs such as WRKY, NAC, DREB, ERF, and others play
a role in coping with the heat and drought stress. This role of the StSP6A gene is very
important, as it is responsible for tuberization. Moreover, its expression is temperature-
dependent. These aforementioned traits and genes need to be explored by physiologists
and breeders to develop tolerant cultivars of potato. The selection of early maturing
germplasm is also crucial in breeding programs of potato for short-day conditions. The
use of agrometeorology-based crop modelling and agronomic practices might be useful
under climate change and for particular areas where the potato crops are grown. Exploring
several wild potato species and their genetic diversity with regard to which can withstand
high temperatures and drought can be utilized in breeding programs to create heat and
drought-tolerant lines. Modern genomic tools to develop climate-resilient, transgenic, and
non-transgenic cultivars might be employed for enhanced drought and heat stress tolerance.
Various approaches and their integration are the best possible way to pave the way forward
to enhance the production and productivity in the developing nations of tropical regions.
These strategies will also be a step forward in fulfilling global food and nutritional security.
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