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Microsporidia are obligate intracellular protozoan parasites that cause a wide variety of opportunistic infec-
tion in patients with AIDS. Because it is able to grow in vitro, Encephalitozoon cuniculi is currently the best-
studied microsporidian. T cells mediate protective immunity against this parasite. Splenocytes obtained from
infected mice proliferate in vitro in response to irradiated parasites. A transient state of hyporesponsiveness
to parasite antigen and mitogen was observed at day 17 postinfection. This downregulatory response could be
partially reversed by addition of nitric oxide (NO) antagonist to the culture. Mice infected with E. cuniculi
secrete significant levels of gamma interferon (IFN-g). Treatment with antibody to IFN-g or interleukin-2 (IL-
12) was able to neutralize the resistance to the parasite. Mutant animals lacking the IFN-g or IL-12 gene were
highly susceptible to infection. However, mice unable to secrete NO withstood high doses of parasite challenge,
similar to normal wild-type animals. These studies describe an IFN-g-mediated protection against E. cuniculi
infection that is independent of NO production.

Microsporidia are obligate intracellular parasites that infect
an extremely wide range of hosts in the animal kingdom (4).
They are distinct enough to be placed in a separate phylum,
Microspora (5), and are characterized by the polar filament
which is used to inject sporoplasm into the host cell (51).
Species of microsporidia that infect mammals are unicellular,
gram-positive organisms with mature spores 0.5 to 2 by 1 to 4
mm in diameter (10). Classification is based on size, nuclear
arrangement, mode of division, and association of proliferative
forms within the host cell.

Most of what is known about the biology of microsporidia is
based on the microsporidian Encephalitozoon cuniculi, which
commonly infects rodents and has been found in humans as
well (54). Little is known regarding host immunity to E. cunic-
uli. E. cuniculi was the first mammalian microsporidian suc-
cessfully grown in vitro (43). It infects epithelial and endo-
thelial cells, fibroblasts, and macrophages in a variety of
mammals, including rabbits, rodents, carnivores, monkeys, and
humans (6, 8, 19). In an experimental model, normal mice
infected with E. cuniculi usually express few clinical signs of
disease (35). Conversely, immunodeficient hosts, such as athy-
mic or SCID mice, develop lethal disease after experimental
infection (26, 41). The studies conducted have shown that T
cells are responsible for the prevention of lethal disease. Adop-
tive transfer of sensitized syngeneic T-cell-enriched spleen
cells protected athymic or SCID mice against E. cuniculi chal-
lenges (18, 40). Transfer of naive lymphocytes or hyperimmune
serum fail to protect or prolong the survival of these mice.
Furthermore, E. cuniculi is increasingly being recognized an
opportunistic infection in the individuals with AIDS (19, 50).
Studies by Didier have shown that cytokines released by sen-
sitized T cells activate macrophages to kill E. cuniculi in vitro
(9). However, there are no in vivo data demonstrating the
mechanism of T-cell-mediated protection against this emerg-
ing opportunistic pathogen.

The data herein demonstrate that E. cuniculi infection in the
immunocompetent host induces a strong cellular immune re-
sponse characterized by the production of gamma interferon
(IFN-g). Mice unable to produce this cytokine are susceptible
to infection. Thus, protective immunity induced in the normal
mice is dependent on Th1 type of immune response.

MATERIALS AND METHODS

Mice. Maurice Gately (Hoffman-La Roche) kindly provided a breeding pair of
p402/2 mice on a C57BL/6 background. These mice lack the gene for the p40
chain of interleukin-12 (IL-12) heterodimer and thus are unable to produce
IL-12 (30). Inducible nitric oxide synthase-deficient (iNOS2/2) mice on a
C57BL/6 3 129 background were provided by John Mackmicking and Carl
Nathan (Cornell University Medical School, Ithaca, N.Y.). These mice were
backcrossed for five generations to wild-type C57BL/6 as previously described
(25). The mice were bred under conditions approved by the Animal Research
Facilities at Dartmouth Medical School. Mice deficient in the IFN-g gene and
wild-type C57BL/6 mice were obtained from The Jackson Laboratory, Bar Har-
bor, Maine.

Parasites and infection. A rabbit isolate of E. cuniculi, kindly provided by
Elizabeth Didier (Tulane Medical Research Center), was used throughout the
study. Parasites were grown in rabbit kidney (RK-13) cells (American Type
Culture Collection) which were maintained in RPMI 1640 (Gibco BRL) con-
taining 10% fetal calf serum (HyClone Laboratories). Organisms were collected
from the culture medium and centrifuged at 325 3 g for 10 min. After two washes
with phosphate-buffered saline the parasites were resuspended and injected via
the intraperitoneal (i.p.) route to mice. Unless stated otherwise, mice were
challenged with 107 parasites.

T-cell proliferation. Following euthanasia, the spleens from infected animals
were removed and homogenized in a petri dish, and contaminating erythrocytes
were lysed in RBC lysis buffer (Sigma Chemical Co., St. Louis, Mo.). Cells were
suspended in RPMI 1640 with 10% fetal calf serum and centrifuged for 10 min
at 500 3 g. Cells were cultured at the concentration of 2 3 105/well in 96-well
flat-bottomed plates in a 200-ml volume with 5 mg of concanavalin A (ConA;
Sigma Chemical Co.) per ml or 5 3 103 irradiated spores. After 72 h at 37°C in
5% CO2, [3H]thymidine (0.5 mCi/well; Amersham, Arlington Heights, Ill.) was
pulsed for 8 h to determine DNA synthesis. An automated cell harvester was
used to harvest pulsed splenocytes onto glass filters. The filters were dried, and
incorporation of radioactive thymidine was determined by liquid scintillation.

Detection of cytokine mRNA by quantitative PCR. Splenocytes from E. cunic-
uli-infected animals were collected at days 0, 10, 17, and 24 p.i. (post infection).
RNA from spleen cells was collected by using Trizol (Life Technologies Inc.,
Gaithersburg, Md.) as instructed by the manufacturer. Reverse transcription was
performed with Moloney murine leukemia virus reverse transcriptase (Life
Technologies) and random hexamer primers (Promega, Madison, Wis.). Expres-
sion of mRNAs for IFN-g, IL-10, IL-4, and iNOS was measured by quantitative
PCR using the PQRS quantitative method (36). The splenocytes from uninfected
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mice were used to establish a baseline value of 1.0, against which the level of
message for cytokine in the test mice was quantitated.

Cytokine detection in serum. Serum was collected from the blood of infected
mice and tested for the presence of IFN-g and IL-4 (Endogen, Cambridge,
Mass.) by enzyme-linked immunosorbent assay (ELISA) according to the man-
ufacturer’s instructions.

Measurement of cytokine production in spleen cell cultures. Cytokine pro-
duction in the culture supernatants of the ConA- and parasite-stimulated spleen
cell cultures was measured. Levels of IFN-g were determined by cytokine ELISA
as described above. Nitrite production in the culture supernatants was assayed by
the Greiss reaction (13). Briefly, 100 ml of the culture supernatant was added to
a mixture of 1% sulfanilamide dihydrochloride in 2.5% phosphoric acid and
0.1% napthylenediamine hydrochloride in 2.5% H3PO4, then incubated for 10
min at room temperature, and read with a spectrometer (A570). Nitrite concen-
tration was calculated from a NaNO2 standard curve.

Cytokine depletion assays. Rat anti-mouse IL-10 (Endogen) was used at a
concentration of 40 mg/ml. Control antibody was isotype-specific rat immuno-
globulin G (IgG; Sigma). For IFN-g depletion, mice were treated with rat
anti-mouse IFN-g (XMG6) (3 mg/mouse per week) i.p. starting 2 days prior to
challenge. Control mice received equal amount of rat IgG. Endogenous IL-12
was neutralized by administering 0.5 mg of goat anti-mouse IL-12 (kindly pro-
vided by Maurice Gately) beginning 2 days prior to infection. The antibody
treatment was continued twice weekly thereafter. Control mice were treated with
equal quantity of goat IgG (Sigma).

Statistical analysis. Statistical analysis of the data was performed by Student’s
t test (34).

RESULTS

Antigen-specific proliferation of splenocytes from E. cunic-
uli-infected mice. A time course studying antigen-specific T-
cell proliferation was performed. Splenocytes from E. cunicu-
li-infected mice were isolated at days 10, 17, and 24 p.i., and the
proliferative response to antigenic stimulation was determined.
Antigen-specific proliferation of splenocytes from day 10-p.i.
animals was significantly greater (P 5 0.01) than for uninfected
animals (Fig. 1A). Spleen cells from the infected mice showed
a normal ConA response (Fig. 1A). At day 17 p.i., the spleno-
cytes failed to proliferate in response to antigenic stimulation
(Fig. 1B). To determine whether this was an antigen-specific

downregulation, splenocytes from infected mice were stimu-
lated with mitogen. As with parasite antigen, these splenocytes
failed to proliferate with mitogen (Fig. 1B), possibly due to the
generalized immunosuppression that has been observed during
acute infections in other parasite infections (3, 24, 46). The
immunosuppression was ablated at day 24 p.i., and splenocytes
from the infected animals responded significantly (P 5 0.001)
to antigenic stimulation (Fig. 1C). However, the ConA re-
sponse at this time point, although significantly improved (P 5
0.01), was still significantly lower than for the uninfected con-
trols (Fig. 1C) (P 5 0.04).

NO mediates a role in reduced lymphoproliferative re-
sponse. Nitric oxide (NO) is known to downregulate the host
immune response in wide range of infections. The role of this
molecule in the inhibition of lymphoproliferative response dur-
ing E. cuniculi infection was studied. The NO synthase antag-
onist L-NMMA was added to the day 17-p.i. splenocyte cul-
tures at concentrations known to antagonize NO. Addition of
L-NMMA to the spleen cell cultures significantly neutralized
the suppression in both mitogen (P 5 0.001)- and antigen (P 5
0.05)-stimulated cultures (Fig. 2). Although IL-10 has been
reported to be involved in the immunosuppression in other
models (22, 52), no reversal was observed with antibody to
IL-10 in both the mitogen- and antigen-stimulated conditions.
No difference was observed when rat IgG was added to cul-
tures (data not shown). Culture supernatants obtained from
splenocytes of infected mice at various time points p.i. were
assayed for the production of IFN-g and nitrites. As shown in
Table 1, both IFN-g and nitrite production was greatest in the
culture supernatant at day 17 p.i. Interestingly, this is the time
point at which the splenocytes from E. cuniculi-infected mice
are unable to proliferate in response to both antigen and mi-
togen.

Cytokine profile of E. cuniculi-infected animals. Cytokine
analysis of splenocytes from infected animals was performed by

FIG. 1. Proliferation of antigen (Ag)-specific splenocytes following i.p. infection with 107 spores of E. cuniculi. Pooled splenocytes (n 5 3) were collected at days
10 (A), 17 (B), and 24 (C) postchallenge. Spleen cells were cultured in quadruplicate in the presence of ConA or irradiated spores in 96-well plates. After 72 h of
incubation, proliferation was measured by [3H]thymidine incorporation. The data are representative of two separate experiments. UI, uninfected; inf, infected.

1888 KHAN AND MORETTO INFECT. IMMUN.



quantitative PCR. Message for IFN-g and IL-10 was increased
at day 10 p.i. (Fig. 3A and B). Both cytokines are known to play
an important immunoregulatory role in infectious diseases.
The message levels for these cytokines remained more or less
unchanged at day 24 p.i. The message for IL-4 could not be
detected in the infected animals at any of the time points tested
(data not shown). The iNOS message was undetectable at day
10 p.i. However, at day 17 p.i., we observed severalfold increase
in the message for this molecule, which continued up to day
24 p.i. (Fig. 3C).

Circulating IFN-g and IL-4 levels in the sera of infected an-
imals were determined. Pooled serum from three E. cuniculi-
infected mice assayed for these cytokines. The level of IFN-g in
the serum was elevated at day 10 p.i. (245 6 12 pg/ml). The
cytokine level peaked at day 17 p.i. (1,850 6 65 pg/ml) and
began to taper off by day 24 p.i. (1,235 6 30 pg/ml). In contrast,
no IL-4 was detected in sera from the infected animals. Sera
from control uninfected animals lacked any of these cytokines.

In vivo role of IFN-g in protection against E. cuniculi infec-
tion. To determine whether the increased level of IFN-g was
important in host immunity, a depletion study was performed.
Two days prior to infection, mice were depleted of either IL-12
or IFN-g by treatment with a monoclonal antibody. Antibody
treatment was continued throughout the study. The mice were
infected with parasites via the i.p. route and assessed daily for
evidence of morbidity (development of asciteis) and mortality.
All mice depleted of IFN-g died by day 25 p.i. (Fig. 4); mice
treated with anti-IL-12 antibody died 4 days later. Depletion of
IL-12 most likely resulted in decreased levels of IFN-g. The
delay in time to death between the two different test groups

could be due to other immune modulators stimulating IFN-g
production when IL-12 is depleted.

The importance of IFN-g in the protective immune response
is reported to be mediated by NO production (14, 27, 32).
However, recent studies by others and us have shown a limited
role for this molecule in protection against Toxoplasma gondii
(23, 39). To evaluate the importance of NO in protection
against E. cuniculi infection, iNOS2/2 mice were infected as
previously described. None of these animals died or exhibited
any signs or symptoms of disease throughout the course of
experiment and appeared clinically indistinct from the wild-
type controls (Fig. 5). In contrast, mice lacking the p40 or

FIG. 2. Reversal of E. cuniculi-mediated suppression by an NO synthase antagonist. Pooled splenocytes (n 5 3) from mice infected 17 days earlier with E. cuniculi
were cultured in the presence of ConA (A) or irradiated spores (B) and treated with either 0.5 mM L-NMMA or rat anti-murine IL-10 (40 mg/ml). After 72 h of
incubation, lymphoproliferation was assayed by [3H]thymidine incorporation. The data are representative of two separate experiments. Abbreviations are as in Fig. 1.

TABLE 1. Cytokine production by splenocytes from
E. cuniculi-infected micea

Day
p.i.

Nitrite (nM) IFN-g (pg/ml)

Unstim-
ulated

ConA stim-
ulated

Antigen
stimulated

Unstim-
ulated

ConA stim-
ulated

Antigen
stimulated

0 ND ND ND ND 1,050 6 125 33 6 12
10 ND 1.5 6 0.2 2.0 6 0.4 15 6 2.6 1,164 6 176 145 6 32
17 10.5 6 0.8 12.6 6 1.5 11.5 6 0.7 358 6 38.6 1,560 6 223 1,162 6 120
24 2.6 6 0.3 4.2 6 1.1 5.0 6 0.3 126 6 7.5 1,283 6 144 525 6 65

a A total of 106 pooled splenocytes from mice (n 5 3) at various days p.i. were
cultured in 24-well plates in the presence of ConA or irradiated parasites. After
72 h of incubation, supernatants were collected and stored at 270°C. Superna-
tants were assayed for nitrite production by the Griess reaction and for IFN-g by
ELISA. The data represent means 6 standard deviations of triplicate cultures.
Results of one of two similar experiment are shown. ND, not detected.
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IFN-g gene succumbed to infection. These animals died at
approximately the same time as the antibody-depleted mice.
These results exclude a role of NO in E. cuniculi immunity.

To determine if the susceptibility of the knockout mice was
dose dependent, mice were challenged with a fivefold-higher
dose of parasites. While the IFN-g2/2 and p402/2 mice suc-
cumbed to infection earlier than those challenged with lower
dose, the increase in the size of inoculum made no difference
in the susceptibility of iNOS2/2 and parental wild-type mice
(data not shown). These animals survive for the duration of the
experiment. Gene knockout animals have been shown to be
able to compensate for the loss by alternate redundant mech-
anisms (7, 29). Although less likely, it is possible that iNOS2/2

mice are protected against E. cuniculi infection by an IFN-g-
independent mechanism. To rule out this possibility, both mu-
tant and parental wild-type animals were infected with 107

parasites as described earlier. The infected animals were treat-
ed with anti-IFN-g antibody starting 2 days prior to infection.

Both the iNOS2/2 and wild-type mice depleted of IFN-g suc-
cumbed to infection at almost the same time after challenge
(Fig. 6). None of the mice treated with control antibody died
during the period of experimentation.

DISCUSSION

E. cuniculi, previously observed in laboratory animals, is
considered a zoonotic infection (8). Complications due to E. cu-
niculi infection have been found in immunocompromised pa-
tients (44). Human immunodeficiency virus (HIV)-infected pa-
tients coinfected with E. cuniculi have a wide range of organ
involvement, including liver failure, pneumonitis, sinusitis, and
granulomatous liver necrosis (6). E. cuniculi is closely related
to other microsporidia, including Encephalitozoon intestinalis
and Encephalitozoon hellum, which are also associated with
disseminated infection in HIV-infected individuals (5).

The immune responses generated during natural E. cuniculi
infection are not well studied. Currently available literature
suggests that T cells play a very important role in protection
against the parasite (18, 41). In this report, induction of strong
cellular immune response in E. cuniculi-infected host is dem-
onstrated. T-cell proliferation and production of immune cy-
tokines p.i. characterize this response.

The role of T-cell immunity against E. cuniculi infection has
been described by other laboratories (26, 40). In the present
study, antigen-specific proliferation of splenocytes from mice
infected 10 days prior was observed. This response was fol-
lowed by a period of transient immunosuppression, character-
ized by a low proliferative index to both antigen and mitogen.

FIG. 3. Cytokine mRNA expression of splenocytes following E. cuniculi in-
fection. Splenocytes from E. cuniculi-infected mice (three per group) were har-
vested at various time points (days 0, 10, 17, and 24) p.i. mRNA expression for
IFN-g (A), IL-10 (B), and iNOS (C) was assayed by reverse transcription-PCR.
The differences in transcriptional levels for the genes are expressed relative to
day 0 (assigned as 1). The cDNA concentration examined at each time point was
standardized to the HPRT mRNA level (not shown).

FIG. 4. Neutralization of IFN-g and IL-12 in E. cuniculi-infected mice. (A)
C57BL/6 mice (six per group) were infected i.p. with 107 spores of E. cuniculi and
treated with antibody to IFN-g (3 mg/mouse) weekly at 2 days prior to infection.
The control animals were injected with an equal amount of rat IgG (RIgG). (B)
C57BL/6 mice (six per group) were treated with 0.5 mg of goat anti-mouse IL-12
twice weekly beginning two days prior to infection or an equal volume of goat
IgG (GIgG). The animals were observed daily for morbidity or mortality. The
study was performed twice, with similar results.
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Lymphocyte proliferation was restored by day 24 postchal-
lenge. Earlier studies by Didier and Shadduck have demon-
strated that spleen cells from mice infected 1 week earlier ex-
press a significantly lower mitogenic response (11). However,
downregulation of both mitogenic and antigenic responses at
day 17 p.i. is reported here. The differences between our find-
ings and those of Didier and Shadduck could be attributed to
the different mouse strains used in these studies. Variation in
immune response, depending on the strain of mice, has been
reported with other infectious disease models (28, 33). Tran-
sient periods of lymphocyte hyporesponsiveness have also been
described for other parasitic infections (22, 46). During murine
T. gondii infection, the period of lymphocyte hyporesponsive-
ness persists from days 7 to 14 p.i. (17). Infection with Neo-
spora caninum results in immunosuppression which is shorter
in duration.

The principal mechanism for the downregulatory response
appears to be via induction of NO. Interestingly, maximal im-
munosuppression is observed at day 17 p.i., when levels of both
IFN-g and nitrite production are highest in spleen cell cultures.
This also coincides with the high serum IFN-g levels in infected
animals. No IL-4 was detected in sera of infected mice. Our
findings are similar to those reported recently for murine sal-
monellosis infection (42). Bacterial challenge was followed by
NO-mediated immunosuppression which was neutralized by
IFN-g depletion. NO has also been demonstrated to be an im-
portant immunoregulatory molecule in, for example, plasmo-
dium (38), T. gondii (3, 22), N. caninum (24), and Trypanosoma
brucei (46) infections. Treatment of spleen cell cultures with
L-NMMA, an inhibitor of NO synthase, restores approximately

50% of the proliferative response by day 17-p.i. mice. The re-
versal of transient lymphocyte hyporesponsiveness was ob-
served under both mitogen- and antigen-stimulated conditions.

Apart from its downregulatory role in lymphoproliferation,
the microbicidal activity of NO against intracellular pathogens
is well documented (15, 21). The release of NO is mediated by
a key Th1-type cytokine, IFN-g (20, 37). This cytokine plays a
critical role in protective immunity against wide variety of
intracellular pathogens, including viruses, bacteria, and para-
sites (47, 49, 53). In the present study, antibody depletion of
IFN-g or IL-12, the cytokine important for the induction of
IFN-g, resulted in mortality of E. cuniculi-infected mice. Stud-
ies have shown that IFN-g knockout mice challenged with
E. intestinalis, a parasite closely related to E. cuniculi, develop
a chronic disease, whereas parental wild-type animals are able
to clear the infection (1, 12). The IFN-g-mediated protection is
believed to be primarily dependent on the cytokine’s ability to
activate macrophages (52). Following a cascade of complex
molecular events, including costimulation with tumor necrosis
factor, activated macrophages release NO (14). In vitro killing
of E. cuniculi by IFN-g-activated macrophages has been re-
cently reported by Didier (9). Addition of L-NMMA to the
cultures blocked the killing of the parasites, suggesting that the
effect was mediated by NO. Based on these findings, it can be
postulated that the absence of NO would result in loss of pro-
tection against the parasite. However, iNOS2/2 mice, which
are unable to make NO through the inducible pathway, sur-
vived a very high dose of challenge, similar to the wild-type

FIG. 5. Survival of gene knockout animals following E. cuniculi challenge.
Knockout mice on a C57BL/6 background and the parental wild-type (WT)
animals (six per group) were infected i.p. with 107 spores of E. cuniculi (A), and
mortality was monitored on a daily basis (B). The study was performed twice,
with similar findings.

FIG. 6. Depletion of IFN-g in iNOS2/2 animals infected with E. cuniculi.
Parental wild-type (WT) C57BL/6 (A) and iNOS2/2 (B) mice (six per group)
were treated with anti-IFN-g antibody 2 days prior to challenge as described for
Fig. 5. The control animals were injected with an equal amount of rat IgG. The
animals were monitored daily for survival.
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animals. In contrast, mice lacking the IFN-g or IL-12 gene
were unable to survive infection with a fivefold-lower dose.

The mechanism of host protection against E. cuniculi, as for
other intracellular pathogens, appears to be dependent on IL-
12 and IFN-g. However, while in other infectious agents IFN-
g-mediated immunity is dependent on the production of NO,
such does not seem to be the case with E. cuniculi. These
findings are similar to those presented in a recent report on
murine toxoplasmosis, where vaccine-based immunity was
found to be independent of NO (23). Although macrophage
activation and subsequent release of NO are among the im-
portant parasiticidal effects of IFN-g, other considerations are
the enhancement of class I and class II expression on antigen-
presenting cells, resulting in greater proliferation of T cells (2,
31). A role of IFN-g in the induction of CD81 T-cell responses
has been reported for viral systems (45, 48). It is likely that in
the absence of this cytokine, T-cell responses are compro-
mised, leading to inappropriate protection against infection.
Further studies exploring the mechanism of T-cell protection
against the parasite are under way. Alternatively, iNOS2/2

mice may be protected by an IFN-g-dependent redundant
pathway as has been recently described for influenza virus (16).
Identification of these pathways will be beneficial in under-
standing the host immune response against this emerging op-
portunistic infection in the HIV-infected population (6).
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