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Abstract: Background and Aims: Intrahepatic mononuclear phagocytes (MPs) are critical for the
initiation and progression of liver fibrosis. In this study, using multiplexed digital spatial protein
profiling, we aimed to derive a unique protein signature predicting advanced liver fibrosis. Methods:
Snap-frozen liver tissues from various chronic liver diseases were subjected to spatially defined
protein-based multiplexed profiling (Nanostring GeoMXTM). A single-cell RNA sequencing analysis
was performed using Gene Expression Omnibus (GEO) datasets from normal and cirrhotic livers.
Results: Sixty-four portal regions of interest (ROIs) were selected for the spatial profiling. Using
the results from the CD68+ area, a highly sensitive and specific immune-related protein signature
(CD68, HLA-DR, OX40L, phospho-c-RAF, STING, and TIM3) was developed to predict advanced
(F3 and F4) fibrosis. A combined analysis of single-cell RNA sequencing data from GEO datasets
(GSE136103) and spatially-defined, protein-based multiplexed profiling revealed that most proteins
upregulated in F0–F2 livers in portal CD68+ cells were specifically marked in tissue monocytes,
whereas proteins upregulated in F3 and F4 livers were marked in scar-associated macrophages
(SAMacs) and tissue monocytes. Internal validation using mRNA expression data with the same
cohort tissues demonstrated that mRNA levels for TREM2, CD9, and CD68 are significantly higher
in livers with advanced fibrosis. Conclusions: In patients with advanced liver fibrosis, portal MPs
comprise of heterogeneous populations composed of SAMacs, Kupffer cells, and tissue monocytes.
This is the first study that used spatially defined protein-based multiplexed profiling, and we have
demonstrated the critical difference in the phenotypes of portal MPs between livers with early- or
late-stage fibrosis.

Keywords: multiplexed digital spatial protein profiling; protein signature; liver fibrosis; single-cell
analysis; scar-associated macrophage
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1. Introduction

Liver fibrosis can eventually progress to cirrhosis, which is a major concern that
causes approximately 2% of deaths globally [1]. Non-resolving liver injury or liver fibrosis
can cause cirrhosis, a condition that can progress to hepatocellular carcinoma. Further-
more, decompensated liver cirrhosis is accompanied by serious complications resulting
from portal hypertension and/or opportunistic infections and leads to a shorter life ex-
pectancy and a deterioration in the quality of life [2]. In an effort to alleviate the burden of
chronic liver disease, many studies have sought to find novel biomarkers of advanced liver
fibrosis [3]. A very recent study from our group also presented a promising immune-related
gene signature for predicting advanced fibrosis [4]. Although several approaches to reduce
fibrosis are still under investigation, no drug has yet been demonstrated to be effective in
reversing fibrosis.

Liver fibrosis involves many non-parenchymal cells (NPCs) including immune cells,
endothelial cells, and mesenchymal cells [5]. These cells interplay with each other in
scarring tissue, also known as the fibrotic niche. Among immune cells, intrahepatic
mononuclear phagocytes (MPs) are thought to play a crucial role in exacerbating hep-
atic inflammation and fibrosis. The mononuclear phagocytic system (MPS) is comprised
of circulating monocytes, dendritic cells, and tissue-resident macrophages, also known as
Kupffer cells (KC) in the liver [6]. KCs, which reside in hepatic sinusoids, are ontogenically
different from other circulating monocytes. Originating from the embryonic yolk sac, they
are capable of self-renewing independently of circulating monocytes [7]. KCs play an
important role in innate immunity as gatekeepers and drive the inflammatory response to
liver injury. By contrast, circulating monocytes are likely dispensable for replenishing intra-
hepatic macrophages in homeostasis. However, in the setting of hepatic inflammation, a
massive infiltration of monocyte-derived macrophages (MoMFs) to the liver is triggered [8].
MoMFs, which originate from bone marrow, are recruited from the portal triad to the
injured liver by cytokines or chemokines secreted by activated KCs, including IL-1β, tumor
necrosis factor α, CCL2, and CCL5 [9]. As the inflammation progresses, MoMFs differenti-
ate into pro-fibrogenic TREM+ CD9+ scar-associated macrophages (SAMacs) and contribute
to the scarring process, which leads to liver fibrosis [10]. SAMacs are reported to play a
critical role in the initiation, progression, and/or resolution of liver fibrosis and continue
to play a role in the fibrotic liver while fibrosis proceeds [11,12]. Overall, these findings
suggest that MPs play a critical role in the process of liver fibrosis, thus it is feasible to find
out biomarkers based on the MPs-associated transcriptomes.

Recently, single-cell RNA sequencing (scRNA-seq) has improved our understanding
of cellular diversity and function in liver diseases. Hence, an atlas of liver NPCs has
been proposed in various studies by applying single-cell RNA-sequencing in vitro and
in vivo [13–16]. Ramachandran et al. reported a discrepancy in NPC phenotypes between
normal liver cells and cirrhotic liver cells from humans [12]. In addition to the contribution
of single-cell analysis in the field of molecular biology, spatial transcriptomics technology
has also enhanced perspectives in intrahepatic molecular biology. Digital spatial profiling
(DSP) (Nanostring GeoMXTM) is a spatially-defined protein-based multiplexed profiling,
which has recently been developed for detecting RNA and/or proteins in regions of interest
(ROIs) [17]. DSP is capable of detecting single cell sensitivity within a ROI at a protein
level using an antibody readout and has been used in various cancer-based studies [18].
Recently, a study was conducted using a combined modality for Nanostring GeoMXTM

DSP and gene expression analysis, which yielded better predictive values for detecting
the response rate to immunotherapy for melanoma and opened up new possibilities for
this field [19].

Despite these technological advances, no study has explored the phenotypes of in-
trahepatic portal MPs in different stages of liver fibrosis. Here, using such a combined
modality, namely multiplexed digital spatial profiling and single-cell RNA-sequencing, we
aimed to identify the phenotypes of portal MPs according to the fibrosis stages and find
out the potential protein biomarkers for advanced fibrosis.
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2. Materials and Methods
2.1. Patients

This study included non-tumor liver tissues from 83 patients who underwent surgical
resection for hepatocellular carcinoma. All tissues were obtained between 1996 and 2015 at
the Ajou Medical Center (AjouMC) in Suwon, Republic of Korea. The inclusion criteria were
as follows: (1) non-tumor liver tissues with chronic liver diseases and (2) tissues collected
during surgical procedures, such as liver resection. Chronic liver disease was defined
according to the recently introduced EASL guideline [20] as follows: a decreased liver
function caused by chronic inflammation from any source, including chronic hepatitis B and
C, alcoholic and non-alcoholic fatty liver disease, and other etiologies that can cause chronic
liver inflammation. Chronic hepatitis B (CHB) was defined as the presence of hepatitis B
surface antigens for more than 6 months, and a chronic hepatitis C (CHC) infection was
defined as the presence of HCV RNA for more than 6 months. The retrospective study
protocol was approved by the Institutional Review Boards of Ajou Medical Center (AJIRB-
BMR-KSP-18-444) and The Catholic University of Korea (XC20EEDI0034). The fibrosis
stages of every tissue sample enrolled in this study were determined by one pathologist
(E.S.J), using the METAVIR scoring system.

2.2. RNA Extraction and Gene Expression Assay

Total RNA was extracted from the liver tissues using a RNeasy Mini Kit (QIAGEN,
Hilden, Germany) with DNase I treatment (QIAGEN). Gene expression profiles were
analyzed using nCounter MAX (NanoString Technologies, Seattle, WA, USA). The nCounter
PanCancer Immune Profiling Panel (NanoString Technologies) was used for gene set
profiling, as previously described [4].

2.3. Tissue Microarray (TMA) Construction

TMAs were constructed using 2-mm diameter cores punched from formalin-fixed,
paraffin-embedded (FFPE) blocks. The TMA blocks were sectioned 5-µm-thick. Six TMA
slides were constructed with 15 cores placed in a 5 × 3 arrangement on each slide.

2.4. Digital Spatial Profiling (DSP) Assay

Protein expression profiles were analyzed using GeoMx DSP (NanoString Technolo-
gies, Seattle, WA, USA). The TMA slides were stained with a mixture of detection and
morphological markers. Morphological markers included Syto13 for nuclei, CD68 for
macrophages, CD3 for T cells, and alpha-SMA for smooth muscle. The detection antibodies
comprised one core panel and six modules of the GeoMx assay (GeoMx immune cell
profiling panel, GeoMx io drug target module, GeoMx immune activation status mod-
ule, GeoMx immune cell typing module, GeoMx pan-tumor module, GeoMx cell death
module, and GeoMx MAPK signaling module). In total, 88 ROIs were selected around
the portal tract. Each ROI was divided into CD68+, CD3+, and SMA+ areas. Probes at-
tached to the detection antibodies were collected sequentially from the CD68+, CD3+, and
SMA+ areas.

2.5. Selecting ROIs for Establishing the Protein Signatures

CD3 expression levels were determined using the fluorescence intensity observed
in the GeoMx analysis and the median value was used to classify the ROIs into “inflam-
matory” and “non-inflammatory”. We excluded inflammatory ROIs because the pheno-
types of the immune cells may not actually reflect the fibrogenesis process but the liver
injury process.

2.6. Analysis of DSP Data and Validation of the Protein Signatures

The left part of the Figure 1 shows a flowchart of protein signature development.
Differentially expressed proteins were analyzed by comparing fibrosis stages 0, 1, 2, 3,
and 4 in CD68+ areas of samples. Of the differentially expressed proteins, those that
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were significantly different in the logistic regression analysis were included in the protein
combination. For the derivation of protein signatures, logistic regression coefficients
for each protein were identified and weighted according to protein expression values.
Candidate protein signatures (AUC > 0.85, accuracy > 90%, p < 0.05) were validated by
k-fold cross-validation to identify the optimal protein combination. The patients were
randomly separated two-fold (training and test sets), 300 times.

Figure 1. Flow chart of the DSP analysis and the single cell-DSP matching.

2.7. Single-Cell RNA Sequencing Analysis

The right part of Figure 1 depicts a flow diagram of the scRNA-seq analysis. The
analysis was performed using the GSE136103 dataset and the Seurat package version 4.0.5
(https://satijalab.org/seurat/index.html accessed on 1 January 2022). Pre-processing
followed the GSE136103 method. For shared nearest neighbor clustering, variable fea-
tures were determined using the variance stabilizing transformation (VST) of the selection
method and 2000 variable counts. After scaling the data, a principal component analysis
(PCA) was performed using the identified variable features. With the analyzed principal
components, the optimal dimensions were analyzed using an elbow plot. According to
the determined dimensions and principal components, single cells were clustered and
visualized as a t-distributed stochastic neighbor embedding (t-SNE) graph. Clusters were
identified using markers used to divide the clusters. Primary clustering was performed
using data from five healthy and five cirrhotic patients. Secondary clustering was per-
formed using cells presumed to be MPs. To identify the distribution in which cells express
genes that code for differentially expressed proteins detected by DSP, the correspond-
ing genes were marked in the secondary cluster using SCINA (semi-supervised category
identification and assignment).

2.8. Statistical Analysis

Continuous data are presented in means with a standardized deviation and categorial
variables are expressed as number and percentage. The categorial variables between fibrosis
stage and clinicopathological variables were assessed using the chi-squared test or Fisher’s

https://satijalab.org/seurat/index.html
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exact test and continuous variables between groups were evaluated using a Wilcoxon
rank-sum test. The predictive accuracy of the threshold values for classifying fibrosis
stages 0–2 and stages 3 and 4 was assessed using a receiver operating characteristic (ROC)
curve analysis. The independence of the protein signature was analyzed using a logistic
regression analysis of the protein signature and clinicopathological variables. Variables
with p values less than 0.1 were included for the multivariate logistic regression analysis.
The statistical significance was set at p < 0.05 (two-tailed). All statistical analyses were
performed using R version 3.3.3 (R Development Core Team, https://www.r-project.org/
accessed on 16 February 2022).

3. Results
3.1. Patient Characteristics

Of the 88 ROIs, 64 with a low CD3 expression were presumed to be “non-inflammatory”
regions, whereas 24 ROIs with a high CD3 expression were classified as “inflammatory”
regions (Figure 1). The baseline characteristics of the enrolled patients are shown in Table 1.
A total of 31 ROIs from the enrolled patients were classified as having early-stage fibrosis
(seven as F0, 17 as F1, and seven as F2), and 33 ROIs were classified as having advanced
fibrosis (15 as F3 and 18 as F4). The enrolled patients were predominantly male, and the
mean ages were 54.23 and 50.91 years for patients with fibrosis stages 0–2 or stages 3–4,
respectively. The most common etiology of chronic liver disease was CHB, which accounted
for 67.74% and 75.76% of patients with fibrosis stages 0–2 or stage 3–4, respectively. Be-
cause nucleotide/side analogs for HBV therapy are reimbursed for patients with HBV
DNA > 2000 IU/mL during cirrhosis in Korea, a larger proportion of patients with ad-
vanced fibrosis received antiviral therapy compared to those with early fibrosis (9.68% vs.
24.24%, p = 0.2255). There were no significant differences between the early and advanced
fibrosis groups regarding albumin, AST, ALT, and platelet levels.

Table 1. Baseline characteristic of enrolled patients.

Fibrosis Stage 0–2
(N = 31)

Fibrosis Stage 3–4
(N = 33) p Value **

Sex 0.322 #
Male 20 (64.5) 26 (78.8)

Female 11 (35.5) 7 (21.2)
Mean age (±SD) 54.2 (±11.3) 50.9 (±8.2) 0.186 $

Etiology 0.586 ˆ
CHB 21 (67.7) 25 (75.8)
CHC 2 (6.5) 0 (0.0)

Alcohol 3 (9.7) 2 (6.1)
Others 5 (16.1) 6 (18.2)

Diabetes 6 (19.4) 11 (33.3) 0.326 #
BMI 0.085 #

≤25 kg/m2 25 (80.7) 19 (57.6)
>25 kg/m2 6 (19.4) 14 (42.4)

ALT 1.000 #
≥31 (F), ≥41 (M) IU/L 12 (38.7) 13 (39.4)

AST 1.000 #
≥31 (F), ≥37 (M) IU/L 19 (61.3) 20 (60.6)

GGT (−5) (−1) 0.640 #
≥50 (IU/L) 18 (58.1) 25 (78.1)

Albumin 0.644 #
<4.0 g/dL 14 (45.2) 12 (36.4)
Platelets 0.543 #

<150 × 109/L 9 (29.0) 13 (39.4)
Cholesterol (mmol/L) (−2) 0.942 #

≥200 mg/dL 5 (16.1) 7 (21.2)
Antiviral treatment 3 (9.7) 8 (24.2) 0.226 #

Fibrosis
Stage 0 7 (22.6) 0 (0.0)
Stage 1 17 (54.8) 0 (0.0)
Stage 2 7 (22.6) 0 (0.0)
Stage 3 0 (0.0) 15 (45.5)
Stage 4 0 (0.0) 18 (54.6)

Data are presented as N (%), mean ± SD. ALT, alanine aminotransferase; AST, aspartate aminotransferase;
BMI, body mass index; chronic hepatitis B, CHB; chronic hepatitis C, CHC; gamma glutamyl transferase, GGT;
SD, standard deviation. # Chi squared test; ˆ Fisher’s exact test; $ Student’s t-test. ** p-value < 0.01.

https://www.r-project.org/
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3.2. Multiplexed DSP of Protein Expression Level according to the Fibrosis Stage

Representative ROIs stained with CD3, CD68, and SMA according to the fibrosis stage
are depicted in Figure 2A. A volcano plot for protein marker expression is depicted in
Figure 2B. The figure compares protein expression levels in early (F0, F1, and F2) and
advanced (F3 and F4) fibrosis. The results are summarized in Table 2. Moreover, CD68 and
HLA-DR were upregulated 1.50-fold and 1.32-fold higher in advanced fibrosis compared
to early-stage fibrosis. In contrast, protein markers other than CD68 and HLA-DR, such as
phospho-c-RAF, stimulator of interferon genes (STING), OX40 ligand (OX40L), V-domain
IgG suppressor of T cell activation (VISTA), pan RAS, and T cell immunoglobulin and
mucin domain-containing protein 3 (TIM3) were downregulated in fibrosis stages 3 and 4,
with fold changes of up to 2.65 (Table 2).

Figure 2. Multiplexed DSP of protein expression level according to the fibrosis stage. (A) Represen-
tative ROIs according to the fibrosis stage. Each core was stained with CD3 (red), CD68 (yellow),
and SMA (green) antibodies. (B) Volcano plot describing the differentially expressed proteins in
portal CD68+ areas between fibrosis stages 0–2 and stages 3–4. Proteins that are highly expressed in
early-stage fibrosis are indicated by red dots (TIM3, pan-RAS, OX40L, and STING), whereas proteins
that are highly expressed in advanced stage fibrosis are indicated by blue dots (HLA-DR and CD68).

Table 2. List of the differentially expressed proteins according to the fibrosis stages (F0–2 vs. F3–4).

SEQ Protein N Coef
Logistic

Regression
p-Value

Wilcoxon Test
p-Value Fold Change F0–2

(N = 31)
F3–4

(N = 33)

1 CD68 64 0.00650 2.78 × 10−2 1.96 × 10−2 1.50 118.62 178.04
2 HLA.DR 64 0.02140 4.62 × 10−2 3.83 × 10−2 1.38 35.41 48.82
3 Phospho.c.RAF 64 −1.06091 4.96 × 10−2 4.43 × 10−2 −1.27 1.23 0.97
4 Cleaved.Caspase.9 64 −0.10881 3.22 × 10−2 2.59 × 10−2 −1.28 14.62 11.46
5 CD127 64 −0.48734 2.09 × 10−2 1.57 × 10−2 −1.29 3.77 2.93
6 ARG1 64 −0.00693 4.21 × 10−2 3.52 × 10−2 −1.31 200.13 152.53
7 Beta.2.microglobulin 64 −0.11174 2.84 × 10−2 2.32 × 10−2 −1.31 12.67 9.63
8 X4.1BB 64 −1.28366 1.77 × 10−2 1.22 × 10−2 −1.35 1.41 1.04
9 LAG3 64 −0.94575 4.71 × 10−2 4.05 × 10−2 −1.37 1.17 0.85

10 B7.H3 64 −0.07086 3.41 × 10−2 2.50 × 10−2 −1.46 19.21 13.17
11 VISTA 64 −0.41498 2.02 × 10−2 1.27 × 10−2 −1.50 3.58 2.39
12 Tim.3 64 −0.50608 1.91 × 10−3 3.18 × 10−4 −1.51 5.56 3.68
13 pan.RAS 64 −1.75375 1.46 × 10−3 6.02 × 10−4 −1.70 1.69 1.00
14 OX40L 64 −1.13933 8.75 × 10−3 1.76 × 10−3 −2.60 2.69 1.03
15 STING 64 −0.09585 8.76 × 10−3 4.27 × 10−3 −2.65 19.19 7.26

Abbreviation: CD68, cluster of differentiation 68; HLA.DR, human leukocyte antigen-DR isotype; ARG1,
arginase 1; LAG3, lymphocyte activation gene 3; B7.H3, B7 homolog 3 protein; VISTA, V-domain IgG sup-
pressor of T cell activation; Tim.3, T cell immunoglobulin and mucin domain-containing protein 3; OX40L, OX40
ligand; STING, stimulator of interferon genes.
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3.3. Protein Signatures for the Advanced Fibrosis Derived from the DSP Analysis

Using the DSP results from the CD68+ area, we identified unique immune-related
protein signatures that reflect the advanced fibrosis. Table 3 shows the candidate protein
signatures derived from the DSP. Of the five candidate protein signatures, one that was
composed of the genes CD68, HLA-DR, OX40L, phospho-c-RAF, STING, and TIM3 showed
the highest positive predictive value for advanced fibrosis, with an AUC in the ROC curve
of 0.873 (0.791–0.955). The positive predictive value of the developed protein signatures
was 93.10, and the negative predictive value was 82.86. The sensitivity and specificity of
this protein signature were 81.82% and 93.55%, respectively (Table 3). Next, we validated
the protein signature in the CHB group and non-CHB group. In the CHB subgroup, the
AUC in the ROC curve of the protein signature was 0.846 (0.741–0.950) and the p value for
the logistic regression analysis was 2.53 × 10−4. In the non-CHB subgroup, AUC in the
ROC curve was 0.950 (0.849–1.000) and the p value for the logistic regression analysis was
0.052 (Supplementary Materials Figure S1).

Table 3. Candidate protein signatures derived from DSP.

SEQ Protein p_Value AUROC Sensitivity Specificity Accuracy PPV NPV

1 CD68_HLA.DR_OX40L_Phos
pho.c.RAF_STING_Tim.3 1.16 × 10−6 0.873 81.82 93.55 87.50 93.10 82.86

2 ARG1_B7.H3_CD127_CD68_HLA.DR
_ OX 40L_pan.RAS_STING_Tim.3 5.19 × 10−7 0.894 87.88 83.87 85.94 85.29 86.67

3 B7.H3_CD68_HLA.DR_OX40L_Phos
pho.c.RAF_STING_VISTA 5.19 × 10−7 0.874 87.88 83.87 85.94 85.29 86.67

4 Beta.2.microglobulin_CD127_CD
68_HLA.DR_OX40L_Tim.3 5.06 × 10−7 0.878 84.85 87.10 85.94 87.50 84.38

5 CD68_HLA.DR_OX40L_pan.
RAS_STING 5.06 × 10−7 0.870 84.85 87.10 85.94 87.50 84.38

Abbreviation: AUROC, area under receiver operating characteristic curve; NPV, negative predictive value;
PPV, positive predictive value; SEQ, sequence.

We also evaluated the factors associated with high-grade fibrosis using a logistic
regression analysis (Table 4). In the univariate analysis, the protein signature was the only
factor associated with predicting advanced fibrosis (p = 1.16 × 10–6). The protein signature,
age, and BMI were then included in the multivariate analysis. In the multivariate analysis,
the protein signature (odds ratio = 104.13, 95% CI: 14.29–758.66, p = 4.54 × 10–6) and
BMI (≤25 kg/m2 vs. >25 kg/m2) (odds ratio = 8.15, CI: 1.28–51.93, p = 0.026) were found to
be significantly associated with advanced fibrosis. A multivariate analysis using the other
four protein signatures is demonstrated in Supplementary Materials Table S1.

3.4. Predicting Related Immune Cells in Different Fibrosis Stage Using Single Cell RNA
Sequencing Database

Next, we tried to visualize our marker proteins from the DSP results in a t-SNE
map derived from a publicly available scRNA-seq dataset (GSE136103). By utilizing
the non-parenchymal liver cell atlas established by Ramachandran et al. [12], we have
marked our DSP driven proteins into the atlas to specify the upregulated subpopulation
of MPs. We re-analyzed the dataset and classified MPs into ten clusters, as depicted in
Figure 3A. Each cluster showed high similarities to the t-SNE map previously presented by
Ramachandran et al. [12]. Most of the protein markers that were upregulated in MPs of
F0–2 by DSP were marked in clusters of tissue monocytes, as shown in the left panel of
Figure 3B. Most of the protein markers that were upregulated in MPs of F3–4 by DSP were
marked in clusters of SAMacs, KCs, and tissue monocytes (Figure 3B, right panel). The
scaled gene expression in each cluster of MPs is shown in Figure 3C. CD68 and CD74,
which were two genes that showed higher protein expression levels in advanced fibrosis
in our DSP analysis, were also highly expressed in SAMacs1 and SAMacs2 rather than in
tissue monocytes.
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Table 4. Uni/multi-variate logistic regression analysis of factors associated with high-grade fibrosis.

Univariable Logistic Regression

Variable n Coefficient Se (Coefficient) Odds Ratio (95% CI) p-Value

CD68_HLA-DR_OX40L_Phospho-c-
RAF_STING_Tim-3

(low vs. high)
64 4.178 0.859 65.25 (12.11–351.49) 1.16 × 10−6

Age (≤55 years vs. >55 years) 64 −0.945 0.543 0.39 (0.13–1.13) 0.082
Sex (male vs. female) 64 −0.714 0.568 0.49 (0.16–1.49) 0.208

Etiology
CHB (absent vs. present) 64 0.397 0.559 1.49 (0.50–4.45) 0.477
CHC (absent vs. present) 64 −16.695 1696.734 0.00 (0.00–Inf) 0.992

Alcohol (absent vs. present) 64 −0.507 0.949 0.60 (0.09–3.87) 0.593
Others (absent vs. present) 64 0.145 0.665 1.16 (0.31–4.25) 0.828

BMI (≤25 kg/m2 vs. >25 kg/m2) 64 1.122 0.575 3.07 (0.99–9.48) 0.051
Diabetes (absent vs. present) 64 0.734 0.586 2.08 (0.66–6.57) 0.210

ALT (<31(F), <41(M) IU/L vs. ≥31(F),
≥41(M) IU/L) 64 0.029 0.513 1.03 (0.38–2.81) 0.955

AST (<31(F), <37(M) IU/L vs. ≥31(F),
≥37(M) IU/L) 64 −0.029 0.513 0.97 (0.36–2.65) 0.955

GGT (<50 IU/L vs.≥50 IU/L) 58 0.462 0.603 1.59 (0.49–5.17) 0.443
Albumin (<4.0 g/dL vs.≥4.0 g/dL) 64 0.366 0.511 1.44 (0.53–3.92) 0.475

Platelets (<150 × 109/L vs. ≥150 × 109/L) 64 −0.463 0.532 0.63 (0.22–1.79) 0.384
Cholesterol (<200 mg/dL vs. ≥200 mg/dL) 62 0.256 0.650 1.29 (0.36–4.62) 0.693

Multivariable Logistic Regression

Variable Coefficient Odds Ratio (95% CI) p-Value

CD68_HLA-DR_OX40L_Phospho-c-
RAF_STING_Tim-3

(Low vs. High)
4.646 104.13 (14.29–758.66) 4.54 × 10−6

Age (≤55 years vs. >55 years) −0.558 0.57 (0.10–3.29) 0.532
BMI (≤25 kg/m2 vs. >25 kg/m2) 2.097 8.15 (1.28–51.93) 0.026

Abbreviation: ALT, alanine aminotransferase; AST, aspartate aminotransferase; body mass index, BMI; chronic
hepatitis B, CHB; chronic hepatitis C, CHC; CI, confidence interval; gamma glutamyl transferase, GGT.

Figure 3. Combined analysis of scRNA-seq with DSP. (A) Reconstituted t-SNE graph for intrahepatic
MPs using GEO datasets (GSE136103). (B) Marking differentially expressed proteins between early-
stage fibrosis and advanced-stage fibrosis from DSP data to reconstituted t-SNE graph. Left panel is
the graph that marked proteins highly expressed in F0–2, and right panel is the graph that marked
proteins highly expressed in F3–4. (C) Scaled gene expression across every cluster of MPs. (D) Gene
expression analysis with snap-frozen liver tissues using NanoString nCounter expression analysis.
The expression levels of CD68, CD74, TREM2, and CD9 were compared between livers with early
fibrosis and advanced fibrosis. Significance was indicated with ** p value < 0.01, *** p value < 0.001.



Cells 2022, 11, 3387 9 of 13

3.5. Validation of DSP Protein Analysis Using mRNA Expression Data from Snap-Frozen Livers
Using NanoString nCounter MAX System

We also applied a NanoString nCounter MAX mRNA expression analysis using the
same liver tissues (snap-frozen) that was used in the DSP analysis to validate our protein
data. Figure 3D delineates the differentially expressed genes between fibrosis stage 0–2 and
3–4. A previous report demonstrated that TREM2 and CD9 are selectively upregulated in
SAMacs and can be used as protein markers for this MP subset [12]. In our NanoString
nCounter MAX mRNA expression analysis, TREM2, and CD9 were also shown to be
more upregulated in F3–4 than in F0–2 (TREM2, fold change = 1.70, p = 0.16; CD9, fold
change = 1.36, p = 5.54 × 10−4). Moreover, CD68, a protein that was newly identified
to be upregulated in MPs in advanced fibrosis by a DSP analysis, was also significantly
upregulated by the mRNA expression analysis (fold change = 1.29, p = 1.84 × 10−4). CD74,
also known as HLA-DR antigens-associated invariant chain, showed a tendency of higher
expression in advanced fibrosis compared to early fibrosis, although statistical significance
was not met.

4. Discussion

In this study, using multiplexed DSP protein profiling and scRNA-seq database, we
demonstrated the phenotypical heterogeneity of portal MPs according to the fibrosis stages
for the first time. We have also identified a novel protein signature that predicted advanced
fibrosis with a high reliability.

Liver fibrosis is a common pathological consequence of most chronic liver diseases.
Fibrosis is associated with many NPCs, including inflammatory, endothelial, and mesenchy-
mal cells. Numerous reports have elucidated the different phenotypes of NPCs depending
on the presence or absence of liver fibrosis [21,22]. In addition, different roles of the MPs
according to the fibrosis stage have been suggested in several previous studies [12]. KCs,
which dominate the hepatic macrophage pool, are central to intrahepatic immunological tol-
erance and provide an anti-inflammatory micromilieu to the liver during homeostasis [9,23].
However, in acute or chronic liver injury, KCs secrete CCL2 and thereby recruit circulating
monocytes to the liver, which then differentiate into MoMFs. These MoMFs prevail during
liver injury and stimulate stellate cells [24]. This results in the excessive deposition of
extracellular matrix, which leads to hepatic fibrosis. MacParland et al. mapped the cellu-
lar landscape of the human liver via scRNA-seq and reported that CD68+ macrophages
have two distinct phenotypes that are classified as having pro-inflammatory or immune-
regulatory roles [14]. Moreover, recent studies using scRNA-seq demonstrated that TREM+

CD9+ SAMacs were derived from circulating monocytes and demonstrated a pro-fibrogenic
phenotype [12,25]. Collectively, these studies proposed distinct phenotypes of intrahepatic
cell populations through scRNA-seq and suggested that the pro-inflammatory phenotype of
an intrahepatic macrophage switches to the anti-inflammatory or pro-fibrogenic phenotype
during the process of liver fibrosis.

To the best of our knowledge, this is the first study to show the different phe-
notypes of MPs between the early and late stages of liver fibrosis using spatially de-
fined protein-based multiplexed profiling. The DSP transcriptome in our study was
matched and analyzed using the publicly available RNA-seq dataset (GSE136103) from
Ramachandran et al. [12]. Tissue monocytes appeared to be highly abundant in the portal
area of livers with fibrosis stage 0–2, whereas KCs, SAMacs, and tissue monocytes were
highly abundant in the portal area of livers with fibrosis stage 3 and 4. In addition, an
mRNA expression analysis using an nCounter gene expression assay showed a higher
expression level of representative markers of SAMacs, namely TREM2, CD68, and CD9 in
advanced fibrosis, supporting the DSP results. These results are consistent with previous
reports demonstrating the pro-fibrogenic phenotype of SAMacs, which are thought to be
derived from circulating monocytes.

Herein, we also proposed a novel protein signature derived from DSP data for ad-
vanced liver fibrosis, which showed good performance regardless of the etiology of the
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liver disease. The proposed protein signature was composed of six different proteins: CD68,
HLA-DR, OX40L, phospho-cRAF, STING, and TIM3. CD68 and HLA-DR were upregulated
in fibrosis stages 3 and 4, whereas the other four proteins were downregulated in the
advanced stages compared to stages 1 and 2. CD68, a type 1 transmembrane glycoprotein
of 110 kDa, is a representative macrophage marker. A recent study using mice livers
demonstrated an increase in CD68+ macrophages in advanced liver fibrosis or cirrhosis
compared to a normal liver. It also found that CD68+ macrophages were predominantly
concentrated in scars during advanced fibrosis, suggesting its pro-fibrogenic role in the pro-
cess of liver fibrosis [4,26]. HLA-DR is routinely used to identify macrophage lineages, such
as Kupffer cells and circulating macrophages, and is widely present in antigen-presenting
cells [27]. It is known to be upregulated upon immune stimulation and is proposed to be
a monocyte activation marker [28]. Our very recent study demonstrated a higher level
of HLA-DR in intrahepatic monocytes in human livers with advanced fibrosis than that
with early fibrosis [24]. OX40L, phospho-cRAF, STING, and Tim3, which are shown to be
downregulated in the advanced stage of fibrosis, are known to be related to the inflam-
matory change of intrahepatic monocytes. OX40L, a member of the tumor necrosis factor
superfamily, interacts with OX40 and is associated with the secretion of pro-inflammatory
cytokines in the setting of non-alcoholic steatohepatitis in mice [29]. Raf kinase is thought
to promote cell growth through the direct phosphorylation of mitogen-activated protein
kinase (MAPK) and activation of its downstream signaling [30,31]. Recently, interleukin-9
(IL-9) is increased in liver cirrhosis and CHB with fibrosis [32]. IL-9 was also shown to be
related to the activation of the Raf/MEK/ERK signaling pathway [33]. In terms of STING,
it is an important innate immune protein that coordinates with multiple immune responses,
including the induction of interferons [34,35]. In liver, STING is mainly expressed in NPCs,
such as Kupffer cell, hepatic stellate cell, and sinusoidal endothelial cells [36]. Recently,
STING activation is found to be associated with hepatic inflammation for various types of
liver disease, including CHB, CHC, and non-alcoholic fatty liver disease [36]. Moreover,
the role of STING on liver fibrosis has suggested its possible role as a therapeutic target for
liver fibrosis [37–39]. Lastly, TIM3 is a surface marker for terminally differentiated T-cells,
is also expressed in monocytes, and is thought to have a regulatory role in liver fibrosis [40].
The expression level of TIM3 in monocytes being decreased in cirrhosis also suggested that
high levels of TIM3 blocks monocyte activation [41,42].

The protein signatures are tissue-driven biomarkers and, for that reason, are difficult
to apply in everyday clinical practice. However, they can be considered as bridges in
establishing liquid biopsy biomarkers to predict advanced fibrosis. Blood-based biomarkers
may be identified by analyzing the miRNAs or gene signatures associated with our tissue-
driven protein signatures. In addition, since the process of fibrosis is like a concerto of
various immune cells, the role of various types of MPs on fibrogenesis is expected to be
revealed more in depth. Recently, other various subsets of liver resident macrophages,
such as liver capsular macrophages and lipid-associated macrophages, have been shown
to play important roles in the process of liver inflammation [43,44]. Moreover, Wang et al.
demonstrated a novel finding that peritoneal cavity macrophages migrate to the liver
parenchyma in the setting of liver injury and suggested that they play an essential role in
tissue repair [45]. However, these studies focused on mice models and not human subjects.
Moreover, our work restricted ROIs only to the portal area to increase the probability
of detecting immune markers. Consequently, the coordination of these macrophages in
relation to fibrosis did not fall into our interest. Future studies using proposed markers
for aforementioned macrophages are mandatory to unveil the harmony of intrahepatic
macrophages in the process of liver fibrosis.

5. Conclusions

This is the first study that used spatially defined protein-based multiplexed profiling
to show the critical difference in the phenotypes of portal MPs between livers with early-
or late-stage fibrosis. The results were validated using internal gene expression data and
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a publicly available scRNA-seq database. Our findings developed a novel protein signa-
ture predicting advanced fibrosis with high reliability. Using DSP, we have specified the
region of protein analysis to the periportal area where MPs are abundant. Further studies
are essential to validate the proposed protein signature and to identify the mechanisms
causing the phenotypical differences in these portal MP populations between different
fibrosis stages.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cells11213387/s1, Table S1: Multivariate logistic regression analysis
of other protein signatures associated with high-grade fibrosis, Figure S1: Performance evaluation of
the protein signature in the (A) CHB subgruop (n = 46) and (B) non-CHB group (n = 18).
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