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Abstract: Neurodegenerative disorders (NDs) include Parkinson’s disease (PD), Alzheimer’s disease
(AD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS) and the common feature
of NDs is the progressive death of specific neurons in the brain. Apoptosis is very important in
developing the nervous system, nonetheless an elevated level of cell death has been observed in the
case of NDs. NDs are different in terms of their neuronal vulnerability and clinical manifestations,
however they have some overlapping neurodegenerative pathways. It has been demonstrated by
several studies with cell lines and animal models that apoptosis has a significant contribution to make
in advancing AD, ALS, HD, and PD. Numerous dying neurons were also identified in the brains of
individuals with NDs and these conditions were found to be linked with substantial cell loss along
with common characteristics of apoptosis including activation of caspases and cysteine-proteases,
DNA fragmentation, and chromatin condensation. It has been demonstrated that several therapeutic
agents including antioxidants, minocycline, GAPDH ligands, p53 inhibitors, JNK (c-Jun N-Terminal
Kinase) inhibitors, glycogen synthase kinase-3 inhibitor, non-steroidal anti-inflammatory drugs,
D2 dopamine receptor agonists, FK506, cell cycle inhibitors, statins, drugs targeting peroxisome
proliferator-activated receptors, and gene therapy have the potential to provide protection to neurons
against apoptosis. Therefore, the use of these potential therapeutic agents might be beneficial in the
treatment of NDs. In this review, we have summarized the pathways that are linked with apoptotic
neuronal death in the case of various NDs. We have particularly focused on the therapeutic agents
that have neuroprotective properties and the potential to regulate apoptosis in NDs.

Keywords: neurodegenerative disorders; apoptosis; neuronal death; caspases; DNA fragmentation;
neuroprotective drugs

1. Introduction

Neurodegenerative diseases (NDs) are a group of diseases that are commonly charac-
terized by the slow progressive loss of neurons in the central nervous system (CNS). These
NDs include Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease
(HD), and amyotrophic lateral sclerosis (ALS); currently, there is no cure for these NDs [1].
The occurrence of NDs is estimated to increase with the rise in life expectancy around the
world. Approximately 50 million people are currently living with dementia [2] and the
number is expected to rise to 130 million by 2050 [3]. Indeed, dementia has a significant con-
tribution in disability and mortality, and the estimated total global societal cost of dementia
is around USD1 trillion [3]. Progressive neuronal death is a major characteristic of NDs. It
has been observed that different NDs are identified by the phenotypes of neurons that are
mainly lost and the neurological conditions that take place due to this loss. For instance,
loss of locus coeruleus and nigrostriatal neurons can lead to muscle stiffness (rigidity),
slowness of movement (bradykinesia) in PD; the loss of cortical, septal, and hippocampal
neurons can result in a decreased level of cognitive functions and short term memory in
AD; and the loss of spinal motoneuron and cortical neurons can result in spasticity and
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decreased levels of muscle mass and power in ALS. Along with neuronal loss, decreased
levels of axonal terminal fields, atrophy of neuronal dendrites, and reductions in the cell
body size of neurons have also been detected in the case of NDs [4,5]. These alterations can
decrease the ability of affected neurons to support their electrophysiological and synaptic
functions to maintain their synaptic and electrophysiological activities and also decrease
the level of complexity of interneuronal connections. Thus, NDs involve a combination of
both neuronal dysfunction and loss of neurons [6]. In the case of NDs, when some neurons
in a neuronal population become dysfunctional and eventually die, other neurons may
compensate for the loss via increasing their functional capacities and connective interac-
tions [7,8]. Thus, as the NDs progress, neuronal circuits linked with certain neurological
activities are reorganized, expanded, pruned, and lost.

Neuroplasticity, also known as brain plasticity or neural plasticity, is a primary prop-
erty of the nervous system that has been linked to pathological and physiological mecha-
nisms. The roles of neuroplasticity in physiological processes include repairing the adult
brain, compensatory plasticity, memory, learning, and developmental plasticity [9]. On
the other hand, neuroplasticity in pathogenic mechanisms includes plasticity following
damage and removal of brain tumors, epilepsy, stroke, and NDs including AD, PD, and
HD [10]. In humans and experimental models, various studies have already confirmed
the role of impaired synaptic plasticity in these NDs [11]. Several studies demonstrated
in experimental models and in humans synaptic plasticity impairment in some neurode-
generative and neuropsychiatric diseases such as Parkinson’s disease, Alzheimer’s disease,
Huntington’s disease, and schizophrenia [11–13]. Oxidative stress (OS) is a condition
caused by an imbalance between the cellular antioxidant capacity and generation of reac-
tive oxygen species (ROS) because of the dysfunction of the antioxidant system and/or
elevated level of ROS formation [14]. A feature of NDs includes considerable oxidative
damage to DNA, proteins, and lipids [15,16]. In addition, this OS-mediated damage can
further lead to cell death by several different mechanisms via upregulating toxic cascades
or deactivating important mechanisms [17]. It has already been demonstrated that OS
is linked with the advancement of multiple NDs including AD, PD, and ALS [17–20].
Proteinopathies have also been observed in the case of NDs, including AD and PD. A
feature of neurodegenerative proteinopathies is the generation of β-sheet-rich aggregates
of extra- or intracellular proteins in the CNS [21,22]. Interestingly, some proteins remain
unstructured in healthy brains; however, they change their structures in neurodegenerative
proteinopathies. Moreover, these proteins go through an extensive level of alterations
in their structural folding, which further result in the formation of small oligomers or
large fibrillar aggregates [23,24]. Moreover, the alterations in their sizes and shapes can
result in their precipitation, elongation, and self-association in certain brain areas as well as
self-propagation of their pathological effects [25].

Apoptosis or programmed cell death is a process of cell death, which is commonly
observed in several biological mechanisms including immune responses, synaptogenesis,
and embryogenesis. Apoptosis involves various morphological alterations that involve
oligonucleosomal DNA degradation, compartmentalization of nuclear material into vesicu-
lar apoptotic bodies, shrinking of nuclear and cytoplasmic compartments, and chromatin
condensation [26,27]. Within a tissue, target cell apoptosis is mediated via cell signaling
activation that can take owing to the recruitment of the cell-surface death receptors and
apoptotic stimuli or direct disturbance of the mitochondria and subsequent proteolytic cas-
cade activation including executioner caspases [28]. Growing evidence has demonstrated
that deregulated apoptosis is associated with the accumulation of cells or pathological
loss in the case of human diseases [29,30]. Therefore, apoptosis plays an important role
in removing redundant or damaged cells to maintain homeostasis. However, an exces-
sive level of apoptosis might be harmful, for instance, in neuronal cell death in NDs. It
has been reported that apoptosis can be observed in the case of acute and chronic neu-
rological disorders [31,32]. Following acute injuries, apoptosis can take place in regions
that are not heavily affected by the insult. For instance, following ischemia, necrotic cell
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death is observed in the core of the lesion where predominantly hypoxia is present, while
apoptosis takes place in the penumbra where collateral blood flow decreases the extent of
hypoxia [33–35].

It has been observed that apoptosis is a part of the lesion that is seen following spinal
cord or brain injury [35,36]. Most of the information regarding chronic NDs is gathered
from post-mortem data at the endpoints of the disease mechanism, when most of the other
features may have interfered with cell death. Therefore, animal models of NDs and human-
derived tissues are important for investigating the initiation of pathogenesis, underlying
molecular mechanisms, and various disease stages of various NDs. Numerous studies
have confirmed the presence of apoptosis in AD, PD, HD, and ALS (Table 1). Indeed, it is
important to understand the mechanisms that induce apoptosis in NDs in order to develop
novel therapies to regulate apoptosis [37–39]. In this review, we have summarized the
signaling pathways that are linked with apoptotic neuronal cell death in the case of various
NDs. We also have focused on the potential therapeutic agents that have neuroprotective
properties and have the ability to regulate apoptosis in NDs.

Table 1. A summary of biomarkers of apoptosis for neurodegenerative diseases.

Neurodegenerative
Disease Biomarkers of Apoptosis Neurons Affected Clinical Features References

Alzheimer’s disease

Caspase-3 activation;
reduced expressions of
B-cell lymphoma 2 (Bcl-2);
DNA fragmentation
identified via terminal
deoxynucleotidyl
transferase dUTP nick end
labeling (TUNEL) assay;
BCL2 Associated X (BAX)
overexpression

Loss of synapses and
neurons in certain
subcortical areas and
cerebral cortex

Behavioral
abnormalities;
increased memory loss
and confusion

[40–48]

Parkinson’s disease

Activations of caspase-3, -8,
and -9; decreased level of
Bcl-2 expression; BAX
overexpression; DNA
fragmentation identified
via TUNEL assay

Dopaminergic neurons
of the substantia nigra
pars compacta

Bradykinesia; postural
instability, resting
tremor; rigidity; gait
impairment

[49–56]

Huntington’s disease

Activations of caspase-3, -8,
and -9; decreased level of
Bcl-2 expression; BAX
overexpression; DNA
fragmentation identified
via TUNEL assay

Affected regions
include the temporal
lobe, frontal lobe, and
striatum (globus
pallidus, putamen, and
caudate nucleus); loss
of medium spiny
neurons

Various psychiatric
disturbances; cognitive
deficits; chorea

[57–61]

Amyotrophic lateral
sclerosis

Activation of caspase-9;
decreased level of Bcl-2
expression; BAX
overexpression; DNA
fragmentation identified
via TUNEL assay

Motor neurons of the
brain stem, cortex, and
spinal cord

Speech problems;
spasticity; muscle
weakness or stiffness;
muscular paralysis;
muscular atrophy

[62–67]

2. Mechanisms of Apoptosis
2.1. The Extrinsic Pathway of Apoptosis

The extrinsic pathway of apoptosis is induced via the ligation of tumor necrosis
factor (TNF)-family death receptors at the cell surface. In addition, ligation of the receptor
can lead to Fas-associated death domain protein (FADD) recruitment, which can further
bind with pro-caspase-8 molecules to mediate autoproteolytic processing and caspase-8
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activation [68]. Following activation, caspase-8 might in turn be able to cause activation of
downstream effector caspases directly via proteolytic cleavage or indirectly via cleavage
of the BH3-only proteins including Bid to generate tBid, which can further translocate
to mitochondria to cause mitochondrial outer membrane permeabilization (MOMP) and
activation of Bax. Fas ligand and TNF-α can trigger apoptosis of specific neurons during
the inflammatory response. It has been observed that motor neurons can be induced due
to the activation of Fas-dependent apoptosis (also known as the Fas/NO pathway) [69].
In seizure and stroke models, it has already been demonstrated that caspase-8 plays a
significant role via the extrinsic pathway of apoptosis in neuronal death [70–72]. However,
there was a lack of conclusive evidence regarding the requirement of caspase-8 for death in
these models, since caspase-8 (and FADD) deletion can cause embryonic lethality in mouse
models, because of the pro-survival activity of the FADD-caspase-8-containing complex in
suppressing necroptosis [73–75]. In a study, Krajewska et al. [76] addressed this issue by
generating mouse models deficient in caspase-8 expression in neurons. These researchers
also revealed that the neuron-specific deletion of caspase-8 provided in vitro protection to
neurons against apoptosis mediated via ligation of TNF-α receptors and led to an elevated
level of neuronal survival linked with decreased caspase-3 activation after seizure-mediated
brain injury or traumatic brain injury. Collectively, these findings regarding the suppression
of the extrinsic pathway hold potential for the development of effective neuroprotective
agents to treat acute neurodegenerative conditions.

2.2. The Intrinsic Pathway of Apoptosis

The intrinsic pathway of apoptosis regulates MOMP via the Bcl-2 family proteins
(Figure 1). Bcl-2 family members share homology clustered within four conserved BCL-2
homology (BH1-4) regions, which are essential for the hetero- and homotypic interactions
that further influence the decision to go through MOMP. It has been observed that various
pro-apoptotic members including Bak and Bax possess BH1-3 and these BCL-2 homology
regions are crucial in executing apoptosis through the intrinsic pathway [77–79]; however,
the Bax/Bak-independent intrinsic pathway of apoptosis has also been observed [80]. Bak
is exclusively expressed in neurons as an alternatively transcribed product (N-Bak) that
does not play a role in apoptosis and is translationally repressed [81]. In neurons, the stim-
ulation of intrinsic apoptosis fully relies on Bax activation and expression. Therefore, the
suppression and deletion of Bax averted abnormal neuronal death in various in vivo and
in vitro neurodegeneration models [82–88]. Bok is a member of a Bcl-2 family and it has the
capacity to trigger apoptosis and MOMP in non-neuronal cells after disturbance of the en-
doplasmic reticulum or proteasome-linked degradation pathway [89]. In contrast with Bak
and Bax, Bok is constitutively active and remains unresponsive to the antagonistic effects
of the anti-apoptotic BCL-2 proteins. Even though Bok was found to be highly expressed
in the brains of mice, its expression level was found to be unimportant for excitotoxicity-
and proteasome-induced neuronal death, even in the absence of Bax expression [82]. It
has been observed that activation of OMA1 (overlapping activity with m-AAA protease)
downstream of oligomerization of Bax might trigger remodeling of cristae and secretion of
cytochrome c (Cytc) via OPA1 cleavage and activation [90]. Furthermore, OPA1 cleavage
induces the cristae remodeling, which further mediates Cytc release in the cristae. Indeed,
the aforesaid process was detected in neuronal populations [91].
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lator of apoptosis; ROS, reactive oxygen species; tBid, truncated Bid; TNF-R1, tumor necrosis factor 
receptor 1. Figure adapted with permission from Ref [92]. Copyright 2014, Elsevier. 
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Figure 1. The extrinsic and intrinsic pathways of apoptosis [92]. Abbreviations: AIF, apoptosis-
inducing factor; APAF-1, apoptotic Protease Activating Factor-1; Apo2L/TRAIL, Apo2 ligand or
tumor ne-crosis factor-related apoptosis-inducing ligand; BCL-2, B-cell lymphoma 2; BCL-XL, B-cell
lym-phoma-extra-large; Bid, BH3-interacting domain death agonist; DISC, death-inducing signaling
complex; DR4/5, death receptor 4/5; EndoG, endonuclease G; ER, endoplasmic reticulum; FADD,
FAS-associated death domain protein; FasL, Fas Ligand; PUMA, p53 upregulated modulator of
apoptosis; ROS, reactive oxygen species; tBid, truncated Bid; TNF-R1, tumor necrosis factor receptor
1. Figure adapted with permission from Ref [92]. Copyright 2014, Elsevier.

2.3. Ferroptosis

Plasma proteins regulate the metabolism of iron in the human body. In addition, they
are linked with the recycling, absorption, and transport of iron to avoid iron accumulation,
which is extremely reactive and detrimental in tissues. Iron naturally exists in two dominant
oxidation states including ferric (Fe3+) and ferrous (Fe2+) forms in the human body [93].
Ferroptosis is a specific form of cell death that is mediated via lipid hydroperoxides derived
from the oxidation of free iron-generated ROS. There are three major pathways that are
associated with ferroptosis including iron metabolism, lipid peroxidation, and glutathione
(GSH)/glutathione peroxidase 4 (GPx4) pathways (Figure 2). General characteristics of
ferroptosis include moderate condensation of chromatin, ruptured mitochondrial outer
membrane, mitochondrial atrophy, cytoplasmic swelling, and loss of plasma membrane
integrity [94]. On the other hand, typical biochemical characteristics of ferroptosis include
GPX4 inactivation, GSH depletion, and cystine deficiency [95]. It has been demonstrated
that ferroptosis plays a role in neurodegeneration [96–98]. It also includes dementia, astro-
cyte dysregulation, degeneration of myelin sheaths, failure of neuronal communication,
oxidation of neurotransmitters, activation of inflammation, and cell death [93,96–98]. More-
over, iron or free iron overload can trigger lipid peroxidation in Schwann cells, microglia,
oligodendrocytes, astrocytes, and neurons. Low functions of the glutathione system and
GPx4 also play roles in ferroptosis-mediated motor neurodegeneration [19,93,99,100].



Molecules 2022, 27, 7207 6 of 33
Molecules 2022, 27, x FOR PEER REVIEW 6 of 35 
 

 

 
Figure 2. The signaling pathways involved in ferroptosis [101]. Abbreviations: ATF4, activating 
transcription factor 4; CoQ10, coenzyme Q10; Fe3+, ferric cation; Fe2+, ferrous cation; FSP1, fer-
roptosis suppressor protein 1; FTH1, ferritin heavy chain 1; FTL, ferritin light chain; GPx4, gluta-
thione peroxidase 4; GSH, glutathione; HMG-CoA, 3-hydroxy-3-methylglutaryl coenzyme A; 
HO-1, heme oxygenase-1; HSPA5, heat shock protein 70 family protein 5; IPP, isopentenyl pyro-
phosphate; LOXs, lipoxy-genases; NADH, nicotinamide adenine dinucleotide; NCOA4, nuclear 
receptor coactivator 4; NOXs, NADPH oxidases; NRF2, nuclear factor erythroid 2-related factor 2; 
PL-PUFAs, phospho-lipids-containing PUFAs; PUFA-OOHs, hydroperoxides derivatives of 
PUFAs; PUFAs, polyun-saturated fatty acids; ROS, reactive oxygen species; SQS, squalene syn-
thase; TF, transferrin; TFRC, transferrin receptor. Figure reproduced with permission from Ref 
[101]. Copyright 2021, Elsevier. 

3. The Role of Apoptosis in the Central Nervous System 
Neuronal death is associated with numerous NDs, neurological disorders, and brain 

injuries [102]. In the CNS, necrosis, and apoptosis are the two major mechanisms of cell 
death with different histological descriptions, biochemical pathways, and pathophysio-
logical and physiological features [32,103]. Necrosis usually takes place due to the direct 
reaction to a pathological stimulus including excitotoxicity produced during chronic 
neurological disorders or acute brain injuries via activation of a calpain-meditated 
cell-death signaling pathway [103]. On the other hand, apoptosis is associated with both 
pathophysiological and physiological mechanisms and can lead to selective cell death in 
reaction to certain death stimuli. Cell death is induced via a tightly regulated biochemical 
cascade involving caspase activation during apoptosis [104,105]. Caspase- and cal-
pain-mediated cell death mechanisms co-occur frequently in the case of neurological 
disorders, however apoptosis and necrosis are distinctly associated with the pathogene-
sis of these disorders and characterized via distinct spatiotemporal representations [106]. 
After acute brain injuries including brain trauma and cerebral ischemia, necrosis has a 
significant contribution in cell death within injured regions (for example, contusion and 
infarct core, respectively), which can lead to the development of primarily irreversible 
brain lesions. On the other hand, apoptosis can prolong cell death into potentially treat-
able perilesional regions (commonly known as penumbra). 

Considering the very limited capacity of the brain for regeneration and neurogene-
sis, apoptotic cell death signaling pathways might signify potential targets for therapies 
for stroke and brain injuries [32,105,107–109]. Necrosis (in the CNS) mainly takes place in 
neurons, while apoptosis occurs in both nonneuronal and neuronal cells. Knowledge 
regarding the recognition of spatiotemporal profiles and in-depth molecular mechanisms 

Figure 2. The signaling pathways involved in ferroptosis [101]. Abbreviations: ATF4, activat-
ing transcription factor 4; CoQ10, coenzyme Q10; Fe3+, ferric cation; Fe2+, ferrous cation; FSP1,
ferroptosis suppressor protein 1; FTH1, ferritin heavy chain 1; FTL, ferritin light chain; GPx4, glu-
tathione peroxidase 4; GSH, glutathione; HMG-CoA, 3-hydroxy-3-methylglutaryl coenzyme A; HO-1,
heme oxygenase-1; HSPA5, heat shock protein 70 family protein 5; IPP, isopentenyl pyrophosphate;
LOXs, lipoxy-genases; NADH, nicotinamide adenine dinucleotide; NCOA4, nuclear receptor coac-
tivator 4; NOXs, NADPH oxidases; NRF2, nuclear factor erythroid 2-related factor 2; PL-PUFAs,
phospho-lipids-containing PUFAs; PUFA-OOHs, hydroperoxides derivatives of PUFAs; PUFAs,
polyun-saturated fatty acids; ROS, reactive oxygen species; SQS, squalene synthase; TF, transferrin;
TFRC, transferrin receptor. Figure reproduced with permission from Ref [101]. Copyright 2021,
Elsevier.

3. The Role of Apoptosis in the Central Nervous System

Neuronal death is associated with numerous NDs, neurological disorders, and brain in-
juries [102]. In the CNS, necrosis, and apoptosis are the two major mechanisms of cell death
with different histological descriptions, biochemical pathways, and pathophysiological
and physiological features [32,103]. Necrosis usually takes place due to the direct reaction
to a pathological stimulus including excitotoxicity produced during chronic neurological
disorders or acute brain injuries via activation of a calpain-meditated cell-death signaling
pathway [103]. On the other hand, apoptosis is associated with both pathophysiological
and physiological mechanisms and can lead to selective cell death in reaction to certain
death stimuli. Cell death is induced via a tightly regulated biochemical cascade involving
caspase activation during apoptosis [104,105]. Caspase- and calpain-mediated cell death
mechanisms co-occur frequently in the case of neurological disorders, however apopto-
sis and necrosis are distinctly associated with the pathogenesis of these disorders and
characterized via distinct spatiotemporal representations [106]. After acute brain injuries
including brain trauma and cerebral ischemia, necrosis has a significant contribution in cell
death within injured regions (for example, contusion and infarct core, respectively), which
can lead to the development of primarily irreversible brain lesions. On the other hand,
apoptosis can prolong cell death into potentially treatable perilesional regions (commonly
known as penumbra).

Considering the very limited capacity of the brain for regeneration and neurogenesis,
apoptotic cell death signaling pathways might signify potential targets for therapies for
stroke and brain injuries [32,105,107–109]. Necrosis (in the CNS) mainly takes place in
neurons, while apoptosis occurs in both nonneuronal and neuronal cells. Knowledge
regarding the recognition of spatiotemporal profiles and in-depth molecular mechanisms
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of apoptosis in various NDs and acute brain injuries is important in developing novel
therapies to treat both NDs and acute injuries. Under physiological conditions, apoptosis
has a significant contribution in preserving the functions and integrity of the peripheral
nervous system and CNS during development, synaptogenesis, neurogenesis, synaptic
plasticity, and synaptic functions via mediating apoptotic cascade or cell death sequence, in
certain damaged cells while leaving surrounding cells intact [109–112]. In the embryonic
brain, neuronal apoptosis is a highly, genetically controlled mechanism that makes a
significant contribution in normal CNS functions and development (Figure 3) [112–114].
Nonetheless, aberrant apoptosis can lead to increased levels of glial cell and neuronal cell
death and disturbed synaptic activity, which can further result in the advancement of brain
injury and NDs [104].
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4. The Roles and Mechanisms of Apoptosis in Neurodegenerative Diseases
4.1. Alzheimer’s Disease

AD is a devastating and progressive ND that is commonly observed in older adults and
this disorder is the most common cause of dementia [115,116]. Pathological characteristics
of AD involve the buildup of neuritic amyloid beta (Aβ) plaques, dystrophic neurites, and
neurofibrillary tangles (NFTs) (Table 2) containing intraneuronal aggregates of hyperphos-
phorylated and misfolded tau [117–119]. AD can be familial in rare autosomal dominant
cases that are linked with mutations in the presenilin-1 (PS-1), presenilin-2 (PS-2), and
amyloid precursor genes [120–122]. It has been reported that an elevated generation of the
mitochondrial ROS can increase Aβ levels, which can further suppress the mitochondrial
respiratory chain containing complexes IV inducing its dysfunction [123]. Interestingly, the
amyloid precursor protein (APP) might be translocated to the outer mitochondrial mem-
brane, wherein APP can be cleaved via γ-secretase complexes that include PS-1 to generate
Aβ [123]. In addition, PS-1 can induce the proteolytic function of high-temperature require-
ment protein A2 (HTRA2) [123], then it can translocate to the cytosol, where it can cause the
degradation of apoptotic proteins’ inhibitors [124]. Apoptosis may be associated with AD
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pathogenesis, however the proof regarding its effect on neuronal death in the case of AD
is limited [53,125]. Various studies have revealed that pro-apoptotic BAX overexpression,
decreased level of anti-apoptotic Bcl-2 expression, and DNA fragmentation (identified via
terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining) have
been observed in the brains of AD individuals [40,42,126,127]. Collectively, these findings
suggest the association of apoptosis with AD pathogenesis [40,42,126,127].

APP is widely expressed in neurons and APP cleavage can lead to the C31 formation,
which is a carboxy-terminal peptide that stimulates apoptosis [127,128]. Furthermore, it
has been revealed by in vitro studies that Aβ exposure can elevate the level of OS and
decrease energy availability. Therefore, it can elevate the cellular susceptibility to death
via triggering apoptosis, which can further result in chromatin condensation, membrane
blebbing, and caspase activation [129,130]. Therefore, it is assumed that Aβ induces
neuronal apoptosis via an oxidative process by which Aβ triggers a concurrent and early
generation of 4-hydroxynonenal and hydrogen peroxide (H2O2). Afterward, activations
of p38 mitogen-activated protein kinase (p38MAPK) and c-Jun N-terminal kinase (JNK)
take place, and nuclear changes distinctive to apoptosis are evident [131]. As compared
to wild-type tau, activated caspases can cause cleavage of tau proteins, which generate
a product that aggregates more extensively and rapidly into tau filaments, which can
ultimately result in Aβ-mediated apoptosis and related loss of neurons (Figure 4) [132,133].
Nonetheless, following Aβ exposure, antioxidants can suppress the activation of MAPK
and apoptosis of neurons [134]. It has been observed that mutant presenilin proteins
can elevate the susceptibility of neurons to various injuries, for example exposure to
glutamate or Aβ, depletion of energy, and the stimulation of apoptosis [135]. Nonetheless,
various molecules that avert OS can suppress the induction of apoptosis linked with the
mutant human PS-1. Therefore, PS-1 may play a role in apoptosis via triggering OS and
diminished mitochondrial activity in the brains of AD patients [136]. Furthermore, altered
functions and expressions of antioxidant enzymes have been observed in the brains of AD
patients [137,138].

Table 2. Features of neurodegenerative diseases.

Neurodegenerative
Disease

Affected Area of the
Brain

Neuropathological
Hallmarks Major Symptoms References

Alzheimer’s disease Hippocampus

Amyloid plaques,
neurofibrillary tangles,
neuronal and synaptic loss,
accumulation of tau
aggregates

Cognitive deficit [139,140]

Parkinson’s disease
Neurons of the
substantia nigra, brain
stem

Aberrant accumulation
and aggregation of alpha
synuclein protein in form
of Lewy neurites and Lewy
bodies

Rigidity, slowed
movements, tremors,
and cognitive deficit

[139,141,142]

Huntington’s disease Caudate nuclei and
putamen

Cortical atrophy and loss of
cortical pyramidal neurons

Cognitive deficit,
chorea [143,144]

Amyotrophic lateral
sclerosis Motor neurons

Degeneration of motor
neurons in the motor cortex
and spinal anterior horn,
axonal loss in the lateral
columns of the spinal cord

Muscle weakness [145,146]
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4.2. Parkinson’s Disease

PD is also a progressive ND and the characteristics of PD include dopaminergic
neurodegeneration in the pars compacta of the substantia nigra [49,147]. PD is typically
idiopathic and in rare cases can be genetic as well [148,149]. Familial cases of PD are linked
with mutations of various genes including α-synuclein, Phosphatase and tensin homolog
(PTEN)-induced kinase 1 (PINK1), Parkin 7 (PARK7), Parkin 2 (PARK2), and leucine-rich
repeat kinase 2 (LRRK2) genes [148,150]. The activities of the corresponding proteins
might interconnect with constituents of the mitochondria-induced apoptotic signaling
pathway provided that they are both found on the OMM [53,151,152]. In Figure 5, we have
summarized the effects of the interaction between genetics and environmental factors in
PD pathogenesis.
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PD patho-genesis [92]. Abbreviations: ATP, adenosine triphosphate; CNS, central nervous system;
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kinase1; SNCA, alpha synuclein; SNP, single-nucleotide polymorphism; UPS, ubiquitin proteasome
system. Figure reproduced with permission from Ref [92]. Copyright 2014, Elsevier.

Pathological characteristics of PD include Lewy bodies that arise from the aggregation
of α-synuclein (Table 2), which is found pre-synaptically predominantly in the nerve
terminals [153]. Moreover, the accumulation of wild-type α-synuclein in dopaminergic
neurons can lead to various pathogenic mechanisms in PD including increased generation
of ROS and decreased function of mitochondrial complex I [154,155]. In addition, after
the overexpression of A53T mutant or wild-type, α-synuclein is found to be localized at
mitochondrial membranes, which can result in OS and the release of Cytc into the cytoplasm
triggering mitochondria-induced apoptosis [156,157]. Multiple studies have identified
DNA fragmentation and apoptotic cells in the substantia nigra of PD individuals, which is
suggesting a link between apoptosis and loss of dopaminergic neurons in PD [49–51,53].
Furthermore, in the case of PD, decreased levels of anti-apoptotic Bcl-2, elevated levels of
pro-apoptotic proteins including BAX, and overexpression of active caspase-3, -8, and -9
have been detected in dopaminergic neurons in post-mortem and in vitro studies, which is
further suggesting the contribution of apoptosis in PD pathogenesis [50–53,158].

It has been observed that dopaminergic neurons are particularly susceptible to de-
creased function of mitochondrial complex I and following mitochondrial dysfunction,
since dopamine metabolism can lead to an elevated generation of ROS and consecutive
suppression of mitochondrial respiration [159]. These events can trigger the opening of
mitochondrial PT-pore, which can lead to the release of Cytc into the cytosol which induces
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the apoptotic pathway mediated by mitochondria, which is a key process of the death of
dopaminergic neurons in the case of PD [160,161]. Interestingly, exposure to dopamine can
trigger the activation of caspase-3 and caspase-9, and the resulting apoptosis [162]. In addi-
tion, dopamine-mediated apoptosis is suppressed owing to the experimental conditions
including overexpression of Bcl-2 protein and the addition of antioxidants [163–165]. There-
fore, numerous mitochondrial toxins including 6-hydroxydopamine (6-OHDA), rotenone,
and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) have the capacity to avert mito-
chondrial complex I leading to weakened mitochondrial activity. Therefore, the elevated
generation of ROS can result in apoptosis and the following degeneration of dopaminergic
neurons [166]. In addition to this, in humans and animal models of PD, mitochondrial
dysfunction can mediate the mitochondria-induced apoptotic pathway, which can further
elevate the susceptibility of dopaminergic neurons to degeneration [167].

4.3. Huntington’s Disease

HD is an autosomal dominant ND and the characteristics of HD include behavioral
and cognitive deficit, and impairment in voluntary movements [168,169]. HD can occur
due to the abnormal expansion of the CAG trinucleotide repeat sequence in the huntingtin
(Htt) gene encoding a protein called Htt. Therefore, in the neostriatum, inclusion bodies can
be generated which can lead to the degeneration of GABAergic neurons [170,171]. Mutant
Htt can mediate neuronal apoptosis, and can also serve as a substrate for caspase-3 that
cleaves it to produce progressively neurotoxic Htt fragments [172–174]. As a result, the
level of wild-type Htt becomes depleted, which can result in some of the characteristics of
HD [175]. Mutant Htt can also disturb the balance between anti-apoptotic and pro-apoptotic
molecules. Furthermore, mutant Htt can interact with mitochondria to cause mitochondrial
dysfunction and aberrations, for instance, depleted energy and elevated secretion of Cytc,
which eventually induce apoptosis [176]. The truncated protein might also enter into the
nucleus to disturb transcription and may result in the prevention of normal recovery from
activated caspases, which can eventually result in cell death (Figure 6) [177].
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It has been observed that Htt-interacting protein 1 (HIP-1) has the ability to bind with
HIP-1 protein interactor (Hippi) to generate a complex that can cause activation of caspase-
8 [178]. In HD, the generation of the pro-apoptotic Hippi-Hip-1 complex is increased
because of the mutated Htt-mediated rise in the free cellular level of HIP-1 [178]. Apoptosis
has also been linked with HD pathogenesis [179]. TUNEL assays have identified DNA
fragmentation in post-mortem HD brain tissues [180]. Moreover, activation of caspase-3, -8,
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and -9, overexpression of BAX, and Cytc release have also been detected in the brains of
animal models of HD and HD patients [61].

4.4. Amyotrophic Lateral Sclerosis

ALS is an ND characterized by the specific and progressive loss of motor neurons in
the motor cortex and spinal cord. As a result, respiratory muscles and all extremities are
progressively paralyzed, which ultimately results in death within 3–5 years after the onset of
ALS [181]. Both sporadic and familial forms of ALS have been reported [182]. In around 20%
of ALS patients, a mutation has been identified in the gene encoding superoxide dismutase
(SOD) [183]. SOD can scavenge free radicals, therefore it exerts both cytoprotective and
antioxidant effects [184]. ALS pathogenesis includes OS and an overload of calcium, which
can lead to weakened mitochondrial activity and induction of mitochondria-mediated
apoptosis [185]. SOD1 (Superoxide Dismutase 1) overexpression can result in the decreased
capacity of mitochondrial calcium-loading and impaired electron transport chain functions
(Figure 7). SOD1 has also been found in the matrix, intramembranous space, and outer
mitochondrial membrane [123]. Furthermore, mutant SOD1 can trigger the release of Cytc
to induce apoptosis [123]. In addition, mutant SOD1 can induce the aberrant generation of
mitochondrial ROS. It also has the capacity to cause the degradation of Bcl-2 to mediate
apoptosis [123]. The presence of reduced expressions of Bcl-2, BAX overexpression, Cytc
release, activation of caspase-9, and DNA fragmentation in post-mortem tissues and animal
models of ALS is further suggesting the role of apoptosis in ALS pathogenesis [65–67,186].
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5. Antiapoptotic Agents in the Treatment of Neurodegenerative Disorders
5.1. Lithium

GSK-3 has a significant contribution in mediating intracellular apoptotic signaling
pathways because of its capacity to phosphorylate several substrates. In the case of AD,
tau is phosphorylated via this enzyme. As abnormal phosphorylation of tau is a well-
known biomarker of AD, therefore suppression of GSK-3 could be an effective protective
approach in AD [187–192]. Furthermore, GSK-3 suppression can result in neuroprotection.
There is also a growing interest regarding the role of GSK-3 in AD pathogenesis [192].
Lithium is a reversible and direct inhibitor of GSK-3, along with an in vitro IC50 of around
2 mM [190–192]. Numerous studies have confirmed the role of GSK-3 in apoptotic neuronal
cell death and lithium shows neuroprotective properties by inhibiting programmed neu-
ronal cell death in various apoptotic models including MPTP toxicity, H2O2-mediated OS,
and excitotoxicity [188,189]. Lithium exhibited an anti-apoptotic property via suppressing
the caspase-3 activation and mitochondrial apoptotic pathway. Furthermore, lithium selec-
tively modulates the NMDA receptor (NMDAR) and also suppresses various other targets
including the calpain/CDK5 pathway [188,193]. Chronic treatment with lithium decreased
the phosphorylation of tau and filamentous aggregates [187,192]. In a different study,
treatment with lithium for 10 weeks resulted in a marked rise in the serum concentrations
of brain-derived neurotrophic factor (BDNF) and improvement in cognitive function in
AD patients [194]. Patients with bipolar disorder receiving chronic treatment with lithium
were less likely to suffer from AD as compared to patients with bipolar disorder who did
not receive lithium treatment [195]. Thus, more clinical studies are required to evaluate the
efficacy of this drug to delay or prevent AD progression.

5.2. Minocycline

Minocycline (a second-generation tetracycline antibiotic) (Figure 8) has been identified
as an inhibitor of caspases. This antibiotic can decrease the activities of both caspase-1 and
-3 probably via interfering with the upstream activation of these caspases. Furthermore,
minocycline can avert the release of Cytc, mediated via mitochondrial permeability transi-
tion [196]. These aforesaid suppressive effects of minocycline further indicate that minocy-
cline provides neuroprotection via suppressing apoptosis. Moreover, minocycline showed
protective effects in rodent MPTP and 6-OHDA PD models, and delayed disease advance-
ment in G93A transgenic ALS and R6/2 transgenic HD mouse models [197]. Nonetheless,
minocycline worsened MPTP-mediated injury to the dopaminergic system [198].Molecules 2022, 27, x FOR PEER REVIEW 14 of 35 
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5.3. Glyceraldehyde-3-Phosphate Dehydrogenase Ligands

The glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has various effects that
are not related to its typical function in the production of energy, such as its role in
p53-mediated apoptosis. p53 plays a role in upregulating and translocating Bax to mito-
chondria, which can further trigger the release of apoptogenic proteins (including apoptosis-
inducing factor and Cytc), loss of mitochondrial membrane potential, and permeabilization
of mitochondrial membrane [199,200]. p53 also facilitates nuclear translocation and up-
regulation of GAPDH, which mediates downregulation of Bcl-2 and other protective
factors [201–203], which suggests that the pro-apoptotic function of Bax induction. TCH346
(a derivative of tricyclic propargylamine) suppresses apoptosis in embryonic mesencephalic
dopaminergic cells, PAJU neuroblastoma cells, cerebellar granule cells, or PC12 cells. More-
over, TCH346 also mediated neuronal survival in multiple animal models of NDs. After
binding of TCH346 with GAPDH, it causes stabilization of the dimeric form of the protein
and averts apoptosis-linked nuclear translocation and upregulation of GAPDH along with
the decreased level of apoptosis and prevention of elevated mitochondrial membrane per-
meability, as suggested by the preservation of mitochondrial membrane potential [204,205].
It also showed protective effects in monkey and mouse MPTP PD models, progressive
motor neuronopathy mouse models, and mouse models of global cerebral ischemia and
facial motor neuron axotomy [206].

5.4. JNK (c-Jun N-Terminal Kinase) Inhibitors

CEP-1347 (a derivative of staurosporine) suppresses the JNK signaling via suppressing
mixed-lineage kinases [207]. CEP-1347 mediated the survival of PC12 cells and several
rats or chick primary neurons after various challenges, such as OS, trophic withdrawal,
or DNA damage. Furthermore, it provided protection to dopaminergic neurons against
MPTP-mediated death in monkeys and mice, prevented the death of rat hypoglossal
neurons following axotomy, decreased the progressive death of spinal motoneurons in
postnatal female rat models, and averted the progressive death of chick lumbar motoneu-
rons. Moreover, CEP-1347 showed potential for AD treatment by partially preserving
choline acetyltransferase (CAT) function, providing protection to cholinergic neurons af-
ter fimbria-fornix lesions, antagonizing Aβ-mediated activation of JNK and subsequent
death in cultured cells, elevating CAT function in cultured embryonic septal neurons, and
averting related behavioral decline following excitotoxic lesions of the nucleus basalis
magnocellularis [206].

5.5. Antioxidants
5.5.1. Melatonin

Melatonin (N-acetyl-5-methoxytryptamine) (Figure 8) is a natural hormone synthe-
sized and released by the pineal gland. Melatonin has been in clinical use for a very long
time. Melatonin can easily cross the blood–brain barrier and it is well-tolerated and safe,
even at high doses [208]. Melatonin has the capacity to scavenge nitrogen- and oxygen-
based reactants produced in mitochondria. It has been observed in various studies in
cultured cells and transgenic AD mouse models that melatonin administration can suppress
the Aβ-mediated rise in the levels of mitochondria-linked Bax [209,210]. Moreover, mela-
tonin also inhibited Aβ-mediated caspase-3 function [211]. In a different study, melatonin
reduced the Aβ-mediated intracellular ROS production, NF-κB activation, and functions of
caspase-3 in mouse microglial cell line BV-2 [212]. As compared to untreated animal models,
a decreased level of NF-κB expression was observed in melatonin-treated animals [209]. In
cognitively impaired, ovariectomized adult rat models, treatment with melatonin amelio-
rated spatial memory performance and markedly reduced the number of TUNEL-positive
neurons [213]. Melatonin treatment also markedly reduced the tau hyperphosphorylation
in wortmannin-induced N2a cells [214]. In addition to this, melatonin reduced the activa-
tion of caspase-3 function in cerebellar granule neurons (CGNs) and MPP+-treated SK-N-SH
cultured cells, and also decreased the 3-morpholinosydnonimine-mediated activation of
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caspase-3 in dopaminergic neurons [215–217]. In CGNs, melatonin also showed neuro-
protective properties against MPP+-mediated apoptosis via suppressing the calpain/cdk5
signaling pathway [217]. Melatonin effectively blocked the MPT-dependent apoptotic frag-
mentation of nuclear DNA in mouse striatal neurons, rat mesencephalic cultures, and rat
astrocytes [218]. It has also already been confirmed that transcription factors are associated
with PD pathogenesis and the JNK pathway also plays a role in PD pathogenesis via activat-
ing apoptosis [216,219]. Melatonin suppressed the JNK pathway [216,219] and diminished
the level of c-Jun phosphorylation in 6-hydroxydopamine-mediated and MPP+-treated SK-
N-SH-cultured cells [216,219]. Furthermore, melatonin decreased quinolinic acid-caused
lipid peroxidation and alleviated the symptoms of HD in 3-nitropropionic acid-induced
rats [220]. Melatonin also showed strong neuroprotective properties in mutant-Htt ST14A
cells [221–223]. In a clinical trial, treatment with a high enteral dose of melatonin deceased
ALS-associated OS [208]. Since melatonin is relatively nontoxic and showed neuroprotec-
tive properties in experimental models of ALS, larger clinical trials are therefore required
to evaluate the efficacy of melatonin in the treatment of ALS [224].

5.5.2. Coenzyme Q10 (CoQ10)

CoQ10 (a powerful antioxidant) is found in the inner mitochondrial membrane that
shows anti-apoptotic properties. CoQ10 averts the activation of the mitochondrial perme-
ability transition, which can block the binding of BAX with mitochondria. The neuropro-
tective function of CoQ10 has been evaluated in various cellular models for PD including
iron-mediated apoptosis in cultured human dopaminergic neurons [225]. Nonetheless, the
positive role of CoQ10 on patients with PD has not been clearly observed in clinical studies.
For instance, the effect of treatment with CoQ10 at the dose of 1200 mg or 2400 mg per day
was assessed in 600 PD patients [226]. Unfortunately, coenzyme Q10 did not exert signif-
icant clinical benefits as compared to the placebo [226]. In another clinical trial, chronic
administration of idebenone (a synthetic compound that mimics CoQ10) at a dose of 120,
240, or 360 mg three times a day in 536 AD patients did not slow cognitive deficit [227].

5.5.3. Resveratrol

Resveratrol (Figure 8) is a nonflavonoid polyphenol naturally found in grapes and
wine. Resveratrol exerts strong antioxidant properties and its effects have been found to be
effective in various experimental models of NDs [228–231]. It also exerts cardioprotective
properties. Along with these effects, the administration of resveratrol might increase the
neuroprotective function via activating sirtuin 1 (SIRT1) [230]. Following SIRT1 activation, it
shows neuroprotective and anti-apoptotic properties via deacetylating various transcription
factors including NF-kB, the FoxO proteins, and tumor suppressor p53 to decrease their
ability to induce cell death [228,229,232]. Furthermore, activation of SIRT1 elevated the
lifespan of the fish Nothobranchius furzeri (a promising vertebrate model in aging research)
and also exerted anti-aging effects in various invertebrates including Drosophila melanogaster,
Caenorhabditis elegans, and Saccharomyces cerevisiae [229,230].

5.5.4. Carnosine

Carnosine is a dipeptide naturally produced in the body from L-histidine and
β-alanine [233]. In a cell model of PD, carnosine (another antioxidant) decreased the
level of mitochondria-derived generation of ROS and apoptosis in brain endothelial cells.
Furthermore, it also normalized the levels of antioxidant enzymes and lipid peroxidation
(malondialdehyde) [234]. Along with the conventional PD treatment (levodopa), the ad-
ministration of carnosine at the dose of 1.5 g per day for 30 days markedly ameliorated
the locomotor performance and neurological status of patients [235]. Therefore, the use of
carnosine might be beneficial as a combination therapy in patients with PD. Furthermore,
various studies have also indicated that carnosine might also be effective in AD treatment
and as a potential anti-aging treatment [236]. Nonetheless, clinical studies are required to
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discover its role in AD treatment. Moreover, there are still no data regarding the role of
carnosine on cognitive functions.

5.5.5. Other Antioxidants

Hesperidin is a naturally occurring flavanone glycoside abundantly found in citrus
fruits. Hesperidin shows neuroprotective effects owing to its antioxidant effects [237–239].
It also improves the functions of mitochondria and decreases the level of apoptosis in animal
models of NDs. It has been observed in the 6-OHDA model of PD that hesperidin de-
creased the functions of caspase-3 and -9, which resulted in the improvement of behavioral
alterations. In addition, hesperidin reduced the level of BAX expression, which resulted
in reversed memory loss and improved cognitive deficit in rat models for AD [240,241].
Ebselen is a selenium-containing antioxidant and it exerts glutathione peroxidase-like
effects [242,243]. Moreover, ebselen showed neuroprotective properties and attenuated
apoptosis in a mouse model of AD [244].

5.6. p53 Inhibitors

Pifithrin-α (Figure 8) is a small molecule that inhibits p53-mediated transcriptional
activation, which was mainly developed to provide protection to non-cancerous cells
against cancer therapy-mediated genomic stress. Pifithrin-α showed its neuroprotective
effect in numerous experimental models of apoptosis mediated by Aβ exposure, ischemia,
excitotoxicity, and DNA damage. Furthermore, pifithrin-α showed protective properties
in the MPTP mouse models of PD [245] and suppressed mutated and wild-type PS-2-
induced activation of caspases and apoptosis [246]. In terms of the anticancer properties
of p53 [247], long-term treatment with p53 inhibitors (which is essential in the case of
PD or AD) might be problematic, since pifithrin-α has the capacity to cause genomic
instability [248]. Nonetheless, such molecules may be beneficial for short-term treatment in
managing stroke or nervous system trauma-related apoptosis.

5.7. D2 Dopamine Receptor Agonists

In many culture and animal nervous-system models, agonists of D2 dopamine recep-
tors decreased the levels of apoptosis [249–251]. It has been revealed by the 18F-DOPA or
2-β-carboxymethoxy-3-β-(4-iodophenyl)tropane (β-CIT) positron emission tomography
imaging studies that, as compared to levodopa-treated patients, chronic administration
of D2 dopamine receptor agonists resulted in the lower level of loss of striatal dopamine
terminals in PD patients. Nonetheless, findings from clinical studies favored levodopa
as compared to agonists of the D2 dopamine receptor. Therefore, there is no direct clini-
cal evidence that indicates the D2 dopamine receptor agonist-mediated neuroprotective
effects [252].

5.8. Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)

Chronic neuroinflammation is another important hallmark of all NDs, therefore the
use of non-steroidal anti-inflammatory drugs (NSAIDs) including fenoprofen, ibuprofen,
and indomethacin was found to be linked with reduced AD risk [253–255]. NSAIDs have
the capacity to suppress the two isoforms of cyclooxygenase (COX) including COX-1 and
COX-2. COX-2 is particularly important in the case of inflammatory responses. Elevations
in the level of COX-2 expression have been observed in mouse models of PD and AD [255].
In addition, NSAIDs reduce Aβ42 levels, which can result in neuroprotective effects [254].
It has also been suggested by epidemiological findings that NSAIDs might delay or even
prevent the progression of PD [255]. Ibuprofen is another NSAID that might be useful
in the treatment of NDs, since daily ibuprofen administration at the dose of 50 mg per
day increased the cognitive functions in humans and APP23 AD mouse models [256,
257]. Interestingly, R-flurbiprofen was also found to reduce learning deficits in AD [258].
Moreover, the anti-apoptotic action of NSAIDs might be elucidated by the preservation
of mitochondrial function [207,259,260]. These compounds suppress the release of Cytc,



Molecules 2022, 27, 7207 17 of 33

prevent ROS generation, and alleviate mitochondrial calcium overload. Elevation of
neurotrophin generation is another neuroprotective action of R-flurbiprofen and various
other anti-inflammatory drugs [207,259–261]. Nonetheless, the findings of clinical trials
with NSAIDS were not promising, therefore more clinical studies with the aforesaid NSAIDs
are required to find out whether NSAIDs actually have a role in promoting neuroprotection
and an effect on cognitive disorders or not.

5.9. CPI-1189

CPI-1189 was primarily developed as a novel antioxidant associated with the phenyl-
N-tert-butylnitrone (a spin-trapping agent); however, it has been suggested that it might
also exert anti-apoptotic effects. Chronic administration of CPI-1189 and intracerebroven-
tricular infusion of TNFα decreased weight loss, the number of apoptotic cells, ventricle
enlargement, and impaired performance in the Morris water maze in rat models. In brain
cells, CPI-1189 also decreased quinolate-mediated necrosis and apoptosis mediated via
neurotoxic factors released by activated microglia or macrophages and via TNF-α by the
viral envelope glycoprotein gp120 of individuals with HIV-linked dementia. Moreover, it
suppressed interleukin-1β (IL-1β)-mediated phosphorylation of p38-MAPK and increased
TNF-α-mediated extracellular-signal-related kinase (ERK) activation. Since activation of
ERK can induce Bcl-2, thus it might suggest the CPI-1189-mediated protection against the
apoptotic activities of TNF-α [202,262]. The effects of CPI-1189 to treat PD, AD, and AIDS
dementia have been assessed in clinical studies. Unfortunately, in a Phase II clinical trial,
CPI-1189 did not show efficacy in treating AIDS dementia [263].

5.10. FK506

FK506 (also called tacrolimus) is an immunosuppressant. FK506 is widely used in or-
gan transplantation to avert allograft rejection [264]. In several types of cells,
FK506-mediated selective suppression of Ca2+/calmodulin-dependent calcineurin (CaN)
provided neuroprotection against various different stimuli. In addition, FK506 increased
survival of grafted embryonic dopamine neurons, suppressed apoptosis of cortical neurons
following serum deprivation, and reduced apoptosis of cortical neurons and cerebellar
granule following over-induction of glutamate receptors [265–268]. Moreover, FK506 sup-
pressed MPTP-induced dopaminergic neuronal death and prevented kainic acid-induced
cell death in organotypic hippocampal slice cultures [269]. However, the role of CaN
is still under debate in the case of HD. Intraperitoneal administration of CaN inhibitors
triggered the neurological phenotype in R6/2 mouse models, which showed resistance
toward excitotoxicity [270]. In these mouse models, decreased levels of CaN activities were
also reported [271]. In knock-in striatal neurons expressing full-length mHtt, CaN is also
associated with cell death mediated by the activation of NMDARs [271]. In HD, the genetic
inactivation of CaN and FK506 provided protection against mHtt toxicity by increasing
the phosphorylation of Htt, and also improved the defect in BDNF transport [272,273].
Furthermore, FK506 prevented DNA fragmentation, caspase-3 activation, and Cytc release
in cultured cortical neurons in the 3-nitropropionic acid (3-NP) model. In a 3-NP rodent
model of HD, systemic FK506 treatment markedly ameliorated cognitive functions in the
Morris water maze [274]. It has also been reported that FK506 markedly decreased OS via
restoring acetylcholinesterase function and glutathione levels in 3-NP-treated animals [275].

5.11. Cell Cycle Inhibitors

Various G1/S cell cycle blockers including roscovitine, kempaullone, and flavopiridol
exerted neuroprotective effects in experimental models of excitotoxicity and neuronal cell
cultures [276]. However, the exact process through which neuronal apoptosis is induced
and neurons express cell cycle proteins is still not fully revealed. After DNA damage, ROS
generation might be accountable for triggering cell cycle re-entry. OS was also found to be
linked with neuronal cell cycle re-entry in a harlequin mouse model [277]. Interestingly,
these mice also exhibited a decreased expression of apoptosis-inducing factor and around
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80% exhibited elevated susceptibility towards OS. OS usually takes place before cell cycle
re-entry, which is commonly observed in NDs [278,279]. E2F1 also regulates apoptosis by
inducing p53 expression [277,279]. E2F1 can act as upstream of p53, which can further
result in the upregulation and stabilization of p53. Subsequently, p53 can result in apoptosis
via the activation of Noxa, Puma, or Bax. E2F1 also has the capacity to control the apoptotic
mechanism in a p53-independent manner. This E2F1-mediated mechanism is initiated via
the upregulation of p73 and Bim by a direct transcriptional process and NF-κB signaling
disruption [280,281]. It has been observed that Aβ increases the levels of E2F1 in cortical
neurons and facilitates neuronal cell death in a p53-independent manner and is dependent
on caspase-3 and Bax activation. Collectively, these findings suggest that cell cycle inhibitors
including roscovitine and flavopiridol may have therapeutic potential in ND. Nonetheless,
more studies are required to evaluate their risks to human health and safety.

5.12. Gene Therapy

There is a growing research interest regarding gene therapy, since it is an effective
therapeutic tool in delivering functional genetic materials to cells to correct defective
genes. Currently approved drugs that are used in the treatment of NDs only provide
symptomatic relief, instead of regulating the progression of these diseases. It has been
observed that neurotrophic factors may ameliorate the severity or outcomes of these NDs.
Members of the neurotrophin protein family include neurotrophin-3 (NT-3), BDNF, and
nerve growth factor (NGF) that play a role via their common neurotrophin receptor p75
and cognate tropomyosin-related kinase (Trk) receptors (such as NT-3/TrkC, BDNF/TrkB,
and NGF/TrkA). Activation of these receptors was found to mediate synaptic activity,
differentiation, and neuronal survival. For instance, NGF maintains cholinergic neuro-
transmitter systems in certain populations of neurons (for example, cholinergic forebrain
neurons) [282]. As NGF is a neurotrophic factor that acts as a strong growth-stimulating
factor for cholinergic neurons, thus NGF might be an effective candidate in AD treatment.
CERE-110 is a genetically engineered replication defective adeno-associated virus serotype
2-based vector. CERE-110 is a gene delivery vector that possesses human nerve growth
factors for AD treatment [283]. In PD, low NGF levels were observed in the substantia
nigra and blood. In the substantia nigra, BDNF might also improve the differentiation and
survival of dopaminergic neurons [284]. Moreover, BDNF has a significant contribution
in memory, synaptic plasticity, and neuronal survival [285]. Various small molecules have
been developed that have the capacity to target BDNF receptors [286,287]. These small
molecules are also being studied in mouse models of HD and AD [288–290].

5.13. Drugs Targeting Peroxisome Proliferator-Activated Receptors (PPARs)

The inflammatory response is a characteristic of NDs. PPARs belong to a family of
nuclear hormone receptors that control inflammation and the immune system [188]. Three
isoforms of PPARs, including PPARα, PPARδ, and PPARγ, were found to be effective in
animal models of PD, AD, MS, and trauma/stroke [291–293]. Thiazolidinediones are the
agonists of PPARγ and activation of this receptor might lead to direct neuronal protection. It
has been reported that troglitazone and rosiglitazone may show neuroprotective properties
against Aβ-mediated cell death [293]. In addition, rosiglitazone ameliorated memory in
an APP/PS-1 mouse model of AD. However, rosiglitazone has been withdrawn from the
market owing to cardiovascular risk [294]. It has also been reported that PPARγ can stop
expressions of inflammatory genes in peripheral immune cells [191]. The agonists of PPARγ,
including ibuprofen and pioglitazone, significantly decreased the activations of astrocytes
and microglia [291,295]. Therefore, troglitazone, and other thiazolidinediones may play
effective roles in treating MS and other neuroinflammatory disorders by interfering with
the inflammatory responses.
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5.14. Statins

Inhibitors of 3-Hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, collectively
known as statins, are effective cholesterol-lowering drugs. Currently, statins are utilized
in preventing cardiovascular diseases. Various studies have revealed that statins might
be associated with a decreased occurrence of ALS, AD, and PD [296–303]. A decreased
occurrence of AD was observed in individuals under treatment with statins [296–302,304].
Statin-mediated neuroprotective effects might take place owing to their anti-inflammatory
properties. Furthermore, statin-mediated prevention of free radical generation and reduced
microglia activation might also play role in their neuroprotective effects [300,305]. It was
reported that atorvastatin showed neuroprotective properties against excitotoxicity in
cortical neurons [296]. Statins also prevented the excessive level of intracellular calcium
entry through NMDARs. Simvastatin provided protection against NMDA-mediated ex-
citotoxicity in HD cellular models by decreasing the contents of lipid rafts domains in
the plasma membrane of mHTT cells [298]. Various clinical trials have demonstrated that
statins decreased the occurrence of strokes, vascular dementia, and AD [297,304]. The
presence of α-synuclein aggregates is a hallmark of PD and dementia with Lewy bodies.
Cholesterol plays a role in the aggregations of α-synuclein [306]. Moreover, metabolites of
cholesterol induce the fibrillization of α-synuclein.

Lovastatin decreased the α-synuclein aggregation in transgenic mice that overexpress
human α-synuclein, which further supports the use of statins in individuals with PD
and/or dementia with Lewy bodies [306]. A major issue with statins is their ability to cross
the blood–brain barrier (BBB). However, lovastatin shows an elevated level of lipophilicity
and has the capacity to penetrate the BBB [305]. Atorvastatin exerts anti-inflammatory
effects, nonetheless, it has limited capacity to penetrate the BBB, which may hinder its use in
the prevention of NDs. Based on the current data obtained from clinical trials, it is difficult
to draw a conclusion regarding the use of statins in the treatment of PD and AD. Statins
also exerted beneficial effects in the case of multiple sclerosis (MS). In a Phase II clinical trial,
atorvastatin (80 mg) and simvastatin (80 mg) significantly decreased the number of new
lesions [307–310]. Collectively, these findings indicate the beneficial outcomes of statins
in treatments; however, more studies are required to confirm these findings. Moreover,
the cholesterol-lowering properties of statins are nearly similar in these studies, but their
NMDA antagonism and anti-inflammatory effects might differ and rely on their capacity
to penetrate the BBB [310]. Thus, more studies are required to confirm all of these findings
and select the appropriate statins for the treatment of NDs.

5.15. Vitamin E

Vitamin E is a group of fat-soluble compounds that can be categorized into two major
subgroups including tocopherols and tocotrienols [311]. It has been reported that these com-
pounds can play a role as lipophilic radical-trapping antioxidants and avert the generation
of phospholipid hydroperoxides [312,313]. In addition, the anti-ferroptotic role of vitamin
E derivatives might play a role in the prevention of lipoxygenases including 5-lipoxygenase
and 15-lipoxygenase [314]. A metabolite of alpha-tocopherol, alpha-tocopheryl quinone,
showed a strong anti-ferroptotic function via the reduction in the non-heme iron from its
active Fe3+ form to its inactive Fe2+ form in 15-lipoxygenase [314].

5.16. Selenium

Selenium is an essential trace element that plays an important role in the synthesis of
and suppresses ferroptosis [315–317]. In a mouse model of stroke, administration of sodium
selenite (produced by the oxidation of selenium) through intracerebroventricular route
provided protection to neurons via enhancing the GPX4 level by coordinated activation
of specificity protein 1 (Sp1) and transcription factor AP-2 gamma [316]. Moreover, it
provided protection against ER stress and GPX4-independent excitotoxicity-mediated cell
death.
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5.17. N-Acetylcysteine

N-acetylcysteine (NAC) is a derivative of the amino acid cysteine that has the abil-
ity to cross the BBB. NAC also has the capacity to induce immune responses, stimulate
redox-regulated cell signaling, provide protection against OS, and elevate glutathione
levels [318,319]. In an AD mouse model, intraperitoneal administration of NAC restored
GSH levels in the brain and averted lipid peroxidation [320]. It has been confirmed that
NAC shows anti-ferroptotic properties against hemin-mediated hemorrhagic stroke via
neutralizing arachidonate-dependent production of toxic lipids [321].

5.18. Cinnamic Acid

Artepillin C is a derivative of cinnamic acid present in Green Brazil Propolis. Artepillin
C shows both anti-inflammatory and anti-cancer properties. It has been confirmed that this
cinnamic acid derivative can improve neurotoxicity via elevating HO-1 expressions and
decreasing the generation of ROS, which can further result in the suppression of ferroptosis
and protection from cell damage mediated by erastin [163]. It has been suggested by
in vitro and in vivo findings that 7-O-cinnamoyltaxifolin (a hybrid of cinnamic acid and
taxifolin) exerts a potent neuroprotective action against ferroptosis [188]. Furthermore,
7-O-cinnamoyltaxifolin improved short-term memory, decreased the secretion of various
inflammatory cytokines, and upregulated NRF2 expression in AD mice [101].

6. Future Directions

Various therapeutic agents that have been mentioned above, including cell-cycle
inhibitors, p53 inhibitors, GSK-3b inhibitors, antioxidants, calpains inhibitors, and caspase
inhibitors, have exhibited effectiveness in various neuronal preparations and experimental
models of NDs. Indeed, knowledge regarding the mechanisms of neuronal apoptosis is very
important in the development of novel neuroprotective drugs. Along with mitochondria,
other signaling pathways including p53, cell-cycle activation, CDK5, and GSK-3b have also
been linked with apoptosis. In the future, it will also be very important to assess the role of
mitochondria in controlling various membrane receptors including NMDAR. Evaluation
of various caspase-independent pathways (for instance inhibitors of poly(ADP-ribose)
polymerase (PARP-1)) might be effective in developing effective and novel drugs in the
treatment of NDs [322]. Since multiple mechanisms are associated with the pathogenesis of
NDs, therefore it is estimated that a single molecule targeting only a certain pathway (such
as OS, JNK, or GSK3) might not be effective alone in treating these diseases. Since blocking
a specific pathway might not be effective in preserving neuronal viability, therefore some
of the anti-apoptotic drugs might fail to treat NDs. Thus, a combination therapy might
be effective in this regard. On the other hand, the delivery of proper genetic material by
using retrovirus-modified cells or viral vectors containing anti-apoptotic, neuroprotective,
or neurotrophic genes might be probable therapies for various NDs. Nonetheless, probable
challenges with gene therapies include the availability of precise vectors [37]. Therefore,
more studies are required in solving these issues by advancing vector technology.

7. Conclusions

Numerous findings from various studies have already demonstrated that the neuronal
apoptotic pathway is linked with the pathogenesis of multiple NDs including AD, PD,
HD, and ALS. A common characteristic of these NDs includes the death of specific groups
of neurons. Since currently available therapies for NDs only provide symptomatic relief,
therefore better understanding of the factors and agents that induce the apoptotic mecha-
nism in the case of NDs may improve knowledge regarding the underlying mechanisms
that are linked with apoptosis in the case of various NDs. Therefore, it would be possible
to determine the probable factors that could be utilized to detect the individuals who are at
greater risk of developing an ND. Better knowledge regarding the underlying mechanisms
might also help in developing molecules to delay or even stop the advancement of NDs.
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