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Abstract: Metabolomics is an essential method to study the dynamic changes of metabolic networks
and products using modern analytical techniques, as well as reveal the life phenomena and their
inherent laws. Currently, more and more attention has been paid to the development of metabolic
histochemistry in the fungus field. This paper reviews the application of metabolomics in fungal
research from five aspects: identification, response to stress, metabolite discovery, metabolism
engineering, and fungal interactions with plants.
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1. Introduction

Metabolomics is an emerging omics technology following genomics, proteomics, and
transcriptomics. The concept of metabolomics first originated from metabolomic profil-
ing proposed in 1971 by Devaux et al. [1]. Metabolomics was put forward as a group
of metabolites in organisms by Oliver et al. in 1998 [2]. Nicholson raised the concept
of metabolomics on the basis of a statistical analysis of NMR spectroscopic data from
mouse urine. These data are defined as “a quantitative measurement of the dynamic multi-
parametric metabolic response of living systems to pathophysiological stimuli or genetic
modifications” [3]. Traditional metabolomics is divided into targeted metabolomics and
untargeted metabolomics. Targeted metabolomics is the measurement of a defined set of
chemically characterized and biochemically annotated metabolites, usually focusing on one
or more relevant metabolic pathways [4]. Recently, it has been subdivided and further de-
veloped into widely targeted metabolomics, pseudotargeted metabolomics, quasi-targeted
metabolomics, LM precision targeted metabolomics, etc. Although the above methods all
use the MRM mode for mass spectrometric data acquisition, widely targeted metabolomics
and pseudotargeted metabolomics are performed by qualitatively and relatively quanti-
fying the target through substances in the local library (established on the basis of partial
standards, untargeted data, literature data, etc.), LM precision targeted metabolomics can
absolutely characterize the substances corresponding to all standards. Even in combination
with external standard methods, absolute quantification of metabolites in a sample can
be achieved. However, untargeted metabolomics analyzes all measurable metabolites
in a sample. The aim was to measure metabolites in the samples whenever possible [5].
According to different research objects and purposes, metabonomics can be divided into
four levels: metabolic fingerprinting analysis, metabolic target analysis, metabolic profiling,
and metabolomics [6].

Metabolomics, through modern instrumental analytical methods with high through-
put, sensitivity, and resolution, combined with chemometric methods, analyzes the change
law of metabolites after stimulation or interference in biological systems. Its focus is more
on small-molecule metabolites with relative molecular weights of less than 1000 in bio-
logical tissues or cells and is often used to study plant and microbial systems [7–9]. The
existence time of fungi on the Earth is unknown, and no definite conclusions can be drawn
about their origin. Fungal cells do not contain chloroplasts and plastids; they are typical
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heterotrophs with parasitic or saprophytic patterns. The latest research speculates that
there are as many as six million species of fungi worldwide, of which more than 600 are
closely related to humans. They can participate in the formation of the human micro-
ecosystem as resident fungi or cause diseases as pathogens. Fungi profoundly affect human
health, agriculture, biodiversity, natural ecology, industry, biomedicine, etc. [10–12]. The
application of metabolomics to different research fields of fungi, such as the classification
and identification of fungi, metabolic pathways of fungi, the discovery of fungal natural
products, and plant–fungal interactions [13–18], can help researchers entirely mine the
potential of fungi. This article mainly reviews the research methods of metabolomics and
the latest progress of metabolomics in various research fields of fungi (Table 1), aiming to
promote further research on fungal metabolomics.

Table 1. Application of metabolomics in fungal research in recent years.

Species Techniques Nos. of
Metabolites Main Metabolites Involved Pathway Ref.

Fungal response to stress

Agaricus subrufescens UHPLC–MS/MS 38
Ergosterol, agaritine,
pyroglutamic acid,

vitamin B3, sphingolipids
[19]

Phanerochaete
chrysosporium GC–MS 53 Veratryl alcohol, threonate,

and erythronate [20]

Alternaria sp. MG1 GC–TOF-MS 239 Amino acid, carbohydrate,
xenobiotics, and lipid PPPN biosynthesis pathway [21]

Cryptococcus
neoformans GC–TOF-MS Amino acids, carbohydrates Amino acid and

carbohydrate metabolism [22]

Pleurotus ostreatus LC–Q/TOF-MS 59
Sucrose, dextrin, adenine,

uracil, L-glutamine,
and L-lysine

glutathione metabolism,
sphingolipid metabolism, and
some amino-acid metabolism

[23]

Volvariella volvacea LC–Q/TOF-MS 547
Organic acids, fatty acids,
amino acids, carbohydrate

metabolites, nucleotides

Amino-acid metabolism,
carbohydrate metabolism, the

TCA cycle,
energy metabolism

[24]

Aspergillus aculeatus GC–MS 42
Amino acids, organic acids,

sugars, fatty acids, and
sugar alcohol

[25]

Aspergillus flavus LC–MS/MS 135

Tricarboxylic acid cycle, amino
acid biosynthesis, protein
degradation, absorption,

mineral absorption

[26]

Aspergillus niger GC–MS Mannitol and gluconic acid Mannitol cycle [27]

Aspergillus niger LC–MS/MS 68
Triacylglycerol,

monoacylglycerol,
hydroxy-triacylglycerol

Glycerolipid metabolism [28]

Ganoderma lucidum GC–MS and
LC–MS/MS 154/70

L-Malic acid,
alpha-hydroxycholesterol,

zymosterol, ergosterol

Protein digestion, absorption,
purine metabolism,

unsaturated fatty acids,
fatty-acid biosynthesis,

purine metabolism

[29]

Cunninghamella
echinulata LC–MS/MS Protein and amino acid Purine, amino-acid, TCA, and

sugar metabolism [30]

Schizochytrium
limacinum SR21 GC–MS 30

Fatty acids, amino acids,
organic acids, carbohydrates,
alcohols, squalene, cholesterol

Mevalonate, lipid synthesis,
and pentose

phosphate pathway
[31]

Industrial yeast GC–MS 59 Trehalose, glycerin acid,
fatty acids

TCA cycle, fatty-acid
synthesis, glycolysis pathway,

arginine metabolism, etc.
[32]

Discovery of fungal natural products
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Table 1. Cont.

Species Techniques Nos. of
Metabolites Main Metabolites Involved Pathway Ref.

Ganoderma lucidum
and Cordyceps sinensis HPTLC–MS 6

Thymine, uracil, adenine,
cytosine, guanine

and guanosine
[33]

Ophiocordyceps
sinensis UHPLC–Q-TOF-IMS 345

Tyrosyl-phenylalanine,
2-phenylethyl

beta-D-glucopyranoside and
3′,5′-odimethylmyricetin

3-O-beta-D-2′′,3′′-
diacetylglucopyranoside

[34]

Cordyceps militaris GC–MS 39 Amino acid, nucleosides,
organic acids, and sugars

Nucleotide, carbohydrate,
and amino-acid metabolism [35]

Ophiocordyceps
sinensis and

Cordyceps militaris
LC–TOF-MS 100

Amino acids, unsaturated fatty
acid, peptides, mannitol,

adenosine, and
succinoadenosine

[36]

Cordyceps sinensis and
Cordyceps militaris LC–MS 39

L-Tyrosine, 9,10-dihydroxy-
12Z-octadecenoic acid and

(−)-riboflavin
Histidine metabolism [37]

Cordyceps militaris LC–ESI-IT-MS/MS
and GC–EI-IT-MS

Soyasaponin, pyroglutamic
acid, isoflavone

methyl-glycosides
[38]

Trametes versicolor
and Ganoderma

applanatum
57

N-(4-
Methoxyphenyl)formamide
2-O-β-D-xyloside and N-(4-
methoxyphenyl)formamide

2-O-β-D-xylobioside

[39]

Aspergillus oryzae and
Zygosaccharomyces

rouxii
UHPLC–Q-TOF-MS 32

N-Formyl-l-aspartate,
imidazoleacetic acid, taurine,
glycocholate, phenylpyruvate

Histidine metabolism,
phenylalanine, adenosine

kinase, phosphatidylserine
synthase homo sapiens,

phosphatidylethanolamine
scramblase

[40]

Agaricus bisporus UPLC–Q-TOF-MS 40 Organic acids, trehalose
Fatty-acid biosynthesis,

tyrosine metabolism, and
citrate cycle

[41]

Flammulina filiformis
HILIC–ESI(±)-

QTOF-MS,
LC–MS/MS

107 Melanin, l-dopa (3,4-
dihydroxy-l-phenylalanine)

Phenylpropanoid
biosynthesis and

tyrosine metabolism
[42]

Aspergillus terreus LC–HRMS 18 Quinones, isocoumarins,
polyketides [43]

Morchella sp. UPLC–Q-TOF-MS 50 Fatty acids, peptides [44]

Penicillium restrictum
MMS417

UPLC–IT/TOF-
MS/MS Pyran-2-ones [45]

Fungal metabolic engineering

Saccharomyces
cerevisiae GC–EI-MS

Geranyl diphosphate,
farnesyl diphosphate,

geranylgeranyl diphosphate,
squalene, lanosterol,

and ergosterol

Isoprenoid pathway [46]

Aspergillus nidulans LC–MS Fellutamide B, antibiotic
1656-G, and antibiotic 3127 [47]

Aspergillus nidulans UHPLC–ESI-HRMS 6

Orcinol, phenoxyacetic acid,
orsellinic acid,

monodictyphenone, gentisic
acid, and caffeic acid

Glycine, serine, and threonine
metabolic pathway,

glycolysis, and TCA cycle
[48]

Fusarium verticillioides
and Streptomyces sp. LC–ESI-QqQ 36

Amino acids, saccharides,
nucleotides, organic acids,
phenol, lipid, and amine

Protein synthesis, Krebs cycle [49]
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Table 1. Cont.

Species Techniques Nos. of
Metabolites Main Metabolites Involved Pathway Ref.

Fusarium verticillioides GC–MS 46 Arabitol, mannitol,
and trehalose

Fumonisin biosynthesis and
trehalose biosynthesis [50]

Fusarium
graminearum LC–MS 22

N-Ethyl anthranilic acid,
N-phenethylacetamide,

tricinolone and tricinolonoic
acid, fusarins, zearalenones,

and fusaristatin A

[51]

Fusarium
graminearum NMR–GC-FID–MS 45 Sugars, amino acids, organic

acids, choline metabolites
Inhibiting glycolysis,

tricarboxylic acid cycle [52]

Aspergillus nidulans GC–EI-MS 86

Carbohydrates, amino acids,
and carboxylic and lipid

acids, purines
and pyrimidines

Amino-acid and
carbohydrate metabolism [53]

Plant–fungal interaction

Diaporthe
phaseolorum,

Trichoderma spirale
NMR 20 Threonine, malic acid, and

N-acetyl-mannosamine [54]

Pisolithus tinctorius NMR, FT-ICR 61

Carbohydrates, organic acids,
tannins, long-chain fatty
acids, monoacylglycerols,

gamma-aminobutyric acid
(GABA), and terpenoids

[55]

Fusarium verticillioides UPLC–Q-TOF/MS Isoflavones, jasmonic acid Phenylpropanoid,
flavone metabolic, [56]

Armillaria
luteobubalina GC–MS 117 Sugars, sugar alcohols,

amines, or amino acids D-Threitol synthesis [57]

Tilletia controversa LC–MS 62
9-HODE, prostaglandin D3,
caffeic acid, pyroglutamic

acid, tetracosanoic acid
[58]

Penicillium digitata UHPLC–Q-TOF/MS 85

amino acids, lipids, fatty
acids, TCA metabolites,
galactose metabolites,

carbohydrate metabolites,
nucleic acids, amino sugars,

and nucleotide sugars

Amino-acid, lipid, fatty-acid,
and purine metabolism,

and TCA cycle
[59]

Trichoderma fungi HRMAS NMR
γ-Aminobutyric acid,

acetylcholine, and
amino acids

[60]

2. Fungal Metabolomic Approaches

The technical route for metabolomic research in fungi mainly involves three main
processes: sample preparation, data collection and processing, and analysis (Figure 1).
Sample preparation can affect not only the observed metabolite content but also the biolog-
ical interpretation of the data. Therefore, appropriate sample collection and preparation
steps are required to avoid interfering with the efficient metabolomics analysis. Currently,
studies on sample preparation in biological fluids, tissues, mammalian cells, and plants
have been relatively comprehensive, but there are few reviews related to fungal sample
preparation strategies [61–64]. An ideal sample preparation method for metabolomics
should be as simple, rapid, highly selective, and reproducible as possible and capable of
quenching to determine the actual metabolic composition at the sampling time. General
sample preparation steps include rapid sampling, quenching, and sample extraction [65].

2.1. Rapid Sampling

Rapid sampling from fermentation tanks or shake flasks is the first step in performing
fungal sample preparation, since 1969 when Harrison et al. first attempted rapid sampling
from small-scale laboratory bioreactors [66], to Iversen and Theobald et al., who developed
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iterations of sampling systems with minimal dead volume for manual feeding [67,68].
Fast sampling systems are currently characterized by motorized sampling, high frequency,
negligible dead areas, and efficient inactivation [69–71]. The technology developed by
van Gulik used adenine nucleotide as an indicator to analyze its dynamic response to
changing glucose concentration and quickly sample yeast metabolites. It has a very high
sampling frequency, which can also ensure long-term sterility [72]. Although the sampling
method developed by Hannes Link et al., which directly injects fungi such as yeast into
high-resolution mass spectrometers for real-time metabolomic analysis, achieves automated
detection of target compounds [73], this approach is expensive and impractical for the
majority of researchers.
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2.2. Quenching

The purpose of quenching is to rapidly stop various metabolic activities within the
cells, inactivate enzymes, keep the metabolite content stable, and reduce the degradation
of metabolites. The cold methanol quenching method is a standard method used in the
past, and the research on cell quenching mainly focused on different methanol content
and quenching temperature. Specifically, 60% (v/w) methanol quenching at −40 ◦C is
one of the standard methods for microbial metabolomics research. However, this method
causes the leakage of cellular metabolites [74,75]. So far, cold methanol use for quenching

BioRender.com
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has remained a controversial topic. Due to the advantage of a high extraction efficiency
of representative intracellular metabolites by cold methanol quenching, some researchers
have continuously improved the original method of cold methanol quenching proposed by
de Koning et al. According to the degree of metabolite leakage depending on the exposure
time, temperature, and nature of the methanol solution, under fast sampling equipment,
setting the sample/quencher liquid (v/v) ratio to 1:5 or less for quenching in pure methanol
at ≤−40 ◦C effectively prevents metabolite leakage [76]. Of course, other quenching
methods are also under continuous development. Rapid filtration of liquid nitrogen is
more suitable for cell quenching than cold methanol quenching, with minimal damage to
cell integrity and improved recovery of intracellular metabolites [77]. However, ice crystals
produced by the freezing of liquid nitrogen can potentially damage the cell membrane,
which also leads to the leakage of metabolites inside the cell. Quenching using strong acids
such as perchloric acid can lead to the degradation of some compounds in a strong acid
environment with severe metabolite reduction [78]. It seems that the perfect quenching
method is challenging to achieve. Although Meinert et al. believe that the quenching
method of methanol quenching solution (60%, −40 ◦C) has no metabolite leakage, we can
still find that the metabolite investigated using this method is insufficient and far from
reaching the level of no leakage for all detection indicators [79]. Moreover, most of the
quenching studies focused on Gram-positive bacteria [80], Gram-negative bacteria [81],
yeast cells [82,83], etc., whereas research on filamentous fungi is rare.

2.3. Sample Extraction

How to extract the quenching sample is a critical step in the sample preparation stage.
Furthermore, the ideal extraction should not change the metabolites’ physical properties
and chemical structure and should maximize the sequestration of the metabolite content.
Current extraction methods can presumably be grouped into physical and chemical cate-
gories. Physical methods often use homogenizers, ultrasonic, microwave, and other tools.
Chemical methods mostly use acid, base, water, methanol, ethanol, and different ratios of
water and organic solvents, mixed solvents, etc. Researchers can choose different solvents
depending on different samples. As mentioned above, strong acids and bases can cause
severe metabolite leakage resulting in a low recovery rate of final metabolites. Although
this is a classical extraction method, using strong acids and bases such as perchloric acid
is still not recommended. Solvents with the highest extraction efficiency can be selected
experimentally. Three sample preparation methods and five solvent mixtures of Mortierella
alpina were evaluated using gas chromatography/mass spectrometry (GC–MS) [84]. The
results showed better reproducibility and recovery of lyophilized. Methanol/water (1:1)
was more effective in extracting metabolites of Mortierella alpina. Compared with biphasic
extraction at different pH with methanol extraction, which is easy and fast and suitable
for the extraction of metabolites from Phanerochaete chrysosporium, biphasic extraction at
different pH is more suitable for target analysis [85]. Of note, despite the high efficiency
and recovery of metabolites extracted by supercritical fluids, partially unstable metabolites
may undergo decomposition due to the pressure ranging between 200 and 500 bar [86].

2.4. Instrumental Analysis Methods

Commonly used metabolomics analysis methods require collecting raw data after
sample quenching and extraction. Currently, several analytical methods exist for quali-
tative and quantitative analysis of metabonomic extracts in metabonomic research. The
commonly used analytical methods for fungal metabolomics include gas chromatogra-
phy/mass spectrometry (GC–MS), liquid chromatography/mass spectrometry (LC–MS),
nuclear magnetic resonance spectroscopy/mass spectrometry (NMR–MS), capillary elec-
trophoresis/mass spectrometry (CE–MS), and matrix-assisted laser desorption ionization
mass spectrometry (MALDI-MS). GC–MS is often used to analyze substances with excellent
thermal stability and volatility, allowing simultaneous analysis of sugars, amino acids,
phosphorylated metabolites, organic acids, lipids, amines, and other compounds. It exhibits
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extraordinary robustness, excellent separation ability, high selectivity, effective sensitivity,
and reproducibility [87]. However, there are also some disadvantages, as nonvolatile com-
pounds require derivatization. The main derivatization methods are silanization, acylation,
alkylation, and esterification. Koek et al. established a GC–MS spectrometry metabonomic
analysis technology suitable for microorganisms and verified the method with various
microorganisms [88]. The results showed that the method has good repeatability, effective
reproducibility, and fast linear regression characteristics. It can be used for the metabo-
nomic analysis of various components of microorganisms, such as alcohols, aldehydes,
amino acids, fatty acids, organic acids, sugars, purines, pyrimidines, and aromatic com-
pounds. HPLC reduces the complexity of samples and offers several advantages, such
as simple preparation, high sensitivity, signal reproducibility, minimal noise, and high
qualitative and quantitative ability. It is helpful for thermally labile compounds, nonvolatile
compounds, polar compounds, and compounds that are macromolecules. With the devel-
opment of high-performance liquid chromatography (HPLC) and ultra-performance liquid
chromatography (UHPLC), the resolution of peaks was improved, and the speed of analysis
was accelerated [89]. NMR techniques have the advantages of high reproducibility, accurate
quantification, simple sample preparation, measurable analytes in various solvents, clear
identification of unknown metabolites, and complete metabolite detection. The disadvan-
tage is low sensitivity, which severely limits the use of NMR in metabolomics [90]. Capillary
electrophoresis techniques are relatively new and less applied analytical methods, mainly
for studying molecules, but they are preferred when dealing with highly polar, charged
metabolites [91]. They allow rapid and high-resolution analysis of charged metabolites
such as nucleic acids, amino acids, carboxylic acids, and sugar phosphates. Each analytical
tool has advantages and disadvantages. A single analytical platform tool cannot directly
and precisely characterize or quantify thousands of small-molecule metabolites involved in
fungal metabolic processes. The right combination of tools is often needed depending on
the experimental situation to better analyze the target fungi.

2.5. Data Processing and Analysis Methods

The original data obtained by the analytical instrument cannot provide a clean and
comparable metabolite spectrum. Therefore, the original data must be preprocessed and
generally completed in the experimental system. This mainly includes noise reduction
and baseline correction, peak detection and deconvolution, normalization, and data stan-
dardization [92,93]. The classical analysis method is to use a single variable, i.e., parameter
by parameter, or to use multivariable techniques to evaluate group differences. Although
the univariate analysis method is simple and convenient, it cannot accurately distinguish
the groups when the difference is small. Multivariate analysis can be used to analyze
the changes in single metabolites between different groups and the dependent structure
of individual molecules [94]. Multivariate analysis can be divided into two categories;
one is the unsupervised learning method, which classifies the original data directly, in-
cluding principal component analysis (PCA), hierarchical clustering analysis (HCA), and
self-organizing maps (SOMs). The other is the supervised learning method, i.e., learning
the training samples with a given sample label, such as partial least squares discriminant
analysis (PLS-DA), partial least squares discriminant analysis based on orthogonal signal
correction (OPLS-DA), artificial neural network (ANN), and support vector machine (SVM).
Among them, PCA, PLS-DA, and OPLS-DA are the most frequently used multivariate
statistical analysis methods in the field of metabolomics [95–98]. The generally used analy-
sis software includes MetAlign [99], MZmine [100], XCMS [101], Metabolomic Analysis
and Visualization Engine (MAVEN), Metabolite Biological Role (MBRole), MetaCoreTM,
MetaboAnalyst, InCroMA, and 3Omics [102–104].
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3. Application of Metabolomics in the Field of Fungal Research
3.1. Application of Metabolomics in Classification and Identification of Fungal Research

Morphological methods, as the traditional fungal classification method [105], have
some limitations, i.e., the classification from appearance characteristics is affected by the
fungal growth environment, similar morphology, and other factors, thus affecting the
accuracy of classification. Genomic DNA/DNA hybridization [106,107], ribosomal typ-
ing [108,109], multilocus sequence typing [110,111], ITS rDNA sequences [112], and lipid
profile analysis [113] are popular methods in fungal taxonomic identification. Chemical
taxonomy was initially considered complementary to morphological methods based on
primary and, more often, secondary metabolites. However, with advances in HPLC and
mass spectrometry, the application of metabolomic chemotaxonomic in fungal taxonomic
identification has progressed considerably (Table 2). Kang et al. analyzed the secondary
metabolites of seven species of Trichoderma (33 strains) using its sequence and metabolome-
based chemotaxonomic comparison. They found that the chemical taxonomy based on
secondary metabolites was more accurate than its sequence and identified an unknown
group of Trichoderma [114]. Chen used HPLC fingerprinting combined with stoichiometric
analysis of Ganoderma lucidum fruiting bodies and screened four marker components as dis-
criminative variables to distinguish Ganoderma lucidum [115]. However, Wen et al. believed
that the identification of distinguishing Ganoderma lucidum with the NMR metabolomics
method was less time-consuming and faster, which was in line with the quality control of
large-scale production. Through NMR metabolomics, labeling choline and propionic amino
acids as discriminating variables not only successfully differentiated between Chinese
and Korean Ganoderma lucidum but also differentiated the cultivated origin of Chinese
Ganoderma lucidum [116]. This method of taxonomic identification based on the specific
metabolites of fungal species effectively avoids the limitation of low accuracy of traditional
methods and identifying fungi from different regions or even different growth stages.

Table 2. Metabolomics for taxonomic identification of fungi.

Fungal Species Analysis Platform Extraction Method Data Processing Achievement Ref.

T. harzianum
T. aggressivum
T. virens
T. longibrachiatum
T. hamatum
T. koningii
T. atroviride

LC–ESI-MS-MS

The concentrate was
pooled into 100 µL of
methanol and filtered
through a
0.45 umptf filter

Varian MS
Workstation 6.9,
Vx Capture 2.1,
MetAlign, SIMCA-P+
12.0, Statistica 7

Chemical taxonomy
based on secondary
metabolite profiling
was found
to be advantageous
over other
classification methods

[114]

Ganoderma lucidum NMR spectroscopy

CD3OD and D2O (v/v,
1:1), 10 mM sodium
phosphate, and 0.025%
TMSP were mixed and
extracted, followed
by centrifugation

Matlab, SIMCA-P
version 11.0, Chenomx,
and Excel

Development of a
method to effectively
distinguish between
national and even
regional sources of
G. lucidum cultivation

[116]

Rhizoctonia solani GC/MS

Derivatization in
autosampler vials, upon
addition of 80 µL
of methoxyamine
hydrochloride solution
(30 ◦C, 120 min) and
80 µL of MSTFA (37 ◦C,
90 min)

ACD/Spec Manager
v.12.00, mass spectra
matching the National
Institute of standards
and Technology
Library, SIMCA-P 12.0

Characterization and
identification of
an isolate of
Rhizoctonia solani

[117]

Aspergillus MALDI-TOF-MS
Bead disruption sample
pretreatment followed
by centrifugation

BioRad data
processing suite

Can be used to
unambiguously
identify members of
the genus Aspergillus
at the species and
strain level

[118]
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Table 2. Cont.

Fungal Species Analysis Platform Extraction Method Data Processing Achievement Ref.

Candida species,
Aspergillus species,
and other
yeast genera

MALDI-TOF-MS

Washed yeast cells were
fixed by suspension in
50% methanol/water
(v/v) or stored
at 4–6 ◦C for 45 days
for subsequent
comparative analysis

External alignment
was performed using
cytosolic picolinic acid
A, etc.; MALDI mass
spectra were processed
using “Data Explorer”
(Applied Biosystems),
and data were
processed in MATLAB

Was used to identify
yeast and group
strains, as well
as follow
morphogenesis of
C. albicans

[119]

Epichloë festucae LC–HR-MS/MS

MTBE, methanol, and
water were extracted in
two phases, dissolved in
60 µL of methanol/
acetonitrile/water
(v/v/v, 1:1:12),
and centrifuged

The datasets were
processed with
markerlynx XS for
maslynx v.4.1, and the
software suite
Marvis did the
subsequent processing

A genetic approach
combined with
tandem mass
spectrometry was used
to identify novel
products of secondary
metabolite gene
clusters and to
discover novel Leu/Ile
glycoside metabolites

[120]

Wide edible
mushrooms

UHPLC–QE
Orbitrap/MS/MS

Chloroform and
methanol are mixed
(2:1 v/v), then
centrifuged

SPSS 16.0 statistical
analysis, xcalibur 4.0,
ms-dial 4.36, and
lipidmaps for
identification and
quantification of lipids,
SIMCA 14.1,
metaboanalyst 4.0
follow-up analysis

It is helpful for
improving the
sensitivity,
reproducibility, and
accuracy of
trace-level analysis
of triterpenoids in
complex
biological samples

[121]

Ganoderma lucidum
mycelium

UPLC–ESI-HR-
QTOF-MRM

Methanol post-extraction
filtration

Masslynx 4.1
performed data
acquisition, targetlynx
quantification, and
SPSS 17.0

Highly precise
identification and
quantification of
triterpenoids present
in trace amounts in
mycelia of G. lucidum

[122]

Nevertheless, metabolome-based chemotaxonomy also has drawbacks. First, how to
overcome the problem of finding specific markers from a plethora of metabolites for optimal
biological interpretation is still unanswered. Second, changes in various environmentally
relevant regulatory genes may not affect the expression of taxonomic-related genes. Lastly,
while it is desirable to analyze metabolites of specific organelles, how organelles can be
isolated while maintaining a structural, metabolic state remains unattainable.

3.2. Application of Metabolomics in the Study of Fungal Response to Stress

Fungi can survive only under various stress reactions such as ionizing radiation, hydra-
tion activity, acid–base environment, hypoxic stress, solar ultraviolet radiation, agricultural
and industrial pollutants, biological stress, nutrient stress, oxidative stress, heat stress, and
cold stress to survive. Ecological metabolomics studies changes in endogenous metabolites
produced by biological systems that are affected by environmental factors [123]. Using
metabolomics to study fungi, we can understand how fungi respond to stress when they
grow or infect their hosts. It is helpful to optimize the application of fungi in biotechnology,
improve the environment, and even prevent fungal diseases.

Environmental stress, i.e., abiotic stress, is usually the most severe situation faced by
fungi. Oliveira et al. found that the nutrient content of low-molecular-weight metabolites
of wild mushrooms is higher than that of indoor cultivated ones [19], perhaps because the
functions of the low-molecular-weight metabolite gene clusters of these mushrooms and
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their relative expression have differences in the two environments. Metabolomic analysis of
the white rot basidomycete Phanerochaete chrysosporium under air and 100% oxygen revealed
that three metabolites associated with the oxygen stress response were veratryl alcohol
(VA), threonate, and erythronate. High concentrations of ROS can directly activate the
VA synthesis pathway, and the intracellular oxygen concentration is significantly elevated.
In contrast, threonate and erythronate resistance to hyperoxia is a process of progressive
gradient accumulation [20]. When the fungal Alternaria sp. MG1 grown on grape interiors
was subjected to starvation treatment, the shikimate pathway and the phenylpropanoid
(PPPN) pathway were strongly activated, and relevant metabolites such as resveratrol were
significantly upregulated [21]. The metabolic profiles of Cryptococcus neoformans changed
under Cu stress, and the differential metabolites were mainly related to the metabolism of
amino acids and carbohydrates. Replacing the carbon source with glycerol and ethanol
can counteract the toxic effect of copper on Cryptococcus neoformans and improve urea
clearance [22]. Yan et al. analyzed the metabolites of Pleurotus ostreatus under different
heat stress times (6, 12, 24, and 48 h) for dynamic metabolite changes. They found that the
contents of metabolites such as amino acids, nucleotides, and lipids showed an increasing
trend with increased heat stress time [23]. Zhao et al. found that Volvariella volvacea showed
little resistance to low temperatures. Nevertheless, under chilling stress, the relative levels
of compounds such as amino acids and organic acids inside Volvariella volvacea increase
significantly, and soluble sugars such as sorbitol are induced to be produced, improving
its osmoregulatory capacity [24]. Interestingly, Aspergillus aculeatus, under drought and
heat stress, increased the accumulation of amino acids and sugars and enhanced the total
photosynthesis of tall fescue, resulting in a vastly improved ability of tall fescue inoculated
with Aspergillus aculeatus to resist cold and heat stress [25].

Aspergillus flavus showed significant changes in carbohydrates, sulfur-containing
amino acids and their derivatives, fatty acids, etc. under drought stress [124]. 1-Nonanol
can destroy the integrity of the cell membrane in Aspergillus flavus and affect mitochon-
drial function, which induces apoptosis in Aspergillus flavus [26]. Aspergillus niger resisted
copper stress by converting sorbitol from glucose to produce a large amount of manni-
tol [27]. When Aspergillus niger was exposed to 5% ethanol stress, its growth amount
was about 70% less than that under normal growth conditions [28]. Using untargeted
metabolomics to study its reaction mechanism, it was found that TAG, DAG, and hTAGs
significantly accumulated. These neutral glycerolipids were previously believed to be
associated with the fungi’s exposure to abiotic stress factors [125,126]. Whether glycerides
in the response of Aspergillus niger strain Es4 to ethanol stress can be used as a new re-
sponse of the fungus to ethanol stress still needs further confirmation. Hammerl et al.
further established a differential offline LC–NMR (DOLC–NMR) method to qualitatively
and quantitatively analyze metabolic changes in Penicillium roqueforti when L-tyrosine
levels are perturbed. Twenty-three metabolites were affected by the amino-acid pertur-
bation method, among which the amino-acid degradation products 2-(4-hydroxyphenyl)
acetic acid and 2-(3,4-dihydroxyphenyl) acetic acid were significantly upregulated [127].
Jiang et al. found that treatment of Ganoderma lucidum with methyl jasmonate (MeJA) for
24 h was the optimal condition to induce the biosynthesis of Ganoderma lucidum. MeJA
induction can lead to metabolic rearrangements in Ganoderma lucidum, inhibit its normal
glucose metabolism, energy supply, and protein synthesis, and promote cellular secondary
metabolic production [29]. After treatment with tributyltin (TBT), the mycelial morphology
of Cunninghamella echinulata changed, the metabolic activity was inhibited, and glycolysis
and the TCA cycle were dysregulated. This fungus can eliminate the hazard of tributyltin
compounds to the organisms by accumulating amino acids with antioxidant functions,
such as betaine, proline, and GABA, to recover from the toxic TBT environment [30].

In contrast, benzoic acid derivatives such as sodium benzoate, p-aminobenzoic acid,
and p-methylbenzoic acid all promote lipid synthesis in Penicillium sr21. Furthermore,
200 mg/L p-aminobenzoic acid even promoted glucose catabolism during glycolysis,
increased the mevalonate pathway, weakened the tricarboxylic acid cycle, and promoted
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the production of tetrahydrofolate and NADPH [31]. The antibacterial polycationic peptide
ε-poly-l-lysine (ε-PL) enhances the freeze–thaw tolerance of industrial yeast by promoting
cell membrane-associated fatty-acid synthesis before freeze–thaw and promoting alglucan
biosynthesis and glycerophospholipid metabolism after freeze–thaw [32]. From the above
studies, it is easy to see that both biotic and abiotic stresses involve a variety of metabolic
pathways in fungi, the most important of which are the metabolism of amino acids and
their derivatives, glycolytic pathways, etc. Significant marginal changes in the levels
of metabolites such as sugars, nucleotides, and lipids are the main mechanisms of their
dynamic regulation.

3.3. Application of Metabolomics in the Discovery of Fungal Metabolites

A large number of metabolites such as primary and secondary metabolites exist in
fungi. Primary metabolites are monomers synthesized by primary metabolisms, such as
monosaccharides or monosaccharide derivatives, nucleotides, vitamins, amino acids, fatty
acids, and various macromolecular polymers composed of them, including proteins, nucleic
acids, polysaccharides, lipids, and other essential substances. Secondary metabolites refer
to substances synthesized by fungi in which primary metabolites serve as precursors
with no clear function in their life activities, such as gibberellins, penicillins, aflatoxins,
and cordycepin [128]. Fungi can provide diverse and unique secondary metabolites,
making them potential drug sources. Traditional assays can easily lead to the rediscovery
of known compounds. With the advancement of analytical technology platforms, MS-
based metabolomics workflows are mainly suitable for screening hundreds of natural
products simultaneously for dereplication studies and extractions of bioactive compounds,
which is of great benefit for the comprehensive exploration of potentially useful secondary
metabolites. In addition to drug discovery, screening of bioactive compounds or discovery
of unknown fungal metabolites that play critical roles in host fungal interactions are also
required to identify fungal secondary metabolites. A metabolomics approach can aid in
discovering and detecting novel metabolites in fungi (Table 3).

Table 3. Novel metabolites discovered and detected using metabolomics.

Structure Molecular Weight Molecular Formula Compound Name Reference
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Cordycepin is considered to be an important marker for the identification of 
Cordyceps sinensis. While nucleosides such as thymine, uracil, adenine, and guanosine are 
also the main substances used by researchers to identify and analyze Cordyceps sinensis. 
Mishra reidentified the nucleobases in samples of Ganoderma lucidum and Cordyceps sinen-
sis by HPLC–MS and found that both had abundant nucleosides. Furthermore, the water 
extract of Ganoderma lucidum and the ethanolic extract of Cordyceps sinensis had the highest 
nucleobase content [33]. Joshi et al., for the first time, identified the presence of cordycepin 
using ion mobility mass spectrometry (IMMS), which provided a new method for identi-
fying oridonin [34]. The growth of Cordyceps pupae can be divided into the first to the 
third stage of growth and the fourth stage of senescence. Principal component analysis 
found an obvious separation between the first and fourth stages of cordycepin, indicating 
that cordycepin was significantly enriched in the senescence stage of fruiting bodies [35]. 
Furthermore, cordycepin, the contents of amino acids and carbohydrates such as glucose, 
xylitol, and mannose were also obviously increased. The biosynthesis of cordycepin may 
be regulated by the glutamine and glutamate metabolic pathways. Although Cordyceps 
militaris and Cordyceps sinensis belong to the same family as Clavicipitaceae, and Cordyceps 
militaris is even called “northern Cordyceps sinensis” in China, they have drastically differ-
ent nutritional contents, which Chen et al. confirmed from the metabolite level. The results 
of utilizing LC–MS technology to analyze natural Cordyceps sinensis and artificial cultured 
Cordyceps militaris showed significant metabolomic differences between them [36]. Simi-
larly, the chemical composition of Cordyceps sinensis and Cordyceps militaris cultured with 
tussah pupae was compared, and 25 differential metabolites were found, involving 16 met-
abolic pathways such as histidine metabolism. Cordyceps sinensis has many healthy nutri-
ents, especially amino acids, unsaturated fatty acids, peptides, and mannitol. Moreover, 
the superior hemostatic activity and the antioxidant capacity of Cordyceps sinensis cultured 
with tussah pupae suggest its extreme clinical value as an affordable alternative to oridonin 
[37]. Cordyceps militaris strains were inoculated on germinated soybean (GSC), and the 
yield and biological activity of GSCs reached the highest after 1 week. Compounds 1–4, 
which were highly abundant in GSCs, were identified as four novel isoflavone methyl 
glycosides (daidzein 7-o-β-D-glucoside 400-o-methide, glycitein 7-o-β-D-glucoside 400-o-
methide, genistein 7-o-β-D-glucoside 400-o-methide, and genistein 40-o-β-D-glucoside 
400-o-methide) [38]. Apparently, mixed coculture is a good way to improve the nutrients 
of Cordyceps militaris. Coculture of fungi is often beneficial to induce purposeful fungal 
differentiation, affect the content of metabolites, and produce multiple metabolic path-
ways. Coculture of Coriolus versicolor and Ganoderma lucidum with 62 newly synthesized 
or high-yielding features compared to monoculture. Two new xylosides (compounds 2 
and 3) were included. Compound 2 was further identified as N-(4-methoxyphenyl) car-
boxamide 2-O-β-D-xyloside, which increases the viability of the BEAS-2B human immor-
talized bronchial epithelial cell line. 3-Phenyllactic acid and orsellinic acid were first de-
tected in malate bacilli [39]. However, fungal interactions also produce antagonistic inhibi-
tion. The coculture of Aspergillus oryzae and Zygosaccharomyces rouxii reduced the amounts 
of imidazoleacetic acid, phenylpyruvic acid, and n-formyl-l-aspartic acid, taurine, and 
glycolic acid [40]. Obviously, coculture inhibited the growth of Zygosaccharomyces rouxii. 

Agaricus bisporus is a worldwide edible mushroom. The surface browning of mush-
rooms is one of the major factors affecting consumers’ purchase. The nutritional value of 
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Cordycepin is considered to be an important marker for the identification of
Cordyceps sinensis. While nucleosides such as thymine, uracil, adenine, and guanosine
are also the main substances used by researchers to identify and analyze Cordyceps sinensis.
Mishra reidentified the nucleobases in samples of Ganoderma lucidum and Cordyceps sinensis
by HPLC–MS and found that both had abundant nucleosides. Furthermore, the water
extract of Ganoderma lucidum and the ethanolic extract of Cordyceps sinensis had the highest
nucleobase content [33]. Joshi et al., for the first time, identified the presence of cordycepin
using ion mobility mass spectrometry (IMMS), which provided a new method for identify-
ing oridonin [34]. The growth of Cordyceps pupae can be divided into the first to the third
stage of growth and the fourth stage of senescence. Principal component analysis found an
obvious separation between the first and fourth stages of cordycepin, indicating that cordy-
cepin was significantly enriched in the senescence stage of fruiting bodies [35]. Furthermore,
cordycepin, the contents of amino acids and carbohydrates such as glucose, xylitol, and
mannose were also obviously increased. The biosynthesis of cordycepin may be regulated
by the glutamine and glutamate metabolic pathways. Although Cordyceps militaris and
Cordyceps sinensis belong to the same family as Clavicipitaceae, and Cordyceps militaris is
even called “northern Cordyceps sinensis” in China, they have drastically different nutritional
contents, which Chen et al. confirmed from the metabolite level. The results of utilizing LC–
MS technology to analyze natural Cordyceps sinensis and artificial cultured Cordyceps militaris
showed significant metabolomic differences between them [36]. Similarly, the chemical
composition of Cordyceps sinensis and Cordyceps militaris cultured with tussah pupae was
compared, and 25 differential metabolites were found, involving 16 metabolic pathways
such as histidine metabolism. Cordyceps sinensis has many healthy nutrients, especially
amino acids, unsaturated fatty acids, peptides, and mannitol. Moreover, the superior hemo-
static activity and the antioxidant capacity of Cordyceps sinensis cultured with tussah pupae
suggest its extreme clinical value as an affordable alternative to oridonin [37]. Cordyceps
militaris strains were inoculated on germinated soybean (GSC), and the yield and biological
activity of GSCs reached the highest after 1 week. Compounds 1–4, which were highly
abundant in GSCs, were identified as four novel isoflavone methyl glycosides (daidzein
7-o-β-D-glucoside 400-o-methide, glycitein 7-o-β-D-glucoside 400-o-methide, genistein
7-o-β-D-glucoside 400-o-methide, and genistein 40-o-β-D-glucoside 400-o-methide) [38].
Apparently, mixed coculture is a good way to improve the nutrients of Cordyceps militaris.
Coculture of fungi is often beneficial to induce purposeful fungal differentiation, affect the
content of metabolites, and produce multiple metabolic pathways. Coculture of Coriolus
versicolor and Ganoderma lucidum with 62 newly synthesized or high-yielding features
compared to monoculture. Two new xylosides (compounds 2 and 3) were included. Com-
pound 2 was further identified as N-(4-methoxyphenyl) carboxamide 2-O-β-D-xyloside,
which increases the viability of the BEAS-2B human immortalized bronchial epithelial cell
line. 3-Phenyllactic acid and orsellinic acid were first detected in malate bacilli [39]. However,
fungal interactions also produce antagonistic inhibition. The coculture of Aspergillus oryzae
and Zygosaccharomyces rouxii reduced the amounts of imidazoleacetic acid, phenylpyruvic
acid, and n-formyl-l-aspartic acid, taurine, and glycolic acid [40]. Obviously, coculture
inhibited the growth of Zygosaccharomyces rouxii.

Agaricus bisporus is a worldwide edible mushroom. The surface browning of mush-
rooms is one of the major factors affecting consumers’ purchase. The nutritional value of
Agaricus bisporus changed after UV irradiation, with 47 compounds increasing in concen-
tration and 72 compounds decreasing in concentration [131]. Looking at the difference be-
tween browning tolerant cultivars and common Agaricus bisporus cultivars at the metabolic
level, genes such as AbPPo were found to be involved in the regulation of mushroom
browning, and higher levels of organic acids, such as butyric acid, were found in brown
tolerant Agaricus bisporus cultivars [41]. In addition, the pH value and alginate content
concentration also affected the activity of AbPPo. Lower pH levels inhibited the expression
of AbPPo, and high alginate concentrations may be beneficial for maintaining the activity
of AbPPo. The browning of filamentous mushrooms appears to be different. Yu et al.
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suggested that phenylpropanoid biosynthesis and tyrosine metabolism may promote the
browning of filamentous fungi. In addition, dopa melanin accumulation may also be one
of the causes for the browning of Flammulina velutipes [42].

Endophytic fungi are ubiquitous in the plants body and should be actively exploited
to utilize these resources, whether harmful to the plant or not. Hawary et al. isolated a
butenolide derivative from the endophytic soybean fungus Thra terreus, Aspergillide B1, as
well as 3a-hydroxy-3,5-dihydromonacolin L [43]. Using computer-aided technology such
as CADD, they suggested that Aspergillide B1 and 3a-hydroxy-3,5-dihydromonacolin L
are promising candidates for the treatment of COVID-19. Nevertheless, the speculation is
limited to computer-assisted approaches, it lacks pharmacological experimental validation,
and whether it is effective remains to be proven. Tawfike et al. isolated the endophytic
fungus Aspergillus flocculus from Markhamia Platycalyx, and the secondary metabolites
cis-4-hydroxymellein, 5-hydroxymellein, diorcinol, bo-tryoisocoumarin A, and mellein
had anticancer activity and inhibited the growth of the chronic leukemia cell line K562
3-hydroxymellein. Moreover, diorcinol can suppress sleeping sickness caused by the
parasite Trypanosoma brucei [129]. Kamal et al. successfully predicted two compounds,
clodospirone B and demethyl laciodilodine, with good anti-trypanosome effects from the
endophytic fungus Lasiodiplodia theobromae [132].

The metabolites of fungi would change under different fermentation times. When
the fermentation time is too short, the content of the target metabolites might not yet have
peaked, whereas, when the fermentation time is too long, the target metabolites might
have undergone decomposition. For the first time, Bu et al. showed that anthocyanins
could be produced from fungi as a metabolite often thought to exist only in natural plants.
They performed a comparative analysis of the metabolome of Aspergillus sydowii H-1 on the
second and eighth days of fermentation and found significant differences in the production
of five anthocyanins, the chalcone synthase gene, and cinnamic acid-4-hydroxylase gene,
which may be associated with the synthesis of anthocyanins [130].

Fan et al. applied HRMS/MS feature-based molecular networking technology (FBMN)
to determine Pyr enochaetopsis sp. They identified proteins A, B, and C in FVE-001 and
protein D in FVE-087, four novel decaprenylspirotetraenoic acid derivatives with anti-
melanoma activity [133]. FBMN has several functions in the identification and directional
separation of stereoisomers. They combined UPLC–Q-TOF-MS with FBMN to discover
three novel similar desferriferriferrichrome compounds [44] from wild Morchella sp. Le
et al. used this approach to investigate the metabolomics of a strain of Penicillium mms417
isolated from blue mussel Mytilus edulis and obtained five new derivatives of natural
fungus pyran-2-one derivatives: 5,6-dihydro-6S-hydroxymethyl-4-methoxy-2H-pyran-2-
one, (6S, 1′R, 2′S)-LL-P880β, 5,6-dihydro-4-methoxy-6S-(1′S, 2′S-dihydroxy pent-3′(E)-enyl)-
2H-pyran-2-one, 4-methoxy-6-(1′R, 2′S-dihydroxy pent-3′(E)-enyl)-2H-pyran-2-one, and
4-methoxy-2H-pyran-2-one [45]. Combining metabolomics and FBMN, compound features
can be highlighted and clustered together to achieve efficient dereplication of compounds,
greatly reducing the difficulty of discovering new metabolites.

3.4. Application of Metabolomics in Fungal Metabolic Engineering

Bailey defined metabolic engineering as “improving cellular activity by manipulating
the enzymatic, transport, and regulatory functions of cells through the use of recombinant
DNA technology” [134]. Fungi exhibited a variety of capabilities in industrial applica-
tions, including organic acid fermentation, protein production, and secondary metabolism.
Advances in genome engineering have expanded the range of potential applications for
fungal bioproduction. The development of genetic engineering tools is essential for effi-
ciently utilizing genomic data. Currently, sequencing analyses of many filamentous fungi
have revealed an underestimated potential, i.e., the presence of a large number of silent
secondary metabolite genes. Metabolomics methods can be used to analyze changes in
various metabolites of fungi after DNA recombination.
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Huang et al. measured six major metabolites in the isoprene biosynthetic pathway us-
ing GC–SIM-MS and detected the changes after gene modification [46]. The roles of the erg9
and CoQ1 genes could be used as targets to aid in redirecting sterol precursors to the phos-
phorylated isoprenoid pathway. This approach could enhance the understanding of this
pathway in many biological systems. To investigate the effect of histone deacetylase activity
(HDACi) on the model fungus Aspergillus nidulans, Albright et al. analyzed the changes in
more than 1000 small molecules secreted by Aspergillus nidulans. They found that almost
the same number of compounds were upregulated and downregulated more than 100-fold
after genetic or chemical reduction of HDACi [47]. Fellutamides, the natural product of
Aspergillus nidulans, were first detected as a proteasome inhibitor that can be expressed
about 100-fold or more upon HDACi induction. When using ionic liquids to stimulate
Aspergillus nidulans, choline upregulated the primary metabolism of Aspergillus nidulans,
while 1-ethyl-3-methylimidazolium chloride downregulated the primary metabolism, both
of which stimulated the production of acetyl CoA and nonproteinogenic amino acids.
Twenty-one of 66 known skeleton genes were upregulated [48].

Interactions between fungi and bacteria cause metabolic modifications in fungi. After
undergoing in vitro confrontation culture, the metabolome changes of Fusarium verticillioides
were much greater than those of Streptomyces sp. Compared with monoculture, many
metabolites of Fusarium verticillioides were overproduced under resistant conditions com-
pared to Streptomyces sp., especially 16 proteinogenic amino acids, inosine, and uridine,
which means that the corresponding rate of protein synthesis would be slowed down,
resulting in slower growth and less toxigenesis of Fusarium verticillioides [49]. Both the
environment and the pH affect the biosynthesis of mycotoxins from Fusarium verticillioides.
After targeted disruption of Fusarium verticillioides by the pH-responsive transcription
factor PAC1, pH and PAC1 interference were found to affect the biosynthesis of arabitol,
mannitol, and trehalose. Trehalose biosynthesis is reduced in PAC1-impaired plants. All
three genes are downregulated when PAC1 is perturbed [50]. Using a Fusarium gramin-
earum strain deficient for the H3K27 methyltransferase kmt6 to assign metabolites to genes,
Ampressa et al. isolated large amounts of fusaristatin A, gibepyrone A, and fusarpyrones
A and B from kmt6 mutants by activating silent metabolic pathways through mutations in
repressive chromatin modifying enzymes. Triterpenones and trioctanoic acid were found in
kmt6fus1 double mutants [51]. GC–EI-MS-based metabolomics has proven to be effective in
unraveling the effects of genetic engineering and fungicide toxicity on fungal metabolism.
Liu et al. studied the metabolism of Fusarium graminearum strains producing low toxins
using a metabolome approach based on NMR and GC–MS and found new possible bacteri-
cidal targets [52]. The phenotypic observation and significance of nucleobase transporters
in Aspergillus nidulans tolerance to Boscalid were validated by kalampokis et al. through
metabolomic analysis of various biosynthetic pathways and metabolites [53].

Relative to other microorganisms, fungi are more classified. Furthermore, filamentous
fungi are quite different from fungi such as yeasts in terms of growth mode and genetic
characteristics. Multinucleated filamentous fungi are prone to heterokaryotic transfor-
mant phenomena. Thus, gene editing on filamentous fungi requires rapid and efficient
manipulation techniques. Metabolomics and the construction of metabolic networks ben-
efit the optimization and improvement of fungal metabolic pathways. Compared with
transcriptomics and proteomics, metabolomics is able to more keenly analyze the effects of
environmental perturbations or stresses on cells. Because there are cases where environ-
mental alterations do not affect changes at the cellular transcriptional or protein level but
can be manifested by metabolites.

3.5. Application of Metabolomics in the Field of Plant–Fungal Interaction

As mentioned above, endophytic fungi are ubiquitous in plants in nature. Some
endophytic fungi have developed a mutually beneficial symbiosis with the hosts during
a long period of evolution. They can regulate the hormone levels of plants, produce
secondary metabolites similar to their hosts, assist the host plants in resisting environmental
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stresses, etc. Others are harmful fungi, and plant diseases caused by harmful fungi pose a
significant threat to global food security. Understanding the interactions between fungi
and plants is essential for preventing and controlling plant diseases. In the last decade,
metabolomics technologies have been widely applied in various research fields on fungal
plant interactions, such as identifying fungi, determining the mechanism of infection, and
detecting the interaction between fungi and the host. The applications of metabolomics can
help us to understand the pathogenesis and plant defense mechanisms of pathogenic fungi
and develop effective prevention and treatment strategies for fungal diseases.

The rate of plant primary and secondary metabolite production is limited by its growth
cycle, but endophytic fungi can promote the formation of metabolites from parasitic plants,
as seen in Diaporthe phaseolorum (DP) and Trichoderma spirale (TS) during their symbio-
sis with Combretum lanceolatum. DP promotes the biosynthesis of primary metabolites
such as threonine, malate, and N-acetylmannosamine of Combretum lanceolatum, which
are metabolite precursors that have been shown to be bioprotective [54]. In the case of
mutually beneficial symbiotic plants with fungi, plants can provide essential nutrients for
fungal survival, and fungi mediate host plant defense responses to stresses such as envi-
ronmental stress. When Pisolithus tinctorius was parasitized on cork oak roots, the contents
of root exudates such as carbohydrates, organic acids, tannins, long-chain fatty acids, and
monoacylglycerols were significantly decreased. In contrast, root defense substances such
as γ-aminobutyric acid (GABA), a terpenoid, guarantee that the cork oak roots can control
the proliferative range of Pisolithus tinctorius while symbiosing with Pisolithus tinctorius [55].
Phytohormones such as salicylic acid (SA) and jasmonic acid (JA) are endogenous reg-
ulators used by higher plants to defend against foreign pathogens [135,136]. Metabolic
pathways are significantly different in soybean inoculated with Fusarium Verticillium com-
pared to normal soybean. Flavonoid contents are significantly higher in soybean inoculated
with molds, and Ja induces the synthesis of biomacromolecules such as glycine to enhance
soybean resistance [56]. Moreover, mannitol, threitol and trehalose were significantly en-
riched in Armillaria luteobuablina-treated roots [57]. Exogenous threitol could promote the
colonization of Armillaria luteobuablina in E. grandis roots and trigger hormonal responses
in root cells, a phenomenon that was not detected in previous studies.

Fungal diseases are not only able to invade host plants initially, but they can also still
invade again after rehabilitation. Mainly through spore germination or infecting the orifice
through the mycelium, a few fungi can invade directly through the cuticle of plant tissue.
Ren et al. performed LC–MS metabolomic analysis of grains infected with Tilletia controverta
and normal grains (Figure 2). They found that the expression of 9-HODE, prostaglandin
D3, caffeic acid, L-phenylalanine, and tetradecanoic acid was significantly upregulated.
In infected samples, prostaglandin D3 was a coordinating factor to promote the increase
of other metabolites involved in body defense. L-Phenylalanine promotes the synthesis
of lignin monomers, caffeic acid, tetraacetic acid, etc., which are antifungal substances
produced by cereals. In addition, the content of grain metabolites such as malate, L-proline,
and fumarate decreased, indicating that the level of self-metabolism in Tilletia controverta-
invaded wheat was inhibited [58]. In contrast, when Tilletia caries infested wheat, it did not
directly change the metabolites of wheat. However, it prompted wheat to change the key
metabolites and reduce the defense resistance function of wheat through pathways such as
reducing the immune response to the sweet taste of wheat [137].

Metabolomics is more conducive to developing rapid and effective drugs against
fungal diseases than traditional chemical methods. In the past, most antifungal disease
drugs were synthetic fungicides, based on the international new trend of environmental
protection and green health. Developing natural antifungal components is a more reason-
able choice. Chen et al. found that pinocembroside (PICB) isolated from Ficus hirta Vahl
could significantly inhibit mycelia growth of Penicillium digitatum, a pathogenic bacterium
of citrus green mold disease [59]. Metabolomics studies have shown that PICB alters the
morphology of mycelium and Penicillium digitatum cells and promotes membrane perox-
idation, which may be associated with the disruption of amino-acid metabolism, lipid
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metabolism, fatty-acid metabolism, TCA cycle, and purine metabolism. In addition, toma-
toes were treated with the secondary metabolites 6-pentyl-2H-pyran-2-one and hartstic acid
isolated from Trichoderma fungi, and metabolites were studied by HRMAS-NMR. Tomato
samples treated with Trichoderma fungi secondary metabolites had significantly increased
levels of acetylcholine, GABA, and amino acids [60]. These are well-known metabolites
advantageous for plant growth, illustrating that developing antifungal disease drugs from
a certain endophytic fungus is also a feasible approach.
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4. Conclusions

As can be seen from the above analysis, metabolomics is a potent and effective tool.
Through instrument analysis and data processing, we can gain insight into the changes of
small-molecule metabolic components in test samples caused by biotic or abiotic factors.
Furthermore, they can be associated with related metabolic pathways, metabolic networks,
and metabolically related enzyme gene sets, transcriptomes, and proteomes. Metabolomics
is widely used in fungal research and can provide a comprehensive and systematic analyti-
cal approach for fungal research. With the continuous development and improvement of
sample preparation methods and analytical techniques, fungal metabolomics has made
great progress in recent years. However, there are still some urgent issues to be solved in
fungal metabolomics. For example, there is no standard method to quench and extract
fungal metabolites, the data processing is complicated, and the automatic data processing
platform technology is imperfect. The fungal metabolomics database is rare and incomplete,
which is a crucial factor constraining the further development of fungal metabolomics.

BioRender.com
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On the other hand, although more than a few thousand metabolites have been iden-
tified, this is still only the tip of the iceberg for fungal metabolites. More importantly,
many researchers still have an insufficient understanding of the metabolic pathways for
fungal metabolomics and are only limited to primary and secondary metabolite studies
in fungi. Compared with the application of metabolomics in disease diagnosis and drug
research development, fungal metabolomics is still at an early stage of development. It is
believed that metabolomics technology will be continuously improved with the continuous
development of science and technology. Greater progress will also be made in fungal
metabolomics studies. In conclusion, metabolomics has provided new insights into fungal
research from different perspectives, which can be tightly integrated with other studies so
that metabolic pathways, regulatory responses, and homeostatic mechanisms can be deeply
investigated. This contributes to a better and deeper understanding of fungi’s complex
interactions and their responses to environmental and genetic changes.
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