Skip to main content
. 2022 Oct 27;22(21):8224. doi: 10.3390/s22218224
Algorithm 1: The early customer-clustering technique
Input:User–item rating matrix, clustering number k
Output:The smoothed dense user–item matrix
Start:
Select user set u={u1, u2,u3 ,um};
Select item set i ={i1, i2,i3 ,in};
Select the top k rating users as the clustering cu={cu1, cu2,cu3 ,cum};
The clustering center is null as c ={c1, c2,c3 ,ck};
do
   for each user uiu
    for each cluster center cuicu 
      calculate the similarity (ui, cui);
    end for
     sim(ui, cum) = max{sim(ui, cu1),sim(ui, cu2) ,sim(ui, cuk)};
    cm=cmui
    end for
    for each cluster cic 
     for each user uju
      cui=average(ci,uj);
     end for
    end for
   while (c is not change)
End