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Abstract: C2H2-type zinc finger proteins (C2H2-ZFPs) play a key role in various plant biological
processes and responses to environmental stresses. In Arabidopsis thaliana, C2H2-ZFP members
with two zinc finger domains have been well-characterized in response to abiotic stresses. To
date, the functions of these genes in strawberries are still uncharacterized. Here, 126 C2H2-ZFPs
in cultivated strawberry were firstly identified using the recently sequenced Fragaria × ananassa
genome. Among these C2H2-ZFPs, 46 members containing two zinc finger domains in cultivated
strawberry were further identified as the C1-2i subclass. These genes were unevenly distributed
on 21 chromosomes and classified into five groups according to the phylogenetic relationship, with
similar physicochemical properties and motif compositions in the same group. Analyses of conserved
domains and gene structures indicated the evolutionary conservation of the C1-2i subclass. A Ka/Ks
analysis indicated that the C1-2i members were subjected to purifying selection during evolution.
Furthermore, FaZAT10, a typical C2H2-ZFP, was isolated. FaZAT10 was expressed the highest in
roots, and it was induced by drought, salt, low-temperature, ABA, and MeJA treatments. It was
localized in the nucleus and showed no transactivation activity in yeast cells. Overall, these results
provide useful information for enriching the analysis of the ZFPs gene family in strawberry, and they
provide support for revealing the mechanism of FaZAT10 in the regulatory network of abiotic stress.

Keywords: strawberry; C2H2-ZFPs; abiotic stress; ZAT10

1. Introduction

Various abiotic and biotic stresses affect plant physiology and growth [1]. Severe
drought occurred in the northern hemisphere in 2022, and the Yangtze River basin experi-
enced the longest drought since records began in the 1960s. Strawberry (Fragaria × ananassa)
is widely cultivated all over the world. It plays an important role due to its richness in
minerals, vitamins, flavonoids, and other nutrients [2]. Additionally, it is desirable due
to its bright color, enjoyable taste, short growth cycle, and high economic benefits [3].
However, it is easily affected by unfavorable environments, such as drought, high salinity,
and extreme temperature, during production. These abiotic stresses eventually lead to
reductions in strawberry yield and quality, and they are limiting factors for strawberry
production [4,5].

To combat the detrimental effects of stressors, plants have evolved effective defense
mechanisms by influencing their tolerance potential through integrating molecular- and
cellular-level responses [6]. Typically, abiotic stress induces the production of excess reactive
oxygen species (ROS) and causes oxidative damage to plants. After receiving ROS signals,
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plants activate both enzymatic and non-enzymatic scavengers, such as SODs, CATs, APXs,
and anthocyanins, to scavenge excess ROS [7–9]. In addition, transcription factors (TFs),
such as MYB, bHLH, WRKY, bZIP, NAC, AP2/ERF, and ZFP, are also key components
of the plant stress response mechanism. Among them, the TFs that contain a zinc finger
domain are widely involved in abiotic stress responses [10–16].

Zinc finger proteins (ZFPs) are one of the largest families in plants, and they play
essential roles in many cellular functions, including transcriptional activation and inhibition,
RNA binding, apoptosis regulation, and protein interaction [17]. ZFP TFs are divided into
nine subfamilies, namely, C2H2, C2HC, C2HC5, C3H, C3HC4, C4HC3, Cys4, C6, and C8,
according to the sequence and number of cysteine (Cys) and histidine (His) residues in
the ZFP structure [17,18]. In Arabidopsis thaliana, there are 176 C2H2 zinc finger proteins
(C2H2-ZFPs) divided into three groups (A, B, and C), and the C group is further classified
into C1, C2, and C3 subsets. The C1 subset is one of the evolutionarily youngest families,
comprising 64 members whose biological functions are related to developmental processes
and stress responses [19]. The C1 subset can be subdivided into five subclasses, namely,
C1-1i, C1-2i, C1-3i, C1-4i, and C1-5i (Ni indicates N zinc fingers), with 33, 20, 8, 2, and
1 members, respectively [18,19]. Among these subclasses, the C1-2i subclass has been the
most extensively studied, and it has been demonstrated to be involved in plant development
and stress responses; for example, AZF1/2/3, AtZAT6, AtZAT18, and AtZAT12 of A. thaliana
have been found to be involved in water, salt, drought, and strong light stresses [20–23].

ZAT10, formerly known as STZ (salt tolerance zinc finger), belongs to a typical C2H2-
ZFP, consisting of two C2H2-type zinc fingers CX2-4CX3FX5LX2HX3-5H (X: any amino acid;
number: number of amino acids), and it contains two conserved Cys and His residues and
an EAR (L/FDLNL/F(x)P) motif at its C-terminus [24–26]. Previous studies have reported
that the constitutive expression of ZAT10 enhances tolerance to salt, heat, and osmotic
stresses in A. thaliana. Interestingly, the knockout and RNAi mutants of AtZAT10 have also
been found to be more tolerant to osmotic and salt stresses [24]. It has been demonstrated
that the EAR motif of ZAT10 can function as a transcriptional repressor [27–29]; inhibiting
the expression level of ZAT10 by RNAi or knockout mutation will lead to enhanced
tolerance if this motif is directly involved in the suppression of stress [24]. These results
suggest that ZAT10 may have different regulatory mechanisms in response to abiotic stress
in A. thaliana.

At present, most of the studies on C2H2-ZFPs in abiotic stress are still focused on
model plants, such as A. thaliana. In cultivated strawberries, the family members of C2H2-
ZFPs and their regulatory mechanisms in response to abiotic stress are largely unknown.
In the present study, C2H2-ZFPs in cultivated and wild strawberries were identified based
on genomic data. Among these C2H2-ZFPs, the phylogenetic relationship, protein physico-
chemical properties, gene structure, conserved domains, promoter cis-acting elements, and
gene collinearity of the C1-2i subclass were further analyzed. Then, FaZAT10 from the C1-2i
subclass was isolated. The expression pattern, subcellular localization, and transcriptional
activity of FaZAT10, as well as its expression pattern under different abiotic stresses and
hormone treatments, were further analyzed. These results improve the characterization
of strawberry C2H2-ZFP family members and provide a research basis for the further
exploration of how FaZAT10 plays a role in strawberry abiotic regulatory networks.

2. Results
2.1. Identification and Chromosomal Localization of Strawberry C2H2-ZFP C1-2i Subclass

A total of 126 and 41 C2H2-ZFP candidate genes were identified in cultivated and
wild strawberries, respectively. Among these, the following subclasses were identified:
the 5i subclass (3 FaZATs and 1 FvZAT); the 4i subclass (11 FaZATs and 2 FvZATs); the
3i subclass (29 FaZATs and 8 FvZATs); the 2i subclass (46 FaZATs and 13 FvZATs); and
the 1i subclass (37 FaZATs and 17 FvZATs). In the following work, the C1-2i subclass
in cultivated strawberry was further studied. The nomenclature of the C1-2i subclass in
cultivated strawberry was based on the homologous genes of diploid wild strawberry in
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NCBI, and the same alleles were numbered according to their position on chromosomes
1-7 (Figure 1 and Table S1).
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Figure 1. Chromosomal localization of cultivated strawberry C2H2-ZFP C1-2i subclass.

The C1-2i subclass in cultivated strawberry was unevenly distributed on 21 chromo-
somes. The density of the genes was the highest on chromosomes Fvb3-2, Fvb3-3, and
Fvb6-1, with four genes each. Only one gene was found on Fvb2-4, Fvb3-1, Fvb4-1, Fvb5-1,
Fvb5-2, Fvb5-3, and Fvb5-4. Most of the FaZAT genes were in the regions at both ends of
the chromosome (Figure 1).

2.2. Characterization of the C2H2-ZFP C1-2i Subclass

In the C1-2i subclass, the proteins ranged from 158 to 383 amino acids in length. The
theoretical isoelectric point (pI) was between 6.39 and 10.14. The pIs of most members were
greater than seven, indicating that they contained more basic amino acids. In addition, the
molecular weights of all C1-2i proteins ranged from 17,378 to 42,826 Da. The predicted
results of subcellular localization indicated that they were all located in the nucleus. The
GRAVY values ranged from -0.895 to -0.198, revealing that strawberry C1-2i proteins were
hydrophilic proteins. The instability index ranged from 39.08 to 75.27 (Table 1).
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Table 1. The physical and chemical properties of C2H2-ZFP C1-2i proteins in F. × ananassa.

Gene Name Amino
Acid/aa ORF/bp Molecular

Weight pI Instability
Index GRAVY Location Subcellular

Localization

FaZAT8b 176 10,622 18,848 9.61 55.77 −0.445 7,282,074–7,292,696 Nucleus
FaZAT8 176 997 18,944 9.60 59.49 −0.475 24,596,211–24,597,208 Nucleus

FaZAT8a 229 1115 24,872 9.70 53.08 −0.264 22,862,614–22,863,729 Nucleus
FaZAT12 173 1955 19,019 9.16 59.78 −0.447 24,604,928–24,606,883 Nucleus
FaZAT12a 173 1300 18,957 9.59 59.83 −0.482 22,874,029–228,75,359 Nucleus
FaZAT11b 158 476 17,378 9.69 67.74 −0.645 7,323,096–7,323,572 Nucleus
FaZAT11 160 482 17,496 9.90 62.24 −0.599 24,610,951–24,611,433 Nucleus
FaZAT11a 160 482 17,586 10.14 60.52 −0.555 22,888,095–22,888,577 Nucleus
FaZAT12d 221 1094 24,382 9.38 62.40 −0.325 7,514,144–7,515,238 Nucleus
FaZAT12c 221 1086 24,400 9.38 63.82 −0.357 22,530,332–22,531,418 Nucleus
FaZAT12b 190 1036 20,593 9.10 60.63 −0.385 22,223,399–22,224,435 Nucleus
FaZAT12e 190 572 20,529 9.17 64.01 −0.452 6,714,293–6,714,865 Nucleus
FaZAT11c 175 752 19,303 9.55 39.08 −0.341 26,593,340–26,594,092 Nucleus
FaZAT11i 230 692 25,364 9.60 40.86 −0.198 10,202,617–10,203,309 Nucleus
FaZAT11f 175 885 19,376 9.44 47.34 −0.430 18,762,037–18,762,922 Nucleus
FaZAT11g 160 482 17,605 9.56 44..84 −0.389 18,771,968–18,772,450 Nucleus
FaZAT11d 162 488 18,229 9.90 42.02 −0.451 26,596,604–26,597,092 Nucleus
FaZAT11e 173 966 19,051 9.51 44.56 −0.378 26,601,748–26,602,714 Nucleus
FaZAT11h 175 824 19,730 9.83 42.85 −0.494 10,199,732–10,200,556 Nucleus
FaZAT5l 380 1142 41,776 6.96 73.60 −0.889 20,647,253–20,648,395 Nucleus
FaZAT5k 383 2148 42,049 6.96 73.11 −0.895 14,054,752–14,056,900 Nucleus
FaZAT5i 379 1139 41,510 6.81 70.02 −0.868 21,096,734–21,097,873 Nucleus
FaZAT5j 380 2310 41,659 6.81 70.30 −0.876 23,197,453–23,199,763 Nucleus
FaZAT5n 383 2944 42,340 6.94 71.63 −0.930 8,687,658–8,690,602 Nucleus
FaZAT5m 380 1142 41,895 6.83 73.37 −0.938 9,080,140–9,081,282 Nucleus
FaZAT5g 318 1041 34,736 6.60 66.74 −0.634 31,122,729–31,123,770 Nucleus
FaZAT5f 324 1449 35,525 6.60 66.78 −0.608 30,224,033–30,225,482 Nucleus
FaZAT5e 328 1126 36,077 6.64 69.83 −0.612 16,681,442–16,682,568 Nucleus
FaZAT5d 330 1750 36,307 6.39 68.39 −0.624 24,991,197–24,992,947 Nucleus
FaZAT5h 329 1626 36,126 6.42 75.27 −0.595 11,865,273–11,866,899 Nucleus
FaZAT5c 324 1465 35,394 7.11 70.08 −0.712 10,177,077–10,178,542 Nucleus
FaZAT5a 328 1609 35,634 7.11 67.31 −0.642 21,919,033–21,920,642 Nucleus
FaZAT5 323 1734 35,198 7.06 65.80 −0.627 9,931,220–9,932,954 Nucleus

FaZAT5b 326 1876 35,598 7.38 66.85 −0.644 19,227,512–19,229,388 Nucleus
FaZAT10 269 1366 28,458 8.50 58.90 −0.565 574,359–575,725 Nucleus

FaZAT10b 267 3084 28,341 8.50 57.18 −0.600 21,865,334–21,868,418 Nucleus
FaZAT10f 262 2951 27,764 8.50 55.29 −0.598 23,032,727–23,035,678 Nucleus
FaZAT10d 263 1590 28,206 8.95 56.46 −0.622 6,379,625–6,381„215 Nucleus
FaZAT10e 237 2343 25,184 8.45 73.44 −0.557 20,755,846–20,758,189 Nucleus
FaZAT10a 237 1693 25,258 8.65 73.10 −0.516 1,590,173–1,591,866 Nucleus
FaZAT10c 237 2571 25,317 8.15 70.18 −0.578 20,926,689–20,929,260 Nucleus
FaZAT4 323 1797 36,131 6.39 60.22 −0.834 11,788,298–11,790,095 Nucleus

FaZAT4a 323 1655 36,131 6.39 60.22 −0.834 11,007,603–11,009,258 Nucleus
FaZAT4b 323 1595 36,127 6.57 58.62 −0.820 17,138,548–17,140,143 Nucleus
FaZAT4c 323 1862 36,213 6.44 59.36 −0.831 8,825,171–8,827,033 Nucleus
FaZATl 383 7559 42,826 6.46 66.57 −0.786 1,860,056–1,867,615 Nucleus

2.3. Phylogenetic Relationship and Sequence Alignment of the C2H2-ZFP C1-2i Subclass

To further analyze the evolutionary relationship of the C1-2i subclass in cultivated
strawberry, CLUSTALW was used to perform a multiple sequence alignment of 46 genes
of the 2i subclass in cultivated strawberry and 13 in wild strawberry. Then, 20 C1-2i
genes from A. thaliana [19] were introduced to construct a phylogenetic tree, as shown in
Figure 2. The 46 C1-2i subclass members in cultivated strawberry and the 13 C1-2i subclass
members in wild strawberry were mainly distributed in five groups: Group I (12 FaZATs
and 5 FvZATs), Group II (7 FaZATs and 2 FvZATs), Group III (15 FaZATs and 3 FvZATs),
Group IV (7 FaZATs and 2 FvZATs), and Group V (5 FaZATs and 1 FvZAT). The results of
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the multiple sequence alignment showed that most members contained a conserved motif,
QALGGH, in the zinc finger helix (Figure S1), which is essential for the DNA-binding
activity of C2H2-ZFPs [16].
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Figure 2. Unrooted phylogenetic tree of cultivated strawberry, wild strawberry, and A. thaliana C1-2i
subclass members. The red asterisks represent cultivated strawberry, the purple circles represent
wild strawberry, and the blue squares represent A. thaliana. The phylogenetic tree was developed
on MEGA (version 7.0) using the neighborhood-joining phylogenetic method analysis. Both the
bootstrap test and the approximate likelihood ratio test were set to 1000 times.

2.4. Gene Structure and Conserved Domain Analysis

The gene structure of the C1-2i subclass changed irregularly; most genes contained two
introns and one exon. In particular, FaZAT8b and FaZAT contained a 10,622 bp-long and
7559 bp-long open reading frame (ORF), respectively (Figure 3B and Table 1). Furthermore,
three highly conserved motifs were analyzed on the MEME online website, including
29 conserved amino acid residues in Motif 1, 41 in Motif 2, and 21 in Motif 3. A sequence
analysis showed that Motif 1 and Motif 2 were C2H2 domains and that Motif 3 was an EAR
motif at the C-terminal, which is consistent with C1-2i member characteristics, indicating
that these genes were evolutionarily conserved (Figure S3).
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Figure 3. The evolutionary tree (A), gene structures (B), conserved domains (C), and conserved
motifs of the cultivated strawberry C1-2i subclass. Blue rectangles are conserved C2H2 domains,
yellow rectangles are UTRs, and green rectangles are CDS. The phylogenetic tree was developed
on MEGA (version 7.0) using the neighborhood-joining phylogenetic method analysis. Both the
bootstrap test and the approximate likelihood ratio test were set to 1000 times.

2.5. Promoter Analysis of the C2H2-ZFP C1-2i Subclass Members in Strawberry

The cis-acting regulatory elements in the 2000 bp promoter region were predicted using
the PlantCARE website. The results show that a total of 62 types of cis-regulatory elements
were identified, except for the core promoter elements of a higher plant TATA-box and the
universal promoter enhancement element CAAT-box, as well as unannotated elements.
Among them, light responses were the most abundant, with 438 existing, followed by
182 MeJA-responsive elements and 124 ABA-responsive elements. Meanwhile, 15 elements
related to plant development and 6 related to stress response were analyzed (Figure 4
and Table S2). In addition, MYB-related and MYC-related elements were also found to be
abundant in the promoter region of the C1-2i subclass members in cultivated strawberry.

2.6. Synteny Analysis of the C2H2-ZFP C1-2i Subclass in A. thaliana, F. vesca, and F. × ananassa

There were 57 syntenic gene blocks of the C1-2i genes among the cultivated strawberry
chromosomes, and 61 FaZAT gene pairs were confirmed as collinear pairs (Table S3).
To further explore the evolution of the C1-2i gene, interspecific synteny comparisons
between F. × ananassa, F. vesca, and A. thaliana were also made. There were 91,807 and
42,389 collinear genes observed between F. × ananassa and F. vesca and between F. × ananassa
and A. thaliana, respectively, with ratios of 64.45% and 31.17%. The interspecies collinearity
analysis indicated that there may have been chromosomal and gene amplification events
during the evolution of the two strawberries (Figures 5 and 6).
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The ratio of nonsynonymous substitution rates (denoted as Ka) to synonymous substi-
tution rates (denoted as Ks) was used to assess the selective pressure on duplicate gene
pairs within species. Ka/Ks >1 indicated positive selection, and Ka/Ks <1 indicated purify-
ing selection [30]. The driving force of C1-2i gene pairs on replication was calculated using
the Ka/Ks ratio. The Ka/Ks values of the C1-2i gene pairs were less than one, suggesting
that these genes were influenced by purifying selection during evolution (Table S4).

2.7. Transcriptome Analysis of Strawberry C2H2-ZFP C1-2i Subclass under Salt Stress

To better understand the response of FaZATs to stress at the transcriptional level,
transcriptome data were used to detect the transcript abundance of FaZATs under salt stress.
The results show that, under salt stress, FaZAT10, 10a, 10b, 10c, 10d, 10e, 10f, FaZAT12,
12a, 12c, 12d, FaZAT8, 8a, 8b, FaZAT11a, 11b,11c, 11f, and 11i were highly expressed in
roots compared to the control (Figure 7A). In particular, the transcriptome data showed
that FaZAT10 exhibited the highest expression in roots under salt stress (Figure 7B and
Table S5).

2.8. Tissue-Specific Expression Profile of FaZAT10

Based on the transcriptome data, FaZAT10 was cloned and studied in the following
work. The results of the qRT-PCR analysis suggested that FaZAT10 was highly expressed in
roots, followed by leaves and stems, and the expression level was the lowest in runners. In
general, the transcript abundance of FaZAT10 was very low in different fruit developmental
stages, and it had a higher expression level at the little green stage than at the other fruit
developmental stages (Figure 8).



Int. J. Mol. Sci. 2022, 23, 13079 8 of 18Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 8 of 20 
 

 

 
Figure 5. Synteny analysis of C2H2-ZFP C1-2i subclass in cultivated strawberry. Chromosomes are 
distinguished by different colors, the gray curve is the collinear gene region within the genome, 
and the colored curve is the collinear gene pair of the C2H2-ZFP C1-2i subclass. 

 
Figure 6. Synteny analysis of C2H2-ZFP C1-2i subclass in A. thaliana, F. × ananassa, and F. vesca 
genomes. The colored rounded rectangles represent the chromosomes of the three plants. The gray 
curves are the collinear gene regions within the genomes of the three species, and the colored 
curves represent the gene pairs that are collinear with the C2H2-ZFP C1-2i subclass. 

2.7. Transcriptome Analysis of Strawberry C2H2-ZFP C1-2i Subclass under Salt Stress 
To better understand the response of FaZATs to stress at the transcriptional level, 

transcriptome data were used to detect the transcript abundance of FaZATs under salt 
stress. The results show that, under salt stress, FaZAT10, 10a, 10b, 10c, 10d, 10e, 10f, 
FaZAT12, 12a, 12c, 12d, FaZAT8, 8a, 8b, FaZAT11a, 11b,11c, 11f, and 11i were highly ex-

Figure 5. Synteny analysis of C2H2-ZFP C1-2i subclass in cultivated strawberry. Chromosomes are
distinguished by different colors, the gray curve is the collinear gene region within the genome, and
the colored curve is the collinear gene pair of the C2H2-ZFP C1-2i subclass.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 8 of 20 
 

 

 
Figure 5. Synteny analysis of C2H2-ZFP C1-2i subclass in cultivated strawberry. Chromosomes are 
distinguished by different colors, the gray curve is the collinear gene region within the genome, 
and the colored curve is the collinear gene pair of the C2H2-ZFP C1-2i subclass. 

 
Figure 6. Synteny analysis of C2H2-ZFP C1-2i subclass in A. thaliana, F. × ananassa, and F. vesca 
genomes. The colored rounded rectangles represent the chromosomes of the three plants. The gray 
curves are the collinear gene regions within the genomes of the three species, and the colored 
curves represent the gene pairs that are collinear with the C2H2-ZFP C1-2i subclass. 

2.7. Transcriptome Analysis of Strawberry C2H2-ZFP C1-2i Subclass under Salt Stress 
To better understand the response of FaZATs to stress at the transcriptional level, 

transcriptome data were used to detect the transcript abundance of FaZATs under salt 
stress. The results show that, under salt stress, FaZAT10, 10a, 10b, 10c, 10d, 10e, 10f, 
FaZAT12, 12a, 12c, 12d, FaZAT8, 8a, 8b, FaZAT11a, 11b,11c, 11f, and 11i were highly ex-

Figure 6. Synteny analysis of C2H2-ZFP C1-2i subclass in A. thaliana, F. × ananassa, and F. vesca
genomes. The colored rounded rectangles represent the chromosomes of the three plants. The gray
curves are the collinear gene regions within the genomes of the three species, and the colored curves
represent the gene pairs that are collinear with the C2H2-ZFP C1-2i subclass.
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2.9. The Subcellular Localization and Transcriptional Activity Analysis of FaZAT10

The GFP fluorescence signal of the FaZAT10::GFP fusion protein was located in the
nucleus, which indicates that FaZAT10 is a nucleus-localized protein (Figure 9A). In ad-
dition, the result indicates that the yeast strains that transformed with pGBKT7-FaZAT10
(validation group) and pGBKT7-Lam (a negative control) could not grow normally on
SD/-Trp/-His/-Ade/X-α-gal and SD/-Trp/-His/-Ade media. The positive group pGBKT7-
FaBBX22 [31] grew well on SD/-Trp/-His/-Ade/X-α-gal medium and turned blue, which
indicates that FaZAT10 has no trans-acting ability in yeast cells (Figure 9B).
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2.10. FaZAT10 Was Induced by Abiotic Stress

Several cis-elements related to abiotic stress were found on the cloned 1,952 bp of the
FaZAT10 promoter sequence, such as the DRE core (stress-induced), ABRE (in response
to abscisic acid), LTR (in response to low temperature), MBS (in response to drought),
CGTCA motif, and TGACG motif (in response to methyl jasmonate). We hypothesized
that FaZAT10 would respond to these abiotic stresses, and, thereupon, abiotic stress and
hormone treatments were designed to detect the expression of FaZAT10 (Figure S2 and
Table 2).

The result indicates that, under simulated drought stress, the expression of FaZAT10
increased continuously in roots and petioles, and it reached the highest level at 24 h. In
leaves, the peak increased at 12 h and then gradually decreased. Under salt stress, the
expression of FaZAT10 in the different tissues gradually increased along with the treatment
time, and it reached the peak at 24 h, especially in roots. The expression pattern of FaZAT10
was quite different under low-temperature stress. It was significantly elevated in leaves
after 3 h of stress, and then it decreased. The growth trend was similar in roots and petioles,
and both reached the maximum at 24 h. Under the treatments of ABA and MeJA, FaZAT10
had no obvious tendency in roots, but the expressions of FaZAT10 in petioles and leaves
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both reached their peaks after 9 h of treatments, and then they decreased. Overall, these
results suggest that FaZAT10 is more sensitive to salt, low-temperature, and drought stress
treatments than to ABA and MeJA treatments.

Table 2. Cis-regulatory elements of FaZAT10 promoter in cultivated strawberry.

Function Type Motif

Light-responsive 4 Box4, G-box, G-Box, chs-CMA1a, TCT-motif
Meristem expression 1 CAT-box

ABA response 1 ABRE
Adversity induction 2 DRE core, DRE1

Low-temperature response 1 LTR
Auxin-responsive 1 TGA-element

Gibberellin-responsive 1 P-box
MeJA response 2 CGTCA motif, TGACG motif
Drought stress 1 MBS

Anoxic specific inducibility 1 GC motif
MYB-binding site 2 MYB, Myb-binding site
MYC-binding site 1 MYC

WRKYs response element 1 W-box
Seed-specific regulation 1 RY element

Circadian control 1 Circadian

3. Discussion

Transcription factors (TFs) play a central role in plant abiotic stress response net-
works. Currently, based on genome-wide analyses, different TF families have been iden-
tified in different plants. These TFs perform functions in various biological processes
of plants, and some studies have shown that they are involved in plant abiotic stress
responses [10–15,32,33]. C2H2-ZFPs are one of the best-studied TFs in plant abiotic stress
responses, and 189, 109, and 321 C2H2-ZFPs have been identified in rice (Oryza sativa),
poplar (Populus trichocarpa), and soybean (Glycine max), respectively [33–37]. Cultivated
strawberry has a high economic value and is vulnerable to the negative effects of abiotic
stress. Although A. thaliana provides an ideal model for studying abiotic stresses, no
C2H2-ZFP family members have been reported in cultivated or wild strawberries to date.
Accordingly, the whole-genome sequencing of the octoploid strawberry completed in 2019
and the re-annotation of the octoploid strawberry genome published in 2021 provided us
with effective tools for a genome-wide analysis of the C2H2-ZFPs [38,39]. In this study,
126 and 41 C2H2-ZFPs in cultivated and wild strawberries were identified, and they con-
tained one to five scattered zinc finger structures, with a maximum of five C2H2 zinc
finger domains and a minimum of one. This identification is consistent with the zinc finger
characteristics of subclass C1 reported in A. thaliana [17,19].

Knowing phylogenetic relationships among species is fundamental for many studies
in biology. An accurate phylogenetic tree helps us to infer the origin of new genes and to
understand morphological character evolution [40]. Our results show that genes in the
same group are more similar to each other. They had similar but not identical protein
physicochemical properties, conserved domains, and motifs, suggesting that they may have
similar biological functions. For example, AtZAT6, AtZAT10, and AtZAT13 in the fourth
group may be involved in the response to drought, salt, and low-temperature stress [19].
Moreover, in the analysis of the domains and motifs, we found that FaZAT4, 4a, 4b, and
4c were had characteristics consistent with the C2H2 domain, but their first zinc finger
domain did not contain the conserved motif QALGGH and instead contained RALGGH
(Figure S1). From the perspective of the zinc finger structure, the arbitrary amino acid X in
the CX2-4CX3FX5LX2HX3-5H domain was significantly different. The presence of a highly
conserved motif, QALLGGH, in the zinc finger helix is unique to plants, and the variable
spacing between adjacent zinc fingers and each amino acid in the conserved sequence is
thought to be important for DNA-binding activity, suggesting that this class of zinc finger
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proteins is involved in unique plant life processes [17,41,42]. Zinc finger helices containing
this conserved motif are referred to as Q-type ZFPs, and those without any conserved motif
are called C-type ZFPs [35]. This feature may affect the DNA-binding activity of these four
members, which needs to be further demonstrated in experiments. We also found that the
last amino acid in the first zinc finger structure of FaZAT11 is Q instead of H (Figure S1),
but it conforms to other characteristics of zinc fingers, so FaZAT11 is still considered to be
a C2H2-ZFP.

Plant cells have subcellular compartments, such as the nucleus, mitochondria, and
chloroplast. The localization of plant proteins within cellular compartments was found to be
essential in revealing their functions [43,44]. The prediction of the subcellular localization
of the C1-2i members in cultivated strawberry showed that they were all localized to the
nucleus. At the same time, FaZAT10 is also located in the nucleus. Previous studies in
Arabidopsis have demonstrated that AtZAT10 functions as a transcriptional repressor due
to the presence of the EAR domain at the C-terminus [28,29]. The EAR motif reduces the
underlying transcriptional level of the reporter gene, and the transcriptional activation
activity of other TFs [45]. The C-terminal inhibitory residues of AtERF4 are DLDLNL,
and if a mutation occurs in this domain, the protein’s inhibitory function decreases or
disappears [46]. The full-length FaZAT10 protein has no transactivation ability in yeast
cells, and we conjectured that the EAR motif may be the reason why FaZAT10 does not have
transactivation ability, as it may function as a transcriptional repressor in the abiotic stress
signal transduction pathway. In cultivated strawberry, whether the DLNL sequence in the
EAR motif of FaZAT10 is a necessary sequence for inhibitory activity needs further study.

The analysis of promoter regions is helpful to study the transcriptional regulation of
TFs. The identification of plant promoters often involves the identification and characteriza-
tion of genes expressed under specific tissue or physiological stress conditions [47]. Abiotic
stress treatments were performed according to the cloned FaZAT10 promoter sequence.
Our results indicate that FaZAT10 was continuously induced in roots and petioles; most
pronounced in roots under salt and drought stresses; significantly induced in leaves after
3 h of stress at 4 ◦C; and significantly induced in petioles after 9 h of MeJA and ABA
treatments (Figure 10). In Arabidopsis, the expression of AtZAT10 in leaves was induced
by low temperatures, UV-B, oxidative stress, osmotic stress, and genotoxic stress, and
it was strongly induced by low-temperature and salt stresses in roots [24]. It was also
induced by a high amount of light, ABA, gibberellin, SA, and MeJA [47]. In apple, 10% PEG
6000, 150 mM NaCl, wounding, and 100 µM SA treatment induced the expression of
MdZAT10 [48]. Our results are basically consistent with previous studies. The transcrip-
tome data showed that only FaZAT10 was strongly expressed in the leaves and roots of
all C1-2i members under salt stress, suggesting that FaZAT10 is more likely to play a key
role in stress signal transduction. In Arabidopsis, Los2 binds to the promoter of ZAT10
in order to inhibit the expression of ZAT10, thereby attenuating the inhibitory effect of
ZAT10 on RD29A and positively regulating the expression of RD29A, thus achieving the
optimal response to cold environments [27]. The overexpression of AtZAT10 increased
tolerance to salt and dehydration stresses and resulted in growth retardation in transgenic
Arabidopsis thaliana [28]. In apple, the overexpression of MdZAT10 negatively regulates
drought tolerance by regulating the expression of MdAPX2, increasing its sensitivity to
PEG6000 treatment, and decreasing the ability to scavenge ROS [49]. In our study, FaZAT10
was more sensitive to salt, low-temperature, and drought stresses than hormone treatments,
which indicates its potential function. However, the regulatory mechanism of FaZAT10 in
response to abiotic stress remains to be further investigated.
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Figure 10. Expression patterns of FaZAT10 under different abiotic stresses. The relative expression
levels of FaZAT10 under drought (A), salt stress (B), and low-temperature treatments (C) and MeJA
(D) and ABA (E) hormone treatments. Data contain three biological replicates, error bars represent
the standard error of the mean, and significant differences between samples were determined using
Student’s t-test (**, p < 0.01; *, p < 0.05).

4. Materials and Methods
4.1. Identification and Phylogenetic Analysis of 2i Subclass in Strawberry

The gene sequences of the Arabidopsis C2H2 family were downloaded from TAIR
(https://www.arabidopsis.org/) (accessed on 13 July 2022), and the Hidden Markov Model
(HMM) profile of the conserved C2H2 domain (PF13912) was obtained from the Pfam
database (http://pfam.xfam.org/) (accessed on 13 July 2022). To identify the ZAT genes in
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strawberries, wild (Fragaria_vesca_v4.0.a2) and cultivated (Fragaria x ananassa Camarosa
Genome v1.0.a1) strawberry genome data were downloaded from GDR (https://www.
rosaceae.org/) (accessed on 13 July 2022). Then, Simple HMM Search in Tbtools (Version
1.098752) [50] was used to pick out the candidate genes, and the redundant sequences were
manually removed. Finally, all candidate genes were examined and analyzed using the
SMART (http://smart.embl.de/#) (accessed on 13 July 2022) conserved domain prediction
software Pfam (Pfam: Search Pfam (xfam.org)) (accessed on 13 July 2022), and NCBI CDD
(https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi) (accessed on 13 July 2022)
was used to ensure that they all contained the conserved C2H2 domain.

The ZAT proteins of Arabidopsis thaliana, the cultivated strawberries, and the wild
strawberries were aligned using CLUSTALW, and a phylogenetic tree was developed
on MEGA (version 7.0) using the neighborhood-joining phylogenetic method analysis.
Both the bootstrap test and the approximate likelihood ratio test were set to 1000 times.
The nomenclature of the ZAT gene in cultivated strawberry refers to the nomenclature
of wild strawberry in NCBI. The same alleles were sequentially numbered according to
their position on the chromosome, and the phylogenetic tree was embellished with iTOL
(https://itol.embl.de/) (accessed on 15 July 2022).

4.2. Characteristic Analysis of the C1-2i Subclass

Online tools (https://web.expasy.org/protparam/) (accessed on 22 July 2022) were
used to analyze the protein physicochemical properties of the cultivated strawberry 2i
members: Plant-mPLoc (www.csbio.sjtu.edu.cn/cgi-bin/EukmPLoc2.cgi) (accessed on
22 July 2022) was used for subcellular localization prediction; a domain analysis was
performed on the NCBI Conserved Domain Database (CDD: https://www.ncbi.nlm.nih.
gov/Structure/bwrpsb/bwrpsb.cgi) (accessed on 24 July 2022); and the motifs of cultivated
strawberries were analyzed using the MEME Suite (https://meme-suite.org/meme/)
(accessed on 24 July 2022). The physical gene location of the ZAT protein in cultivated
strawberry was extracted from the cultivated strawberry genome annotation file.

The promoter sequence 2000 bp upstream of the ZAT start codon was extracted with
Tbtools. The prediction of cis-acting elements on promoters was identified using the
PlantCARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) (accessed on
26 July 2022) online website.

The nonsynonymous mutation rate (denoted as Ka), synonymous mutation rate (de-
noted as Ks), and the ratio of the nonsynonymous mutation rate to synonymous mutation
rate (denoted as Ka/Ks) were calculated using Tbtools. Promoter, gene structure, conserved
domains, chromosomal location, and collinearity analysis were all analyzed and visualized
using Tbtools [50].

4.3. Plant Material and q-PCR Analysis

Octoploid cultivated strawberry ‘Benihoppe’ (Fragaria × ananassa Duch.) was asexu-
ally propagated using runners. The explant surface sterilization procedure was as follows:
70% alcohol soaking for 30 s, pouring out the alcohol, rinsing with sterile water two times,
then soaking with 0.1% HgCl2 for 30 min, and rinsing with sterile water five times. Finally,
the sterilized runners were inoculated into MS medium (0.5 mg/L 6-BA, 0.1 mg/L IBA),
cultured for 45 days, and then transplanted to 1/2 MS medium. Plant material was cultured
in a plant material culture room and a greenhouse under long-day conditions (16 h light,
5000 lx, 8 h dark, 22 ◦C). Plant material was grown in 1/2 MS medium before transplanting,
and uniformly growing plants were transplanted in plastic pots with peat soil, perlite, and
vermiculite (volume ratio = 4:1:1) and fertilized with regular irrigation.

Different tissues (roots, stems, functional leaves, flowers, ripe red fruits, and runners)
of ‘Benihoppe’ were collected from the greenhouse for tissue-specific expression profiling;
fruits at different developmental stages were collected for an expression profile analysis:
small green (LG: little green, seven days after fruiting), big green (BG: big green, 15 days
after fruiting), WF: white fruit, red (TR: turn red, 1/4 red), half red (HR: half red, 1/2 red),
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http://smart.embl.de/
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and ripe full red (FR: Full Red). Three biological replicates were established for all tissues,
and all replicates were obtained from plants cultured under the same conditions. Each bio-
logical replicate contained at least six samples, with three or four samples taken from each
plant. The total RNA of all samples was extracted using the modified CTAB method [51];
its integrity was checked using 1% agarose gel electrophoresis, and the concentration and
quality were detected using a micronucleic acid protein analyzer. Reverse transcription was
performed using a Primer Scripr™ RT Kit (TaKaRa, Dalian, China), with a gDNA removal
Primer (TaKaRa, Dalian, China) per 1 µg of total RNA for PCR reactions. On the basis of
the SYBR premixed ExTaqTM kit (Takara, Dalian, China), the 10 µL qRT-PCR system com-
prised 1µL cDNA (5 ng/µL), 0.4 µL forward/reverse primer (10 µM), 5 µL 2 × SYBR mix,
and 3.2 µL ddH2O. qRT-PCR was performed on a CFX96 real-time PCR system (Bio-Rad,
Hercules, CA, USA). Three technical replicates were used for each sample. The relative ex-
pression of genes was calculated using the 2−∆∆CT formula [52], and FaActin was used as a
calibrated housekeeping gene. The primer sequences are listed in Table S6, Supplementary
Materials. The RNA-seq-based expression levels of the FaZAT genes in strawberry were
retrieved from the online transcriptomic data (SRA accessions: SRR19165835, SRR19165836,
SRR19165837, SRR19165838, SRR19165841, SRR19165842, SRR8298771, SRR8298772).

4.4. Gene Clone and Sequence Analysis of FaZAT10

The full-length coding sequence (CDS) of FaZAT10 was cloned from an octoploid
cultured strawberry ‘Benihoppe’, and primers were designed with reference to its homo-
logue (FvZAT10, XM_004290912.2). The sequencing results were assembled by the software
CLC Genomics Workbench (version 3.6.1) and compared with FvZAT10 using DNAMAN
(version 8.0). The genome sequence of F.vesca_v2.0.a1 was used as the reference for pro-
moter cloning, and the sequence of 2000 bp upstream of the initiation codon of FaZAT10
was cloned with the genomic DNA of cultivated strawberry as the template. The primer
sequences are listed in Table S6.

4.5. Transcriptional Activation Activity Analysis of FaZAT10 Protein

The full-length CDS of FaZAT10 was inserted into the yeast expression vector pGBKT7
(BD) using the homologous recombination method. After confirming the positive vector,
the transcriptional activity of the FaZAT10 protein was detected by transforming pGBKT7-
Lam (a negative control), pGBKT7-FaBBX22 (a positive control) [31], and pGBKT7-FaZAT10
(validation group) into Y2H cold. After three days of culture at 28 ◦C, the growth of the
yeast strains on different defective media (SD/ −Trp and SD/ −Trp-Ade-His /X-α-gal)
was observed.

4.6. Abiotic Stress and Hormone Treatments

The octoploid cultivated strawberry ‘Benihoppe’ grown in plastic pots was pulled
out, and the roots were washed with water and placed in a tissue culture bottle containing
Hoagland nutrient solution (Hypo, HB8870-1) for seven days in a balanced culture, during
which the nutrient solution was changed once. Low-temperature stress: the balanced
octoploid strawberry ‘Benihoppe’ was put into the artificial climate box at 4 ◦C, and the
relative humidity was 75% in common Hoagland solution. Drought stress: Hoagland
solution +10% PEG6000 simulated drought. Salt stress: Hoagland solution +200 Mm NaCl.
Hormone treatment: 250 mM MeJA and 100 µM ABA were sprayed on the foliage with
potted seedlings in common Hoagland solution. The control was potted seedlings in
common Hoagland solution at 25 ◦C under long-day conditions. Roots, petioles, and leaves
were sampled at 0 h, 3 h, 6 h, 9 h, 12 h, and 24 h. Each treatment contained at least six
potted seedlings, with three biological replicates. Afterward, they were flash-frozen in
liquid nitrogen at −80 ◦C for reservation.



Int. J. Mol. Sci. 2022, 23, 13079 16 of 18

4.7. Subcellular Localization

The amplified CDS of FaZAT10 and green fluorescent protein (GFP) was inserted
into the plasmid vector (PYTSL-16) by homologous recombination, which was modi-
fied with pMDC83-35S and Psite-2NB [53]. The fusion expression of FaZAT10 and GFP
(FaZAT10:GFP) was driven by the 35S promoter, and the nuclear localization maker for
HY5-mCherry had the same 35S promoter drive [54]. The plasmid was transformed into
Agrobacterium tumefaciens GV3101, and the two vectors were transiently co-expressed in
tobacco epidermal cells [55]. All fluorescence signals of the samples were detected using a
confocal laser scanning microscope system (FV3000 Olympus, Tokyo, Japan). The primers
are listed in Table S6.

4.8. Statistical Analysis

All data were analyzed using IBM SPSS statistical software (version 23). Student’s
t-test (**, p < 0.01; *, p < 0.05), one-way analysis of variance (ANOVA), Waller–Duncan test
and multiple comparisons (p < 0.05) were carried out, and SigmaPlot (version 12.5) was
used to plot the graphs. All of the experimental data are expressed as the mean ± standard
error of the mean (SE).

5. Conclusions

In this study, for the first time, the C2H2-ZFPs in octoploid and diploid strawberry
were identified. The C1-2i subclass members that contained two C2H2 domains were
further systematically analyzed. These results contribute to our understanding of the
evolution of the C1-2i subclass in cultivated strawberry. Meanwhile, FaZAT10 of the C1-2i
subclass was cloned based on stress transcriptome data. Analyses of cis-acting elements
in the promoter region and stress induction experiments revealed that FaZAT10 may play
an important role in regulating stress signal transduction. Taken together, these results
provide new information on the responses of C2H2-ZFPs to abiotic stress in strawberry. In
addition, we preliminarily investigated the transcription factor properties of FaZAT10, and
the specific molecular mechanism of FaZAT10 in abiotic stress needs to be further studied.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms232113079/s1.
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