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Abstract: Neurodegenerative diseases exert an overwhelming socioeconomic burden all around the
globe. They are mainly characterized by modified protein accumulation that might trigger various
biological responses, including oxidative stress, inflammation, regulation of signaling pathways,
and excitotoxicity. These disorders have been widely studied during the last decade in the hopes of
developing symptom-oriented therapeutics. However, no definitive cure has yet been discovered. Tea
is one of the world’s most popular beverages. The same plant, Camellia Sinensis (L.).O. Kuntze, is used
to make green, black, and oolong teas. Green tea has been most thoroughly studied because of its anti-
cancer, anti-obesity, antidiabetic, anti-inflammatory, and neuroprotective properties. The beneficial
effect of consumption of tea on neurodegenerative disorders has been reported in several human
interventional and observational studies. The polyphenolic compounds found in green tea, known as
catechins, have been demonstrated to have many therapeutic effects. They can help in preventing
and, somehow, treating neurodegenerative diseases. Catechins show anti-inflammatory as well as
antioxidant effects via blocking cytokines’ excessive production and inflammatory pathways, as well
as chelating metal ions and free radical scavenging. They may inhibit tau protein phosphorylation,
amyloid beta aggregation, and release of apoptotic proteins. They can also lower alpha-synuclein
levels and boost dopamine levels. All these factors have the potential to affect neurodegenerative
disorders. This review will examine catechins’ neuroprotective effects by highlighting their biological,
pharmacological, antioxidant, and metal chelation abilities, with a focus on their ability to activate
diverse cellular pathways in the brain. This review also points out the mechanisms of catechins in
various neurodegenerative and cognitive diseases, including Alzheimer’s, Parkinson’s, multiple
sclerosis, and cognitive deficit.

Keywords: catechins; neuroprotective; neurodegenerative diseases; epigallocatechin gallate; cognitive
defect

1. Introduction

Neurodegenerative diseases (NDs) are one of the most prevalent health problems,
affecting millions of people all around the world [1]. Because of the aging population, longer
life, and changing environments, the worldwide burden of NDs is increasing. According
to the World Health Organization (WHO), NDs account for 12% of total world mortality,
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16.8% of deaths in developing countries, and 13% in developed countries. It is estimated
that, by 2030, neurological disorders, such as Alzheimer’s disease (AD), Parkinson’s disease
(PD), and other dementias, will constitute 38% of worldwide disability as calculated
by years of life lost owing to disability [2]. According to the WHO, the global cost of
dementia was estimated to be USD 818 billion in 2015, which was approximately 1.1% of
the global gross domestic product (GDP) [3]. The NDs, including AD, PD, multiple sclerosis
(MS), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS), are caused by
diverse etiological causative factors, such as genetic, molecular, and environmental factors.
Inflammation, excessive reactive oxygen species (ROS), epigenetic instability, and aging are
the primary determinants of neurodegenerative diseases. The molecular factors involved
in NDs are (1) particular protein dynamics coupled to degradation and aggregation of
the impaired protein, (2) formation of free radicals and oxidative stress, (3) mitochondrial
dysfunction and deficient bioenergetics, and (4) exposure to pesticides and metal toxicity [4],
as shown in Figure 1.
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Figure 1. Pathophysiological aspects that can cause neurodegeneration.

Neuronal deterioration accelerates with age and is particularly severe in old age, as
observed with the numerous neuropathologies. To date, most neurodegenerative diseases
have remained incurable. As previously stated, the current ongoing treatment just re-
lieves symptoms but does not hinder the disease progression, focusing the need for more
effective treatment strategies [5]. Development of new drugs for NDs is hampered by
the lack of understanding of the biological perspective of these multifactorial disorders,
the blood–brain barrier that prevents drug flow to the brain, and the scarcity of clinically
relevant animal models for new drug testing [6]. Although NDs are pathologically char-
acterized by disease-specific misfolded protein aggregation and modified cellular stress
response, researchers have focused exclusively on reduction in misfolded protein load;
however, the outcomes were disappointing [7,8]. Due to the late onset and asymptomatic
nature of most neurodegenerative diseases, treatment begins at later disease stages and
has restricted benefits to the patients. If interventions are initiated early, they might be able
to largely prevent or slow the disease progression. These therapies via lowering or even
removing the primary stressor may be able to restore neuronal function [9].
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Flavonoids are primary molecules for establishment of a new class of clinically effective
therapeutic agents for neurodegenerative disorders. Flavonoids have been linked to a
decreased risk of neurodegenerative disorders when consumed regularly [10]. Besides their
antioxidant properties, these polyphenolic compounds have neuroprotective characteristics
due to their ability to interact with cellular signaling pathways, followed by translation
and transcription, which influence cellular function in both physiological and pathological
conditions [8,9]. The most popular beverage used throughout the world, tea, can be
divided into six categories based on the degree of fermentation, such as non-fermented
form (green tea), white tea (micro-fermented), yellow tea (slightly fermented), oolong tea
(semi-fermented), black tea (fully fermented), and dark tea (post-fermented) [11–13]. Tea
includes a wide range of bioactive compounds, including flavonoids, caffeine, polyphenols,
free amino acids, theanine, methylxanthine, several lipids, volatile molecules, as well as
mineral substances [14–17]. Green tea usually contains a higher content of polyphenols
than black tea due to polyphenol biodegradation during processing of dark tea, which has
beneficial effects on human health [15].

Catechins, also known as flavan-3-ols, constitute about 70–80% of tea polyphenols
and are in abundance in the young tea plant’s buds and leaves [18,19]. Meanwhile, green
tea has stronger antioxidant activity in vitro as compared to dark tea. Dark tea, on the
other hand, frequently exhibits greater in vivo antioxidant activity as compared to green
tea due to the bioavailability of polyphenol biodegradation products [12,20]. Numerous
studies have demonstrated that tea has a variety of health benefits, including memory and
cognitive improvements, cardiovascular disease prevention, anti-cancerous, anti-obesity,
and sedative [21–25]. The effect of tea on neuron function has generated great attention
over the last few decades, and several studies have proved its neuroprotective proper-
ties. For instance, tea may help in reducing the morbidity and severity of Alzheimer’s
and Parkinson’s disease, as well as the risk of developing depression symptoms via re-
ducing inflammation and oxidative stress, regulating intracellular signaling pathways,
metal chelation, and modulating the hypothalamus–pituitary–adrenal (HPA) axis and
monoamine neurotransmitter levels [26–28]. Epigallocatechin gallate (EGCG) was able to
attenuate any deficiencies in nest building and Barnes maze performance [29]. Moreover,
EGCG has been shown to ameliorate central memory deficit in water mazes and novel
object recognition tests [30]. EGCG also protects the majority of motor deficits induced
by rotenone in grip strength measurement, Rota rod, beam-crossing task, and open-field
test [31]. EGCG-loaded nanoparticles show promising application potential due to their
degradability and biocompatibility [32]. It was evident that EGCG-loaded nanoparticles
ameliorate neurobehavioral deficits in novel object recognition, open-field, and Morris
water maze test [33].

2. Catechins: Biosynthesis and Mechanism of Action
2.1. Synthesis and Structure of Catechins

Catechins are formed of a three-carbon core coupled to two phenolic nuclei (aromatic
rings) with many hydroxyl groups [34,35]. The catechins in tea are categorized into two
groups known as epistructured catechins and non-epistructured catechins [36]. Epistruc-
tured catechins are the major tea catechins. Epigallocatechin gallate (EGCG) is the most
abundant catechin in green tea, followed by epigallocatechin (EGC), epicatechin gallate
(ECG), and epicatechin (EC). Non-epistructured catechins include gallocatechin (GC), gallo-
catechin gallate (GCG), catechins (C), and catechins gallate (CG) and are, on the other hand,
only found in trace amounts in tea [37]. Catechins are produced in Camellia sinensis plant’s
leaves via shikimic–cinnamic acid and acetic–malonic metabolic pathways (Figure 2). The
shikimic acid pathways form chalcone and gallic acid, which ultimately synthesize various
catechins [38]. The content of particular catechins in a fresh leaf of tea varies depending on
the region of cultivation, nutrition of the plant, variety, kind of leaves (young or coarse),
and time of the year. Frequently, the catechins profile in the extract of green tea leaf is
comprised of EGCG 10–15%, EGC 6–10%, ECG 2–3%, and epicatechins 2% [39].
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Figure 2. Biosynthesis of catechins in Camellia sinensis plant’s leaves via shikimic–cinnamic
acid and acetic–malonic metabolic pathways. PAL, phenylalanine ammonia-lyase; C4H, cin-
namate 4-hydroxylase; CHS, chalcone synthase; CHI, chalcone isomerase; F3H, flavanone
3-hydroxylase; F3′H, flavonoid 3′-hydroxylase; F3′5′H, flavonoid 3′,5′-hydroxylase; DFR, dihy-
droflavonol 4-Reductase; LAR, leucocyanidin reductase; ANR, anthocyanidin reductase; ANS, antho-
cyanidin synthase; FGS, flavan-3-ol gallate synthase.

2.2. Physical and Chemical Properties of Catechins

Catechins are colorless, but they have bitter and astringent flavors [40]. A variety of
catechins have distinct flavors, such as ECG and EGCG (Figure 3), which are bitter and
astringent in taste, while EC and EGC have a bitter but sweet aftertaste [41,42]. Catechins
can combine with proteins and caffeine to form precipitates, making the solution cloudy,
known as cream formation [43]. Moreover, catechins precipitate when interacting with
enzymes, including lipoxygenase, pepsin, amylase, lipase, and trypsin, thereby inhibiting
their activity. Catechins with ester bonds, such as ECG and EGCG, have a higher ability
to produce precipitates with enzyme interaction as compared to catechins containing
non-ester bonds.
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Isolation of catechins for their use in food can be achieved by precipitating catechins
with protein or caffeine. Catechins have a strong iron-binging ability as the galloyl group
in their structure binds to iron in food, preventing its absorption in the body [44]. Tea
catechins are highly reactive and unstable in the presence of heat, oxidizing enzymes, and
alkaline conditions. The oxidized catechins produce thearubegins and theaflavins in the
presence of peroxidase (POD) and polyphenol oxidase (PPO) enzymes [45]. At 40 ◦C and a
pH of 5.5, POD and PPO activity are optimal [46]. As a result, adjusting the temperature
and pH can slow the activity of both these enzymes [47]. Temperature adjustment requires
caution because epistructured catechins could epimerize to non-epistructured catechins at a
high temperature above 95 ◦C. Furthermore, even though catechins are extremely stable in
acidic solution (pH 4), their stability decreases with the rise in pH from 4 to 8, and catechins
become highly unstable above pH 8 in alkaline solution. These qualities can be used to
stabilize the catechins when added to foods. Due to their strong antioxidative properties
because of hydroxyl groups in their structure, the catechins can scavenge reactive oxygen
species (ROS), including superoxide radicals, nitric acid, hydroxyl radicals, peroxynitrite,
singlet oxygen, and nitrogen dioxide, all contributing important roles in carcinogenesis [48].
The scavenging ability of hydroxyl radical (HO) declines in order of ECG, EC, EGCG, and
EGC [49]. Furthermore, catechins have the ability to capture peroxyl radicals, hindering free
radical chain reactions and halting lipid peroxidation [50]. The efficiency of four primary
catechins in reducing lipid peroxidation decreases in the following order: EGCG, ECG,
EGC, and EC [49]. This characteristic is crucial while adding catechins to foods, particularly
those rich in oil or fat.

2.3. Bioavailability of Catechin

Depending on adsorption, distribution, metabolism, and excretion processes (ADME),
the disposition of EGCG is at its peak at 90 min and is nearly undetectable after 24 h of
its oral intake [51]. After oral administration, the EGCG reaches the stomach. The acidic
environment of the stomach favors its structural stability [52]. Then, the portion of EGCG
becomes absorbed in the small intestines. A minute EGCG concentration seems to be
observed in peripheral blood because of the large fraction of EGCG in small intestines
transmitted to large intestines, which causes the transformation of this molecule via entero-
cytes, forming approximately eleven catechin ring fission products. These ringed fission



Molecules 2022, 27, 7604 6 of 22

products are present conjugated as well as free form in plasma. The EGCG forms could
cross the blood–brain barrier and reach brain parenchyma, promoting neuritogenesis and
ultimately reducing neurodegeneration [53]. The remaining EGCG is metabolized via
liver cells and converted into sulfated, glucuronide, and methylated intermediates, which
are excreted in urine [54]. Several factors are involved in maintenance of polyphenols’
stability [51,55]. The alkaline environment and high temperature affect structural stability,
enhancing chemical EGCG degradation [56]. Many studies hypothesized that, in humans,
the oral bioavailability of EGCG is low and decreases along with food [57]. Some studies
have reported selectivity of EGCG with different vitamins and minerals, suggesting that
vitamins and fish oil reduce EGCG oxidation, while minerals, such as chrome and selenium,
improve bioavailability and antioxidant activities [58–60]. Andreu-Fernandez et al. [61]
suggested that the EGCG concentration in plasma is highest after Teavigo intake following
overnight fasting, while the EGCG, when taken along with food supplements, improves
the stability inside the body.

2.4. Catechins and Neurodegeneration

As low-molecular-weight (MW) secondary metabolites, flavonoids are present in vas-
cular plants and are grouped into flavonols, flavones, flavan-3-ol, flavanones, anthocyanins,
and isoflavones. The three-ring structure of all phenolic compounds with a 15-carbon
skeleton includes two six-carbon benzene rings connected by a heterocyclic ring of pyran or
pyrone. Further, 2-Phenyl-3,4-dihydro-2H-chromen-3-ol serves as the backbone of flavan-
3-ols, the catechins. The catechins groups include epicatechins, catechins, epicatechins
gallate (ECG), epigallocatechin gallate (EGCG), and gallocatechin (GC) [62]. About 60%
of catechins in green tea are made up of EGCG, comprising a galloyl group, a tetrahy-
dropyran moiety, a pyrogallol ring, and a benzenediol ring [63]. The chemical structure
of the molecule will determine its biological function. The interface of the molecule in the
biological matrix is influenced by the quantity of hydroxyl groups and their position [64].
It is demonstrated that EGCG has a greater antioxidative effect than EC or EGC due to its
higher hydroxyl content [65]. Moreover, EGCG possesses two structures, 4-keto,3-hydroxyl
or 4-keto, 5-hydroxyl moiety, and ortho-3′,4′-dihydroxy moiety, enabling chelation and
neutralization of the metal ions [66]. Therefore, the use of catechins, especially EGCG, may
be effective in treatment of certain neurodegenerative diseases.

2.4.1. Anti-Inflammatory and Antioxidant Activity

Catechins’ most well-known biological actions are their free radical scavenging and
antioxidant characteristics. The cellular components, such as protein, nucleic acids, DNA,
and lipids, due to excessive ROS production and accumulation of defective mitochondria
in brain cells, have been linked to neurodegenerative diseases, such as AD [67]. Catechins
diminish lipid peroxidation [68]. As free scavengers, the phenolic hydroxyl groups have
antioxidant characteristics, preventing new free radical production and regulation of pro-
tein synthesis associated with redox balance, such as maintenance of superoxide dismutase,
catalase, and Nicotinamide dioxide phosphate (NADPH) [69]. By phosphorylating the
p38 MAPK kinase and ERK 1/2 signaling pathways, the catechins increase the nuclear
factor erythroid 2-related factor-2 (NRF2) activity [70]. Epigallocatechin gallate boosts the
Nrf2 levels that are decreased in the hippocampus of patients suffering from Alzheimer’s
disease and enhances expression of HO-1, which modulates cellular response towards
oxidative stress, thereby protecting against cellular death [71,72]. Catechins modulate
neuro-inflammation, which is characterized by microglial activation, through immunomod-
ulatory characteristics. They also have a significant impact on neurodegenerative disease
progression, including AD, HD, PD, and amyotrophic lateral sclerosis [73]. When compared
with controls, co-cultures of the main catechins in green tea and lipopolysaccharide (LPS)
significantly decreased the levels of interleukin-6 (IL-6) and tumor necrosis factor (TNF-α)
in human neutrophils. Catechins increase levels of Nrf2 mRNA and anti-oxidative activities
in activated B cells and decrease the expression of nuclear factor kappa light chain enhancer
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of activated B cell (NFB) protein and toll-like receptor 4 (TLR4) [74]. In in vitro LPS-induced
neuro-inflammatory models, EGCG decreases nitric oxide (NO) and TNF-α production
and reverses motor impairment [75]. Four months of EGCG consumption in APP/PS1
transgenic mice mitigated amyloid (A) plaques in the hippocampus and prevented acti-
vation of microglia. Along with higher levels of anti-inflammatory cytokines IL-10 and
IL-13, lower levels of IL-1 were also observed [76]. These results suggested that catechins
protect neurons via diminishing inflammatory mediators production through NFB, Nrf2,
and TLR4/NFB pathways, as well as altering microglial activation. Interestingly, due to the
iron-chelating characteristics of catechins, the iron deposition in neurons and microglia is
inhibited, which might be due to ferroprotein 1 (FPN1) and divalent metal transporter 1
(DMT1) [77]. People who have neurodegenerative diseases have toxic aggregates of AB due
to iron, which accumulate in their brains [78]. As a result, EGCG may affect AB levels by
destabilising AB plaques, preventing aggregation of hyperphosphorylated tau or inhibiting
translation of the amyloid precursor protein (APP) due to a decrease in labile fe2+ [79].

2.4.2. Autophagic and Neuritogenic Activity

The neuritogenic activity of EGCG and its metabolites was observed in human neu-
roblastoma SH-SY5Y cells [80]. In PCl2 (TrkB) cells, a very minute concentration of EGCG
(0.5M) and unfractionated green tea polyphenols enhance the neurotrophic potential of
brain-derived neurotrophic factor (BDNF) [81,82], whereas the in vivo findings are yet
to be confirmed. Autophagy is linked to aging, which protects neural cells by remov-
ing protein aggregates and degrading obsolete cell structures [83,84]. Protein aggregates
play a significant role in neurodegenerative diseases. Catechin via different mechanisms,
including transcription factor EB (TFEB), mTOR (molecular target of rapamycin), and
5′ AMP-activated protein kinase (AMPK), may affect autophagy [85,86]. By suppressing
the expression of the DNA methyltransferase 2 (DNMT2) gene, Khali et al. [87] have re-
ported upregulated expression of autophagal genes (Atg5 and LC3) in response to EGCG,
both in in vivo and in vitro studies. Interestingly, continuous EGCG treatment reduces
neuronal apoptosis in the hippocampal CA1 region, thereby reducing the learning and
memory deficit in rats subjected to chronic unexpected mild stress. The decrease in apop-
totic cells, soluble and insoluble A1, and restoration of autophagic flux in the hippocampus
CA1 region of the stressed rats may be the cause of this improvement [88]. Catechins
also increase beclin-1, which regulates autophagy and endocytosis. Catechins also have
neuroprotective effects via protein kinase C signaling through reducing Bax, caspase-3,
Bad, and poly(ADP-ribose) polymerase (PARP) [89–91].

2.4.3. Dual-Specific Tyrosine Phosphorylation Regulated Kinase 1a Inhibition

EGCG has demonstrated an antagonist of a serine/threonine kinase known as dual-
specificity tyrosine phosphorylation-regulated kinase (DYRK1A). DYRK1A is found on
21q22.2 loci of chromosome 21. DYRK1A is considered a substantial contributor to cog-
nitive dysfunction because of its role in neuron differentiation, neurogenesis, synaptic
plasticity, and cell death [92]. In mice overexpressing DYRK1A, EGCG-enriched supple-
ments neutralize plasma and neuronal markers (NFkB and BDNF). Moreover, EGCG is
safer for heart and liver function and also crosses the blood–brain barrier (BBB) [93].

2.5. The Role of Catechins in Various Neurodegenerative Disorders

Over the years, research on the molecular mechanism of catechins indicates their
noteworthy potential in prevention and management of neurodegenerative diseases. The
neuroprotective effect of catechins in various neurodegenerative diseases has been listed in
Table 1.
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Table 1. Neuroprotective effect of catechins in various neurodegenerative diseases.

Objective Experimental
Model Disease Outcome References

EGCG In vitro Alzheimer’s Inhibition of Tau aggregation and oxidation [94]

EGCG In vitro Huntington disease Inhibitory effect on htt aggregation [95]

CAT Rat model Parkinson disease Improve rotational behavior, locomotion,
and memory [96,97]

EGCG Rat model Alzheimer’s Decrease oxidative stress and improve cholinergic
synaptic and mitochondrial functions [98]

EGCG Mice model Multiple sclerosis
Decrease onset of disease and clinical severity.
Reduce inflammatory infiltrates. Increase Olig

1 expression
[99,100]

Green tea Drosophila model Huntington disease Green tea consumption may modulate symptoms [101]

EGCG Human studies Multiple Sclerosis Improve muscle metabolism, counteract NOX
overactivation, decrease plasma NAA levels [102,103]

EGCG Human studies Down syndrome Improve visual recognition memory [104]

EGCG Human studies Alzheimer’s Low prevalence of cognitive impairment, decrease
oxidative stress, and lipid peroxidation [105,106]

2.5.1. Alzheimer’s Disease (AD)

Numerous in vivo, in vitro, and in silico studies have been conducted on the molecular
mechanism of catechins [91,107–109]. Antioxidant properties of catechins may help protect
against neurodegeneration. Increased oxidative stress is linked to late-onset neurodegener-
ative diseases, as previously stated [110,111]. Peroxidized lipids, proteins, and oxidized
DNA have all been found to be higher in Alzheimer’s disease patients [112]. Green tea
catechins (0.5 percent green tea catechins in water) were given to rats for 26 weeks and were
found to prevent amyloid-induced cognitive impairment. Both hippocampal and plasma
levels of lipid peroxide and ROS were decreased by 20% as compared to controls [113].
EGCG was also shown to have a similar effect by Biasibetti et al. [114]. The researchers
evaluated the effect of EGCG in a streptozotocin-induced dementia rat model. Cognitive
deficits determined via the Morris water maze were reversed after one-month oral adminis-
tration of EGCG (10 mg/kg/day). Moreover, the ROS and NO levels were dramatically
reduced [114]. These antioxidative boosts may be due to the radical scavenging activity
and iron-chelating abilities of catechins [115–117]. Catechins can chelate metal ions, such
as copper and iron, by blocking the Fenton reaction [118] as these metal ions have been
found to accumulate in people suffering from Alzheimer’s’ disease [119]. These outcomes
demonstrate that catechins can attenuate the oxidative stress in the brain and peripheral
tissues as well as prevent cognitive-deficit-related behavioral changes. Pro-inflammatory
components, such as cytokines and cytotoxic compounds, are secreted from injured and
damaged neurons, which could lead to cell death [120]. Lee et al. [121] demonstrated that
EGCG pretreatment (1.5/3 mg/kg for 3 weeks) inhibits LPS-induced cognitive deficit and
quashed cytokines and inflammatory proteins. Another in vivo study reported that EGCG
reduced responses associated with LPS-induced inflammation in BV-2 microglia [122]. In
Alzheimer’s’ disease, catechins affect the PKC-related pathways that are involved in cell
survival and production of soluble non-toxic amyloid β [123,124]. Levtes et al. [125] found
that low EGCG concentration (1–5 µM) induces production of sAPP from PC12 cells and
human neuroblastoma, and 2 weeks of oral EGCG administration (2 mg/kg/day) enhances
PKC α and ε in the hippocampus of mice as compared to controlled mice. Kaur et al. [126]
and Kim et al. [127] investigated AchE inhibition with tea polyphenols. Kaur et al. [126]
conducted research on aged Wistar rats fed green tea extract (0.5%) for 8 weeks and have
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shown significantly better learning and memory performance (measured through a passive
avoidance test). Cerebrum’s AchE activity seemed reduced in older rats as compared to
young rats. Kim et al. [127] reported the reversal of scopolamine-induced amnesia by
(0.2% tea polyphenol) diet-based treatment. Tea polyphenols decrease AchE activity in
addition to behavioral changes. Besides in vitro and in vivo studies, many in silico studies
have also been carried out on tea polyphenol and acetylcholine esterase enzymes [109,128].
Hyperphosphorylation of tau protein and excessive neuronal β-amyloid deposition, in-
flammation, and oxidative stress are considered to be key contributors to development of
AD. Green tea catechins possess a neuroprotective effect against Alzheimer’s disease by in-
creasing anti-oxidant activity and inhibiting inflammation, oxidative stress, and hampering
the action of beta-amyloid aggregation and anticholinesterase and other mechanisms, as
shown in Figure 4.
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Figure 4. The neuroprotective mechanism of catechins in Alzheimer’s disease. A, β, and γ-secretase
produce β-amyloid from amyloid precursor proteins, while GSK-3β catalyzes tau hyperphosphoryla-
tion that leads to neurofibrillary tangles, which ultimately results in oxidative stress and inflammation.
The catechins inhibit β, γ-secretase, and GSK-3β activity, thereby preventing amyloid plaques and
neurofibrillary tangles formation, as well as possessing anti-inflammatory and anti-oxidative prop-
erties and increasing acetylcholine levels in the synaptic cleft, thereby improving the decline in
cognitive function in AD.

2.5.2. Parkinson’s Disease

Parkinson’s disease is a slowly progressive neurological condition of the motor system
that typically affects people above the age of 50. However, people under 50 can also be
affected. A-synuclein is a protein containing 140 amino acids, discovered in the brain,
mostly expressed in the pre-synaptic cleft of nerve cells, involved in neuronal differentia-
tion, regulation of dopamine synthesis, and suppression of neuronal apoptosis. In normal
physiological conditions, α-synuclein cannot form a fibrillary structure due to the balance
between its monomeric and oligomeric form. Furthermore, ubiquitin-proteasome ma-
chinery and lysosomal autophagic pathways remove the excess α-synuclein formed [129].
However, if α-synuclein levels are increased, there occurs impaired mitochondrial func-
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tion, and its disruption with the membrane increases the predisposition of this non-toxic
structure to aggregate and cause disruption in the normal neuronal mechanism, leading to
neuron death [130–132]. Preventing aggregation formation is thus a vital step in preventing
PD pathogenesis. The green tea polyphenol epigallocatechin-3-gallate (EGCG) aids in
decreasing α-synuclein aggregation and toxicity in in vitro PCl2 cells. It also becomes at-
tached to natively unfolded synuclein polypeptide chains to prevent formation of synuclein
by forming an unstructured oligomer. It also impedes monomeric synuclein in addition to
fibrillary intermediates [133].

PD affects dopaminergic neurons in the Substantia Nigra pars compacta (SNpc) region
of the brain [134]. According to an estimate, 80% of dopaminergic neurons die during
PD, reducing the levels of dopamine in the brain [135]. Dopamine deficiency produces
aberrant nerve firing and motor control loss [136]. Neurotoxin 1-methyl-4-phenyl-1,2,3,6-
tetrahydopyridine (MPTP) causes dopaminergic neuronal death in substantia nigra and is
widely used in discovering the molecular mechanism involved in pathogenesis of PD [137].
In cynomolgus monkeys given MPTP, catechins-rich polyphenol extract alleviated motor
deficit, recovered tyrosine hydroxylase and dopamine levels, and reduced α-synuclein
oligomers and their aggregation [138]. Pre-treatments with green tea extracts and EGCG
reduced the loss of dopamine in male C57/BL mice by significantly altering striatal antioxi-
dants, such as superoxide dismutase (SOD) and catalase. They also inhibit TH reduction,
the enzyme that catalyzes L-DOPA (L-dihydrophenylalanine) synthesis from tyrosine in
the dopamine biosynthetic pathway [139]. In MPTP C57/BL mice, pretreatment of EGCG
decreases α-synuclein expression and hinders neuronal death by increasing Bcl-2 and
lowering Bax expression. It also provided neuroprotection by boosting striatal protein
kinase C-α (PKC-α) [140]. In human NB SH-SY5Y cells, EGCG increases the expression
of PKC, resulting in Bad degradation [141]. Activated PKC promotes neuronal survival
by stimulating ERK and JNK [142]. EGCG also prevents neurodegeneration in CHO cells
expressing dopamine transporters (DAT) by inhibiting MPP+ absorption and transfer to
presynaptic dopaminergic neurons [143]. COMT inhibitors block conversion of L-DOPA
to 3-O-methyl dopa and are used in junctions to treat PD. EGCG has been demonstrated
to inhibit COMT, both in vivo and in vitro, preventing further methylation of L-DOPA,
suggested to be given in combination with other medication to improve their availability
and efficiency in the brain (Figure 5) [144]. In addition to upregulating dopamine conver-
sion, EGCG inhibits MAO-B in aged rat brains, indicating its multi-potential function in
the prevention of PD [145]. Iron accumulation in the substantia nigra is regarded to be
a pathogenic feature of PD. When the BBB is disrupted and iron transport and storage
mechanisms fail, the iron gathers in brain, which causes oxidative stress, aggregation of
α-synuclein, neuro-inflammation, and ultimately cell death [146]. Iron chelation therapy
is being studied as a therapeutic approach for treatment of PD. Green tea polyphenols’
potential as iron chelators, as well as other neuro-rescue characteristics, may aid to alleviate
Parkinson’s disease (Figure 5).

2.5.3. Huntington’s Disease (HD)

Huntington’s disease is initiated by repeated enlargement of unstable polyglutamine
(poly Q) within the first exon of the IT-15 gene, producing Huntington (htt) protein [147].
The presence of htt fibril aggregates causes progressive damage to striatal and cortical
neurons and also produces neuronal inclusions with aggregated htt protein [148]. Chorea,
marked by fidgety movements, is a common symptom of HD. Tetrabenazine (TBZ) has
been proven beneficial for chorea treatment as it reduces dopamine levels by suppressing
the vesicular monoamine transporter 2 (VMAT-2) in the central nervous system. Few
antipsychotic medications have also been used for such purposes in the past [149]. Choline
esterase inhibitors (Rivastigmine) have been demonstrated to improve cognitive functions
in progressive HD-related dementia patients; however, more placebo-controlled trials are
required [150]. In the last few years, most research has focused on compounds preventing
mutant htt aggregation. EGC and other green compounds are powerful inhibitors of htt1
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aggregation. In vitro HD models were used to demonstrate that green tea polyphenols can
regulate the early phase of polyQ growth, therefore impeding development of amyloid
fibril processes. The potential benefits of EGCG and its derivatives against HD have been
reported in many animal studies [151]. EGCG inhibits polyQ aggregation and protects
neuronal cells expressing mutant htt protein [152]. Alterations in the lipid content of cel-
lular and subcellular membranes also cause amyloid protein accumulation. It also had a
better affinity for phospholipids than non-mutated HTT, causing changes in phospholipid
double-layer stability. Beasley et al. [95] investigated the effect of lipid vesicles on EGCG
or curcumin to modulate htt, lipid linkage, and aggregated htt. Because EGCG inhibits
amyloid formation in the presence of lipid vesicles regardless of how it interacts with
the membrane environment, it is suggested that EGCG could be used to treat HD and
other disorders where protein aggregation is altered and coupled to amyloid deposition. A
clinical trial examining the effect of the maximum routine dose of EGCG (1200 mg) on cog-
nitive functioning of HD patients indicates intriguing preliminary findings; however, more
human clinical trials are required to determine EGCG effects as a therapeutic candidate for
HD treatment.
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Figure 5. Role of green tea catechins in prevention of Parkinson’s disease. The protective mechanism
of catechins has been elaborated. Parkinson’s disease is characterized by dopamine deficiency, and all
treatment measures are aimed at introduction of dopamine as a medicine and its preservation. The
figure illustrates conversion of tyrosine to dopamine by the action of an enzyme tyrosine hydroxylase;
newly synthesized dopamine is packed into vesicles and released into the synaptic cleft, where it
binds with the dopamine-specific receptors and contributes its role in signaling between two nerve
cells. Normally, dopamine is reabsorbed to the nerve cells and reused, or it is broken down by
the action of an enzyme monoamine oxidase B (MAO-B). Presence of green tea catechins inhibits
MAO-B activity and promotes dopamine reabsorption. Catechins also inhibit plaque formation by
the proteins and autoxidation of dopamine.
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2.5.4. Multiple Sclerosis (MS)

Multiple sclerosis is a chronic neurodegenerative auto-immune disease characterized
by local lymphocytic infiltration, causing inflammation and demyelination of neurons as
well as astroglial proliferation with neuronal injury [153]. It can produce a wide range of
neurologic symptoms, including sensory impairments, movement issues, and impaired
vision. The most prevalent clinical form of MS is RRMS (relapsing–remitting multiple scle-
rosis), distinguished by relapse with clinical manifestation along with partial or complete
recovery [154]. Yet, there is no definite cure for MS. However, many disease-modifying treat-
ments (DMT) for reducing relapses and disease progression have been reported [155]. Many
studies have studied DMT and EGCG in the experimental autoimmune encephalomyelitis
(EAE) model, specifically used for MS research. Inflammatory infiltrates and the onset
of disease were significantly delayed [99]. Other research examined EGCG’s effects in
cuprizone-induced MS animals. EGCG enhanced oligodendrocyte transcription factor 1
and remyelination-related proteolipid protein in the cerebral cortex [100,156]. In both ani-
mal models, EGCG therapy improved the mice’s clinical symptoms or molecular pathways.
Few studies have investigated catechins’ influence on human populations, chiefly on RRMS.
Bellman-Strobl et al. [157] conducted an analysis of EGCG + GA in 122 RRMS patients.
When compared to the placebo, the 800 md/day oral EGCG + GA dose for an 18-month
duration revealed no significant improved in MRI and clinical activities. A double-blind
clinical experiment was conducted to investigate the antioxidant therapy mechanism in
MS patients and showed that RRMS patients had lower NOX levels in CD11b+monocytes
when given GA + 600 mg EGCG. The daily dose of 600 mg of EGCG in RRMS patients
for 12 months has been reported to increase muscle metabolism during exercise [158].
Lovera et al. [103] conducted a study to assess the efficacy of polyphenon E (green tea
extract containing 50% EGCG) in patients suffering from MS. They discovered that 800 mg
EGCG enhances levels of N-acetyl aspartate in the brain, indicating a neuroprotective effect.
However, due to abnormal liver function tests, the dose had to be stopped in five out of
seven patients, concluding that polyphenon E may have an increased risk of hepatotoxicity.
Other researchers assessed the EGCG treatment safety and determined that it was a safe
drug, with comparable side effects in placebo as well as treatment groups [157,159]. In
addition to EGCG, polyphenon E contains other polyphenols containing low quantities of
caffeine that are metabolized in the liver. Overall, catechins’ effectivity in MS patients is
still unclear.

2.5.5. Amyotrophic Lateral Sclerosis and Frontotemporal Dementia

Amyotrophic lateral sclerosis (ALS) is a less common neurodegenerative disease, char-
acterized by progressive loss of upper and lower motor neurons, which leads to weakness
in limbs and swallowing and speech difficulties [160]. The progression of the disease
ultimately results in paralysis and death from respiratory failure [161]. Frontotemporal
dementia (FTD) is also associated with changes in the temporal and frontal lobes that
manifest changes in personality, language, behavior, and motor skills [162,163]. EGCG
has been reported to have a protective role in ALS in protecting motor neuron cells from
mitochondrial damage and oxidative stress [164]. Oral EGCG supplements significantly
slow the onset of symptoms, improve motor function, and expand lifespan [165,166]. EGCG
upregulates the PI3K/Akt signaling pathway, which mediates GSK-3 activity, increasing
neurofibrillary tangles and neuronal death [164]. An increase in PI3K/Akt and a reduction
in death signals, including caspase-3, cleaved PARP, and cytosolic cytochrome c, are ob-
served in ALS animals, which supports these findings [165]. On microglia and astrocytes,
EGCG also possesses anti-inflammatory and anti-oxidant properties [166]. Furthermore,
despite its presumed chelating properties, it has little effect on iron metabolism [167]. In
FTD, inhibition of tau filament formation was observed for ECG but not for EC [168].
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2.5.6. Fetal Alcohol Spectrum Disorders (FASD)

Alcohol has many adverse effects on CNS, including neuro-immune dysregulation,
neurotransmitter problems, epigenetic modification, as well as oxidative stress [169].
Chronic intake of alcohol leads to cognitive impairment, with loss of axons, atrophy
of white matter, and brain cell demyelination [170,171]. The rat brain analysis revealed an
association between alcohol consumed and degree of white matter atrophy [172]. FASD
referred to the group of disabilities as the result of prenatal exposure to alcohol, marked by
neurobehavioral dysfunction, dysmorphology of the face, and stunted growth [173,174].
To date, FASD and other alcohol-related changes have no treatment, and the traits re-
main throughout life; however, early intervention, including developmental therapy or
behavioral interventions, may resist certain disorders’ and disabilities’ development and
progression [175,176]. The potential of catechins to permeate various organs and their
anti-oxidative effects bring them to the table for FASD treatment options [177]. In the
murine model, 50 to 100 mg/kg EGCG treatment has been observed to increase glutathione
and SOD levels, along with lipid peroxide and NO levels reduction in neonates [178].
Pregnant mice administered 400 mg/kg EGCG reported a decline in production of H2O2
and malondialdehyde (MDA) [179]. On the other hand, 30 mg/kg EGCG treatment for
prenatal alcoholic exposure (PAE) resulted in N rf2 reduction [180]. As EGCG can cross the
BBB, it has been shown that it can improve the brain development of a fetus impaired by
ethanol [177]. In an in vitro rhombencephalic-neuron-cultured model from the rat fetus,
EGCG prevents ethanol-induced neuronal death [181]. It also decreases the expression of
NFB and caspase-3 in a rat model [178]. Microcephaly and PAE-related cognitive deficits
may be prevented by reducing apoptosis. In addition to its antioxidant and anti-apoptotic
properties, EGCG has been shown to reduce the ethanol-induced inflammatory response
(decreased interleukin-1 and tumor necrosis factor-α levels) [148]. A study conducted on
PAE mice showed that a daily 30 mg/kg EGCG dose increased expression of neuronal
nuclei (NeuN) and doublecortin (DCX), which could help in preventing the loss of mature
neurons and the delays in maturation due to ethanol. EGCG upregulates BDNF and glial
fibrillary acidic protein (GFAP), thus compensating for the early astrocyte differentiation
and neural plasticity abnormalities caused due to maternal alcohol consumption [180]. The
tea catechins, including EGCG, EC, and catechins, have been observed to inhibit DNMT1-
mediated DNA methylation in in vitro models [182]. EGCG effectivity against FASD DNA
methylation was not found in the literature, so it would be informative to observe the
effect of catechins on the DNA methylation pattern of fetal cells. Finally, the aforemen-
tioned disruptions in embryonic neurodevelopment result in behavioral and cognitive
abnormalities, including impaired learning and memory having been observed to be ame-
liorated via EGCG treatment [104]. It is interesting to note that DS and FASD have many
similar traits, including craniofacial dysmorphology, cognitive and behavioral disorders,
and growth deficiencies. DYRK1A inhibition has been shown to aid neuronal plasticity in
patients suffering from Down syndrome, suggesting that this molecular pathway should
be investigated in FASD disease.

2.5.7. Down Syndrome (DS)

Down syndrome is a genetic disease related to intellectual disabilities, caused by chro-
mosomal 21 third copy, characterized by typical facial traits, including epicanthus, flattened
face, up-slanted eyes, and hypotonia. The cognitive abnormalities in Down syndrome range
in severity owing to the imbalance between huge synaptic suppression in the hippocampus
and excessive cerebral cortex activation [183]. DS may cause a lack of flexibility in reaction
to the environment, resulting in failure to adapt to a new situation. The major outcomes
are changes in synaptic structure, which affects the information processing and storage
capacity of brain networks. The neuropsychological traits include prominent hippocampal-
dependent deficits impacting spatial memory, and reduced cognitive abilities [184]. EGCG,
because of its pro-cognitive effects, has been recommended for Down syndrome [185].
EGCG also suppresses metalloproteinase 9 (MMP9), which is dysregulated in DS [186].
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DYRK1A is over-expressed in Down syndrome and is considered to be the major source of
cognitive dysfunction in DS patients. Researchers found that different doses of EGCG are
associated with inhibition of DYRK1A in the brain. Thus, DS treatment can target the active
DYRK1A concentration to improve behavioral issues via the GABAergic and glutamatergic
pathways [187,188]. Environmentally enriched EGCG treatment in Ts65Dn mice has shown
to improve memory and learning. A 42 mg/kg/day EGCG dose has also shown to retrieve
deregulation of phosphoprotein in the hippocampus, reverse the kinome deregulation
process, and restore the epigenetic profile. Because of all these potential pathways, green
tea derivatives may enhance cognition [189–192]. EGCG therapy restores mitochondrial
bioenergetics and biogenesis, which were significantly reduced in Down syndrome. It
enhances proliferation of neuronal progenitor cells and neuronal plasticity and inhibits
ROS production [193,194]. It is possible that neonatal EGCG therapy is more effective in
reducing DS impairments. However, long-term EGCG effects on hippocampus physiology
are still not proven [195].

3. Conclusions

To date, few therapeutic strategies for treating neurodegenerative diseases are avail-
able, so it is critical to discover novel preventive and therapeutic neuroprotective agents.
Catechins appeared to have neuroprotective effects, as evident from both in vivo and
in vitro studies against Alzheimer’s, Parkinson’s, multiple sclerosis, Huntington’s dis-
ease, and other neurodegenerative diseases. Catechins, especially EGCG, the most com-
monly used catechins, possess antioxidant, anti-inflammatory, anti-apoptotic and neu-
ritogenic, and metal chelation characteristics, along with the ability to trigger diverse
molecular mechanisms, such as lipid peroxidation inhibition, induce metal-chelating effects
on amyloid-B, and α-synuclein fibrillation, inhibiting amyloid-β fibrillation. They produce
anti-inflammatory effects by regulating the levels of inflammatory markers, including
TNF-α, NF-kB, IL-6, IL-1 NFB, and NO, increasing antioxidants, such as GSH, SOD, and
CAT, and decreasing lipid peroxidation by increasing Nrf2 protein expression. Moreover,
catechins have the ability to cross the blood–brain barrier, which makes them feasible
neuroprotective candidates against neurodegenerative diseases. However, more research,
particularly clinical trials in humans, is required to understand catechins’ involvement in
various biochemical pathways associated with neurological diseases. Future studies should
examine regulation of neurological mechanisms and targeted brain regions where neuronal
failure occurs, as well as bioavailability and optimal dosage for the best outcomes with no
side effects and toxicity aspects regarding catechins consumption. Cognitive training along
with pharmacological therapies would open up a world of possibilities for reversing the
neuronal degeneration observed in such disorders.
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