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Abstract: Circadian rhythms significantly affect metabolism, and their disruption leads to car-
diometabolic diseases and fibrosis. The clock repressor Rev-Erb is mainly expressed in the liver, heart,
lung, adipose tissue, skeletal muscles, and brain, recognized as a master regulator of metabolism,
mitochondrial biogenesis, inflammatory response, and fibrosis. Fibrosis is the response of the body to
injuries and chronic inflammation with the accumulation of extracellular matrix in tissues. Activation
of myofibroblasts is a key factor in the development of organ fibrosis, initiated by hormones, growth
factors, inflammatory cytokines, and mechanical stress. This review summarizes the importance of
Rev-Erb in ECM remodeling and tissue fibrosis. In the heart, Rev-Erb activation has been shown
to alleviate hypertrophy and increase exercise capacity. In the lung, Rev-Erb agonist reduced pul-
monary fibrosis by suppressing fibroblast differentiation. In the liver, Rev-Erb inhibited inflammation
and fibrosis by diminishing NF-κB activity. In adipose tissue, Rev- Erb agonists reduced fat mass.
In summary, the results of multiple studies in preclinical models demonstrate that Rev-Erb is an
attractive target for positively influencing dysregulated metabolism, inflammation, and fibrosis, but
more specific tools and studies would be needed to increase the information base for the therapeutic
potential of these substances interfering with the molecular clock.
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1. Introduction

Fibrosis is the body’s response to injuries, and chronic inflammation is increasingly
recognized as an important cause of morbidity and mortality [1]. It has been estimated
that fibrosis in different organs is associated with 45% of all deaths in the industrialized
world [2]. Fibrosis is defined as “an excessive accumulation of extracellular matrix (ECM)
proteins in tissues, preventing functions and dynamically remodeling” [3,4]. After an injury,
molecules from damaged cells induce an inflammatory reaction with the attraction of cells
e.g., monocytes, neutrophils, and other immune cells and increased fibroblasts differentia-
tion into ECM-producing myofibroblasts [5]. ECM is a noncellular component essential
for tissue differentiation, morphogenesis, and homeostasis and includes fibrous proteins
collagens, fibronectins, elastin, laminins, and hydrophilic proteoglycans [6]. During fibrosis,
the functional cells such as cardiomyocytes, hepatocytes, acinar cells, podocytes, alveolar
cells, and neurons are being replaced by ECM proteins such as collagen and fibronectin in
the tissues [3,7]. Various factors such as hereditary disorders, age, obesity, diabetes and
hypertension, hypercholesterolemia, persistent infections, and recurrent exposure to toxins,
irritants/smoke affect wound healing after injury, resulting either in progressive fibrosis
or healthy tissue repair [8]. Collagen is the most abundant fibrous protein of ECM, which
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provides tensile strength, regulates cell adhesions, and supports chemotaxis and tissue
development [9]. Myofibroblasts synthesize ECM proteins and are well-known fibrosis
effectors in various tissues (Figure 1) [10].
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Figure 1. After injury, damaged cells recruit inflammatory cells (e.g., monocytes, neutrophils, and
other immune cells), which promote fibroblasts differentiation into ECM-producing myofibroblasts,
leading to fibrosis in various tissues.

Myofibroblasts are spindle or stellate shape fusiform cells with a similar ultrastructure
as smooth muscle cells and are typically found in scar and granulation tissues and stroma of
tumors [11]. These cells possess both secretory characteristics of fibroblasts and contractile
characteristics of smooth muscles and play vital roles in swiftly repairing injured tissues.
Myofibroblasts lack smooth muscle markers desmin and myosin and display elevated levels
of stress fibers, exosomes, and microvesicles [12]. They typically contain elongated and
serrated nuclei, multiple dendritic processes, extensive rough ER, fibrillar collagens, and
microfilament proteins [13,14]. Myofibroblasts synthesize and secrete ECM proteins such
as collagens (e.g., I and III), a specialized isoform of fibronectin, periostin, and cadherin-2,
and -11 [13]. In addition, they secrete numbers of cytokines, inflammatory mediators (CO,
H2O2, NO, O-radical, HETE, PAF, and prostacyclin), and growth factors (IGF, PDGF TGF-β)
maintaining the inflammatory response to an injury [15]. Cell-adhesion molecules (CAMs)
such as ICAM1 and VCAM1 are expressed in subtypes of myofibroblasts, and induce
communications with immune cells such as T-cells and neutrophils [16,17].

Transdifferentiation of quiescent mesenchymal cells to activated myofibroblasts is a key
event in the pathogenesis of fibrosis [18]. The potential progenitor cells for myofibroblasts
consist of fibroblasts, fibrocytes, epithelial and endothelial cells, and other mesenchymal
cells such as pericytes, depending on the insult and organ [19,20]. The early changes occur
during myofibroblast formation with mitochondrial changes and ROS production [21,22].
Recently, it has been demonstrated that mitochondrial Ca2+ signaling is a key regulator
of myofibroblast differentiation and fibrosis [21]. The differentiation of myofibroblasts is
initiated by various factors such as hormones (endothelin-1 and angiotensin II), growth
factors (TGF-β and VEGF), and inflammatory cytokines (TNF-α, IL-1, and IL-6), Ca2+, and
mechanical stress [23,24], which are linked to the circadian rhythm [25].

2. Circadian Rhythm

Circadian rhythm is an autonomous self-sustained oscillation of 24 h, which regu-
lates the metabolism of organisms [26,27]. The circadian clock drives the daily rhythm
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and controls coordinated oscillations of many neuroendocrine, signaling, and metabolic
pathways [28]. Disturbances of these interactions, as in shift work, transcontinental fights,
and irregular eating patterns, are increasingly recognized as risk factors for CNS, metabolic,
cardiovascular diseases, and cancer (Figure 2) [29–31].
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Figure 2. Genetic factors (age and mutations in clock genes) and environmental factors (sleep
disturbances, irregular diet, and shift work) disrupt circadian rhythm. Disturbances in the oscillations
of the circadian clock lead to cardiometabolic diseases, CNS disorders, and cancer.

At the cellular level, circadian clock genes consist of transcription-translation feedback
loops, in which Clock and brain and muscle Arnt-like protein-1 (Bmal1) drive expres-
sion of 2 negative-feedback arms controlled by Period/Cryptochrome (Per/Cry) and the
two paralogs, Rev-Erbα and Rev-Erbβ [32]. In turn, these negative-feedback arms repress
Bmal1/Clock transactivation function (Per/Cry) or Bmal1 expression (Rev-Erbα/β) and
Bmal1 activation (ROR) (Figure 3).

Figure 3. Clock and Bmal1 drive expression of two negative-feedback arms controlled by Pe-
riod/Cryptochrome (Per/Cry) and the two paralogs, Rev-Erbα/β and ROR. In turn, these negative-
feedback arms repress Bmal1/Clock transactivation function (Per/Cry) or Bmal1 expression (Rev-
Erbα/β) and Bmal1 activation (ROR).

Circadian rhythms are influenced by light, physical activity, diet, aging, and disease
states [33,34]. Genetic polymorphisms within the core clock genes Bmal1 and Clock are asso-
ciated with metabolic diseases such as obesity, type 2 diabetes, and hypertension [35,36].
More than half of human genes display circadian oscillations in at least one body tissue
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or organ [37]. Changes in circadian transcriptions affect major homeostatic mechanisms,
including stem cell regulation, mitochondrial function, and immune responses. Mitochon-
dria exhibit a bidirectional relationship with the circadian clock via a reciprocal interaction
between peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC-1α)
and Bmal1 [38]. In addition, fatty acid oxidation enzymes and electron transfer flavopro-
teins also follow circadian oscillation [39]. Furthermore, clock-controlled genes (CCGs)
such as O-linked beta-D-N-acetylglucosamine (O-GlcNAc) signaling, nicotinamide ade-
nine dinucleotide (NAD+)-dependent sensors, nicotinamide phosphoribosyl transferase
(NAMPT), silent mating type information regulation 2 homolog 1 (SIRT1), and 5′-adenosine
monophosphate-activated protein kinase (AMPK) link the clocks with metabolic regula-
tors [40–42]. Nuclear receptors (NRs) exhibit circadian oscillations in metabolic tissues, in
addition to direct transcriptional regulation of Bmal1 via ROR and Rev-Erb. Circadian clocks
regulate various immune markers such as interleukin IL-2, IL-10, IL-6, IL-1β, and tumor
necrosis factor-α (TNF-α) [43,44]. Disruption of the circadian rhythm increases inflamma-
tory markers such as IL-6 and TNF-α, affecting circulating lymphocytes and natural killer
(NK) cells [45]. Inflammation-related genes such as nuclear factor erythroid2-related factor
2 (NRF2), nuclear factor kappa B (NF-κB), chemokine ligands, and PPARs are strongly
linked with the molecular clocks [46–48].

Circadian Repressor Rev-Erb

Rev-Erbα (Nr1d1) and Rev-Erbβ (Nr1d2) are members of the nuclear receptor (NRs)
superfamily and have significant roles in the maintenance of circadian rhythm, metabolic
process, and immune functions [49,50]. They have distinct features among NRs because
their ligand binding domain lack activation function-2 (AF2) at C-terminus, which is
essential for interacting with co-activators and gene transcription [51]. Rev-Erb acts as
constitutive repressors of circadian transcription either passively by competing with the
transcriptional activator retinoic acid-related orphan receptor (ROR) at binding elements
(RORE) [52,53], or actively by recruiting the NCoR-HDAC3 corepressor complex [54,55].
Rev-Erbs regulate glucose, lipids, and energy metabolism as well as adipogenesis and
inflammation (Figure 4) [56,57].
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Figure 4. Rev-Erbα/βs display robust 24 h oscillations and regulate the physiological functions of
the organs. Rev-Erbs reduce adipogenesis and lipogenesis and increase bile acid synthesis in adipose
tissue and liver, respectively. Rev-Erbs reduce cardiac hypertrophy and inflammatory cytokines in
the heart, myofibroblast differentiation, and collagen production in the lungs. Rev-Erbs decrease
myogenesis and increase mitochondrial function in skeletal muscles. Rev-Erbs increase injury and
fibrosis in the kidney. (

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 5 of 21 
 

 

 

Figure 4. Rev-Erbα/βs display robust 24 h oscillations and regulate the physiological functions of 

the organs. Rev-Erbs reduce adipogenesis and lipogenesis and increase bile acid synthesis in adi-

pose tissue and liver, respectively. Rev-Erbs reduce cardiac hypertrophy and inflammatory cyto-

kines in the heart, myofibroblast differentiation, and collagen production in the lungs. Rev-Erbs 

decrease myogenesis and increase mitochondrial function in skeletal muscles. Rev-Erbs increase 

injury and fibrosis in the kidney. (  = decrease,  = increase).  

3. Fibrotic Mediators  

Two major mediators of tissue fibrosis are transforming growth factor-β (TGF-β) [64] 

and hypoxia-inducible factor 1 alpha (HIF-1α) [65]. Proteases such as plasmin, cathepsin, 

thrombospondin, calpain, integrin-αvβ6, and MMPs activate TGF-β, which is a potential 

target for antifibrotic drugs [66,67]. TGF-β affects the circadian clock gene machinery by 

inducing expression of Bmal1 and Clock and inhibiting expressions of Per1/2, Rev-Erbα, 

RORα, and cold-inducible RNA binding protein (Cirbp) (Figure 5) [68,69]. TGF-β2 inhibits 

the expression of circadian clock genes; Per, Rev-Erbα, and CCGs; D-site albumin promoter 

binding protein (DBP) and thyrotroph embryonic factor (TEF), without altering Bmal1 ex-

pression in NIH3T3 fibroblasts and HT22 neurons [70]. TGF-β signaling is influenced by 

Rev-Erb and Bmal1, and TGF-β itself alters Rev-Erb and Bmal1 expressions [71,72]. Hypoxia 

increases the expression of proteases such as MMPs and thrombospondin 1 (TSP-1) acti-

vating TGF-β [73]. 

 

Figure 5. TGF-β inhibits the expression of the negative regulators of circadian clocks (Rev-Erbα/β, 

Per1/2, Cirbp) and prolongs the wake period. In addition, TGF-β reverses the wake period by stim-

ulation of Clock and Bmal1 expression. 

 

= decrease,

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 5 of 21 
 

 

 

Figure 4. Rev-Erbα/βs display robust 24 h oscillations and regulate the physiological functions of 

the organs. Rev-Erbs reduce adipogenesis and lipogenesis and increase bile acid synthesis in adi-

pose tissue and liver, respectively. Rev-Erbs reduce cardiac hypertrophy and inflammatory cyto-

kines in the heart, myofibroblast differentiation, and collagen production in the lungs. Rev-Erbs 

decrease myogenesis and increase mitochondrial function in skeletal muscles. Rev-Erbs increase 

injury and fibrosis in the kidney. (  = decrease,  = increase).  

3. Fibrotic Mediators  

Two major mediators of tissue fibrosis are transforming growth factor-β (TGF-β) [64] 

and hypoxia-inducible factor 1 alpha (HIF-1α) [65]. Proteases such as plasmin, cathepsin, 

thrombospondin, calpain, integrin-αvβ6, and MMPs activate TGF-β, which is a potential 

target for antifibrotic drugs [66,67]. TGF-β affects the circadian clock gene machinery by 

inducing expression of Bmal1 and Clock and inhibiting expressions of Per1/2, Rev-Erbα, 

RORα, and cold-inducible RNA binding protein (Cirbp) (Figure 5) [68,69]. TGF-β2 inhibits 

the expression of circadian clock genes; Per, Rev-Erbα, and CCGs; D-site albumin promoter 

binding protein (DBP) and thyrotroph embryonic factor (TEF), without altering Bmal1 ex-

pression in NIH3T3 fibroblasts and HT22 neurons [70]. TGF-β signaling is influenced by 

Rev-Erb and Bmal1, and TGF-β itself alters Rev-Erb and Bmal1 expressions [71,72]. Hypoxia 

increases the expression of proteases such as MMPs and thrombospondin 1 (TSP-1) acti-

vating TGF-β [73]. 

 

Figure 5. TGF-β inhibits the expression of the negative regulators of circadian clocks (Rev-Erbα/β, 

Per1/2, Cirbp) and prolongs the wake period. In addition, TGF-β reverses the wake period by stim-

ulation of Clock and Bmal1 expression. 

 

= increase).



Int. J. Mol. Sci. 2022, 23, 12954 5 of 20

Synthetic Rev-Erb agonists modulate metabolic states by altering central and periph-
eral clocks [49,58]. The Rev-Erb agonist (SR9009) reduced obesity and improved plasma
lipid profiles in DIO mice by increasing energy expenditure [58,59]. In addition, the Rev-Erb
agonist had beneficial effects on jet lag, sleep disturbances, metabolic diseases, inflamma-
tion, and cancer [60–62]. Daily administration of the Rev-Erb agonist (SR9011) reduced
weight gain, fat mass, and expression of lipogenic genes in normal mice [58,63]. Gibbs
et al. showed that genetic knockdown of Rev-Erbα increased IL-6 expression in response to
lipopolysaccharides (LPS) and the Rev-Erbα ligand (GSK4112) inhibited the production
and release of IL-6 in human macrophages [62]. Furthermore, the author reported that
in the absence of Rev-Erbα, the inhibitory effect of GSK4112 on IL-6 response was abol-
ished, indicating that Rev-Erbα regulates the production and secretions of inflammatory
cytokines [62].

3. Fibrotic Mediators

Two major mediators of tissue fibrosis are transforming growth factor-β (TGF-β) [64]
and hypoxia-inducible factor 1 alpha (HIF-1α) [65]. Proteases such as plasmin, cathepsin,
thrombospondin, calpain, integrin-αvβ6, and MMPs activate TGF-β, which is a potential
target for antifibrotic drugs [66,67]. TGF-β affects the circadian clock gene machinery by
inducing expression of Bmal1 and Clock and inhibiting expressions of Per1/2, Rev-Erbα,
RORα, and cold-inducible RNA binding protein (Cirbp) (Figure 5) [68,69]. TGF-β2 inhibits
the expression of circadian clock genes; Per, Rev-Erbα, and CCGs; D-site albumin promoter
binding protein (DBP) and thyrotroph embryonic factor (TEF), without altering Bmal1
expression in NIH3T3 fibroblasts and HT22 neurons [70]. TGF-β signaling is influenced
by Rev-Erb and Bmal1, and TGF-β itself alters Rev-Erb and Bmal1 expressions [71,72].
Hypoxia increases the expression of proteases such as MMPs and thrombospondin 1
(TSP-1) activating TGF-β [73].
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HIF-1α activation increases the production of proinflammatory cytokine TNF-α, IL-1β,
IL-6, and IL-8, while HIF-2α reduces cytokine productions [74,75]. Clock genes respond
to acute hypoxia in a tissue-specific manner with an inter-tissue clock misalignment [76].
HIF-1α activation disrupted the circadian rhythm by dampening the oscillation amplitudes
of Bmal1 and Per2 in a dose-dependent manner in myoblasts and osteosarcoma (U2OS)
cells [39,77]. PER2 enhances HIF-1α activity by facilitating the recruitment of HIF-1α to
the hypoxia-response element (HRE) on the VEGF promoter [78]. Cry1 inhibits HIF-1α
transactivation and reduces the half-life of HIF-1α [79].

Other important molecular pathways for tissue fibrosis include platelet-derived
growth factor (PDGF), connective-tissue growth factor (CTGF), vasoactive peptides (es-
pecially angiotensin II and endothelin-1), and integrins [64,80]. TNF-α, CTGF, PDGF, and
FGF induce fibrosis by increasing ECM accumulation via myofibroblast differentiation [81].
In addition, various cytokines such as IL-4, IL-13, IL-17, IL-25, and IL-33 induce fibrosis in
different organs [82–85].

The role of Rev-Erb in different organs will be discussed in the following chapters.
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4. Effect of Rev-Erb in Tissue Fibrosis
4.1. Rev-Erb in Heart Fibrosis

The prevalence of heart diseases are continuously rising, and globally, approximately
64.3 million people are affected by heart failure (HF) [86]. Recently, a meta-analysis showed
that the prevalence of ‘all types’ heart failure in developed countries is around 11.8% in
those aged 65 years and older [87]. Ischemic injury leads to cardiac remodeling and fibrosis,
resulting in HF. Cardiac injuries lead to the development of cardiac fibrosis, which is
associated with increased ECM proteins in the myocardium. The ECM network of the
heart mainly consists of collagen 1 (Col1; 85% of the total myocardial collagen), providing
tensile strength with minor amounts of collagen III (Col3), which provides elasticity [88].
The fibrotic response is triggered by growth factors and proteases in the cardiac ECM after
injury [89].

Rodents and human hearts displayed robust circadian rhythms [90,91]. Studies in
murine models demonstrated that genetic disruption of the circadian clock gene Bmal1
resulted in cardiomyopathy and reduced lifespan [92,93]. Clock-deficient mice developed
age-dependent cardiac hypertrophy and interstitial fibrosis at 21 months of age [94]. Fur-
thermore, shift workers are more prone to cardiovascular diseases such as atrial fibrillation
and coronary heart disease (CHD) [95].

Rev-Erb agonist (SR9009) prevented cardiomyocyte hypertrophy, reduced fibrosis, and
halted the progression of HF in mice [96]. In addition, the Rev-Erb agonist (SR9009) improved
left ventricles (LV) function and survival after myocardial infarction (MI) (Table 1) [97]. SR9009
decreased the expression of cytokines IL-6, monocyte chemoattractant protein-1 (MCP-1),
MMP9, and immune cells (neutrophil and proinflammatory macrophages) infiltration in
the infarcted heart [97]. In pressure-induced cardiac hypertrophy by transverse aortic
constriction (TAC) in mice the Rev-Erb agonist (SR9009) reduced protein kinase B (AKT)
expression and cardiac hypertrophy [94]. In LDL-receptor-deficient mice fed with a western
diet, Rev-Erb agonist (SR9009) reduced atherosclerosis [98]. The SR9009-treated mice
had a reduced ratio of proinflammatory M1 macrophages to the anti-inflammatory M2
macrophages, indicating that the reduction in atherosclerotic plaque is due to the anti-
inflammatory activity of the Rev-Erb agonist [98].

Table 1. Role of Rev-Erb and their synthetic ligands in tissue fibrosis.

A

Effector Organ Rev-Erb Functions Reference

Lung

Knockout mice

• Increased pulmonary myofibroblast activating
markers such as collagen-1 and αSMA

• Increased neutrophil lung influx and
proinflammatory cytokines (IL-6, MCP-1)

[99,100]

Lower mRNA and protein expression • Smokers and COPD patients [101]

Reduced Rev-Erbα mRNA and protein expression • Emphysema mice [102]

Liver

Knockout mice
• Plasma VLDL concentrations and APOC-III

expression
• Hepatic steatosis and reduced bile acid synthesis

[55,103,104]

Knockout of Rev-Erbα/β mice fed with HFD • Hepatic triglyceride levels [105]

Knockout in primary hepatocytes
• CYP4A expression, lipid accumulation, and

oxidative stress [106]
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Table 1. Cont.

Adipose tissue Knockout mice
• Increased plasma adiponectin and its expression in

WAT [107,108]

• Adiposity and hypertrophied adipocytes [107,108]

Skeletal muscle

Rev-Erbα/β double-knockout mice
• Altered lipid metabolism and circadian

wheel-running behavior [109]

Knockout mice

• Reduced running capacity
• Reduced skeletal muscle mass and muscle fiber

cross-section area
• Reduction of the regenerative capacity of muscle

[59,110,111]

Upregulation in Mice • Loss of muscle mass [110]

Upregulation in C2C12 myocytes
• Increases exercise capacity, mitochondrial content,

and activity [59]

Upregulation in myoblasts
• Reduces dexamethasone-induced atrophy-related

genes [110]

Kidney
Rev-Erbα/β knockout mice

• Decreased sensitivity to folic acid-induced acute
kidney injury and diminished rhythm in disease
severity

[112]

Rev-Erbβ knockout mice
• Increasing gene and protein expressions of Slc7a11

and HO1 [112]

B

Rev-Erb
ligands

Effector
organ Animal Model Effects Reference

SR9009
(Agonist)

Heart TAC mice
• Prevented cardiomyocyte hypertrophy, reduced

fibrosis [113]

Mice

• Improved left ventricles (LV) function and survival
after myocardial infarction

• Decreased expression of cytokines IL-6, MCP-1,
MMP9, and immune cells (neutrophil and
proinflammatory macrophages) infiltration into the
infarcted heart

• Reduced ratio of proinflammatory M1
macrophages to anti-inflammatory M2
macrophages

[97]

LDL-receptor deficient mice
fed with a western diet

• Reduced atherosclerosis [98]

GSK4112
(Agonist)

Lungs
Human small airway

epithelial cells and mouse
lung fibroblasts

• Attenuated both LPS and cigarette
smoking-induced inflammatory response and
reduced pulmonary fibrosis

[100,114]

HFL-1 cells
• Suppressed TGF-β–induced fibroblast

differentiation [115]

SR9009
(Agonist)

Liver Mice
• Induced weight loss and reduced plasma

triglycerides and cholesterol [63]

• Inhibition of cholesterol biosynthesis [116]

HSC • Inhibition of HSCs proliferation [117]

Mice • Prevented alcohol-induced liver injury [106]

NASH mice
• Reduced hepatic inflammation (IL-1α, IL-1β, Ifnγ,

and TNFα) and fibrosis [118,119]

Ccl4-induced fibrosis in mice
and Rat HSCs

• Reduced fibrosis [120,121]
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Table 1. Cont.

SR6452
(Agonist)

Adipose
tissue 3T3L1 cells • Induction of adipocyte differentiation [122]

SR9011
(Agonist) Mice • Reduced fat mass and lipogenic gene expression [58]

SR9009
(Agonist) Mice • Induced weight loss and reduced plasma lipids [58]

SR6452
(Agonist)

Skeletal
muscle Mice • Regulation of atrophy-related genes [110]

SR8278
(Antagonist) Dystrophic mice

• Improved mitochondrial biogenesis and muscle
functions [123]

GSK1362
(Inverse agonist Kidney HEK293 cells • Inhibition of chemokines and cytokines [114]

SR8278
(Antagonist) Mice • Reduced kidney damage [112]

Overall, the effects of Rev-Erbs on cardiac functions are only sparsely studied and
would need further investigation. In addition, human studies regarding the role of the
circadian clock in cardiac fibrosis are lacking.

4.2. Rev-Erb in Lung Fibrosis

Inflammatory lung diseases such as COPD and asthma frequently show daily varia-
tions in symptoms, and genes involved in lung functions display circadian rhythms [124,125].
Circadian clock genes play an important role in pulmonary fibrosis, COPD, and lung
cancer [99,126]. Bmal1 deletion in lung epithelium enhanced the inflammatory reaction in
response to cigarette smoke and lipopolysaccharide (LPS) [102,127]. Dong et al. (2016) re-
ported that TGF-β induction increased Bmal1 and decreased Rev-Erbα and RORα expression
in the lung while silencing Bmal1 reduced TGF-β–induced endothelium mesenchymal tran-
sition (EMT) and MMP9 production in lung epithelium [128]. Recently, Cunningham et al.
demonstrated that circadian repressor Rev-Erbα inhibited myofibroblast differentiation and
collagen secretion in cultured fibroblasts and lung tissues of pulmonary fibrosis patients
(Table 1) [99]. Mice with emphysema had lower expression of Rev-Erbα genes and proteins
in the lung tissues [102]. Rev-Erb−/− mice displayed increased pulmonary myofibroblast
activating markers such as collagen-1 and α-SMA [99]. Sundar et al. demonstrated that
Rev-Erbα knockout mice had an increased neutrophils influx in the lungs and proinflam-
matory cytokines (IL-6, MCP-1, keratinocyte chemoattractant (KC)) release after exposure
to cigarette smoke or LPS [100]. Smokers and COPD patients showed lower Rev-Erbα
mRNA and protein expression compared to nonsmokers in PBMCs, sputum, and lung
tissues [101]. The Rev-Erb agonist (GSK 4112) suppressed TGF-β–induced fibroblast differ-
entiation by inhibiting activation of mesenchymal markers in human fetal lung fibroblast 1
cells [115] and attenuated both LPS and cigarette smoking-induced inflammatory responses
and pulmonary fibrosis [114,127] in human small airway epithelial cells and mouse lung
fibroblasts [100].

4.3. Rev-Erb in Liver Fibrosis

Liver fibrosis results from a chronic liver injury, e.g., alcohol or overnutrition, which
may lead to liver cirrhosis and hepatocellular carcinoma (HCC). The fibrous tissues disrupt
the normal architecture and functions of the liver and increase portal vein pressure [129].
Apoptotic hepatocytes activate quiescent hepatic stellate cells (HSCs) to transdifferentiate
into myofibroblasts via TGF-β [130,131]. The activated HSCs induce ECM deposition in
liver tissues via tissue TIMPs, which upregulate TNFα and IL-1β expression [132]. During
liver injury, expression of inflammatory cytokines such as TNF-α, TGF-β, and platelet-
derived growth factor (PDGF) increase, which exacerbate the progression of liver fibrosis
by activation of the Ras-MAPK, PI3K-AKT/PKB, and PKC pathways [133].

The liver is the main organ for the control of lipid homeostasis, which is disrupted in
clock mutant mice [134,135]. In mice liver, app. 17% of lipids display robust circadian rhyth-
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micity [136], with similar results obtained in a human lipidomic study [137]. In the liver,
Rev-Erbα regulates multiple genes involved in metabolic pathways [54]. Rev-Erbα knock-
out mice exhibit increased plasma VLDL concentrations and APOC-III expression [103].
Hepatic triglyceride levels were increased in the liver-specific knockout of Rev-Erbα/β mice
fed with HFD [105]. These mice had an enhanced rhythmic expression of sterol regulatory
element binding transcription factor 1 (Srebf1), which regulates de novo lipogenesis by its
target genes [105]. Similar results on Srebf1, cholesterol, and bile acid metabolism were
reported in whole-body Rev-Erbα knockout mice [138]. Rev-Erbα null mice had hepatic
steatosis and reduced bile acid synthesis, which were aggravated by the additional knock-
down of Rev-Erbβ [55,104]. The disrupted circadian behavior was more distinct in the
Rev-Erbα/β double-knockout model, suggesting additive functions of Rev-Erbα and Rev-
Erbβ [109]. Rev-Erbα expression is upregulated in activated HSCs, and an increased hepatic
mRNA and protein expression were found in CCL4-treated mice [120,139]. Primary hepa-
tocytes from Rev-Erbα−/− mice had markedly increased lipid accumulation and Cyp4a10
and Cyp4a14 expression [106]. Cyp4a10 and Cyp4a14 are highly expressed in the liver con-
verting arachidonic acid to 20-hydroxyeicosatetraenoic acid, which induce inflammation
via ROS generation [140]. Cyp4a14 deficient mice had reduced lipid accumulation, hepatic
inflammation, and fibrosis in methionine and choline-deficient diet-induced nonalcoholic
steatohepatitis (NASH) [113], indicating that Rev-Erbα acts as a transcriptional repressor of
Cyp4a10 and Cyp4a14.

In addition to genetically modified animals, synthetic Rev-Erb ligands influenced
lipid metabolism. The Rev-Erb agonist (SR9009) displayed beneficial effects such as weight
loss and reduced plasma triglycerides and cholesterol [63]. The Rev-Erb agonist (SR9009)
inhibited cholesterol biosynthesis by suppressing liver Hmgcr and Srebf2 [116]. In vitro
and in vivo studies demonstrated that Rev-Erbα agonist reduced fibrosis in rat HSCs
and CCL4-induced liver fibrosis [120,121]. The Rev-Erb agonist (SR9009) inhibited HSCs
proliferation by inhibition of the AKT/mTOR/P70S6K pathway [117]. Furthermore, Rev-
Erb agonist (SR9009) prevented alcohol-induced liver injury in mice by downregulating
Cyp4a1 expression [106]. Rev-Erb agonist (SR9009) reduced hepatic inflammation (IL-1α,
IL-1β, Ifnγ, and TNFα) and fibrosis [118] via decreased expression of profibrotic genes
(TGFβ, STAT1 Col3A1, Acta2, MMP13 and TIMP1 in a NASH mouse model (ob/ob mice fed a
high-fat, high-fructose and high cholesterol diet)) [141]. Rev-Erb agonist (SR9009) protected
against CCL4-induced liver fibrosis in mice by upregulation of the expression of the clock
genes Bmal1, Clock, Per2, Cry1, and RORα [120]. In NAFLD patients, studies of Rev-Erbα
are sparse; however, a significant down-regulation of Rev-Erbα was reported in pediatric
patients [142], suggesting that Rev-Erb agonist could be a novel target for the prevention of
liver fibrosis.

4.4. Rev-Erb in Adipose Tissue Fibrosis

Adipocyte hypertrophy and hyperplasia are characteristic features of obesity, which
trigger inflammation and, eventually, adipose tissue fibrosis [143]. White adipose tissue
(WAT) is a complex organ that includes a number of cell types in addition to adipocytes,
such as preadipocytes, endothelial cells, fibroblasts, and immune cells (macrophages,
mast cells, B and T cells) [144]. An increase in adipocyte size during obesity results in
hypoxia due to inadequate blood supply and increased oxygen consumption [145,146].
Hypoxia increases the expression of genes such as vascular endothelial growth factor
(VEGF) and MMP2 and MMP9 in AT affecting vascularization, ECM remodeling, and
fibrosis [147]. Enlarged adipocytes are more dysfunctional and produce a higher amount of
fatty acid, TNFα, IL-6, IL-8, and MCP-1 and display reduced mitochondrial size [148,149].
Inflammation in AT leads to obesity-associated fibrosis, and macrophages play a major role
in WAT fibrosis by Toll-Like Receptor 4 (TLR4) activation [5,150]. TLR4 activation stimulates
TGFβ-1 and ECM production as well as fibroblast differentiation by macrophage-inducible
C-type lectin [150,151]. The enlarged adipocytes trigger the recruitment of immune cells
driving AT inflammation and fibrosis [152–154].
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Several studies demonstrated that functional peripheral clocks are present in various
adipose depots of animals and humans [155,156]. Disruption of the circadian rhythm by
constant light exposure increased body weight gain, despite similar caloric intakes and
total activity in mice [157]. Visceral AT in diet-induced or genetically obese mice had a
dampened circadian rhythm with metabolic dysfunctions [158,159]. In addition, obese and
diabetic mice (db/db) displayed disrupted rhythm and higher expressions of collagen I, III,
and VI in AT compared to control mice [160]. Collagen VI (Col6) is a major ECM protein
in adipose tissue of humans and mice and accumulates at higher rates under obese and
diabetic conditions [161–163]. Col6α3 elevates systemic inflammations and causes insulin
resistance and fibrosis in adipose tissue by inducing TGFβ-1 expression [162,164]. Clock
knockout mice displayed visceral adiposity with AT hypertrophy [135,165]. AT-specific
deletion of Bmal1 or Cry in mice resulted in higher adiposity, hypertrophic adipocytes, and
crown-like structures under HFD [166].

Rev-Erbα expression was upregulated during adipogenesis in 3T3L1 cells and the
synthetic Rev-Erb agonist induced adipocyte differentiation [122]. Rev-Erbα knockout mice
displayed adiposity and hypertrophied adipocytes, which was aggravated by HFD feed-
ing [107,108]. These mice did not show hyperglycemia due to increased uptake of fatty acid
in the muscle by increased lipoprotein lipase (Lpl) gene expression in adipose tissue and
muscles [108]. Rev-Erbα downregulated the triglyceride synthesis enzymes Lpl and fibrob-
last growth factor-21 (FGF21) [108,167]. In Rev-Erb−/− mice, increased plasma adiponectin
and its expression in WAT were found [107]. These results suggest that Rev-Erbs improve
insulin sensitivity. Mice with adipocyte-specific knockout of Rev-Erbα developed obesity
only under a high-fat diet, indicating that Rev-Erbα regulates WAT metabolism in a state-
dependent manner [168]. These results suggest that Rev-Erbα does not enforce rhythmic
repression of metabolic circuits under basal conditions but rather affects tissue responses to
the altered metabolic states. Rev-Erbα expression was decreased in both omental adipocytes
and adipocytes of obese subjects due to reduced Bmal1 binding [159]. Rev-Erbα expression
was increased in subcutaneous fat after weight loss in overweight subjects [169]. The
Rev-Erb agonist (SR9011) reduced fat mass and lipogenic gene expression in mice liver [58].
In addition, Solt et al. confirmed that the Rev-Erb agonist (SR9009) reduced adiposity and
inflammation in diet-induced obese mice [58].

These studies demonstrate that Rev-Erbα alleviates metabolic alterations in adipose
tissue by reducing inflammation.

4.5. Rev-Erb in Skeletal Muscle Fibrosis

Skeletal muscle (SM) accounts for 30–40% of total body mass and regulates whole-body
metabolism and energy homeostasis. ECM contains myofibers, nerves, and blood vessels
in SM and constitutes up to 10% of the SM weight [170,171]. The major roles of ECM in
SM include force transmission, repair, and maintenance of muscle fibers after injury [172].
SM has a high regeneration ability, and SM clocks affect proteostasis, lipid metabolism,
and muscle functions [173]. Hodge et al. [174] reported that of 1628 circadian genes in
SM, 62% had metabolic roles, mainly in carbohydrate metabolism. Clock disruptions
in SM aggravated metabolic dysfunction and muscle atrophy [175,176]. Muscle-specific
Bmal1 knockout mice showed impaired glucose uptake and reduced glucose oxidation
in SM without change in glucose tolerance [177], suggesting that reduced muscle insulin
sensitivity was most likely compensated by other insulin-sensitive tissues [178].

Rev-Erb is highly expressed in SM with similar oscillations as in the liver and AT [56,179].
Rev-Erbα regulates muscle mass and muscle fiber type distribution and is selectively ex-
pressed in glycolytic type IIB and intermediate type IIA muscle fibers [180]. Rev-Erbα−/−

mice displayed substantially reduced muscle mass with increased expression of atrophy-
related genes (atrogenes) [110]. In addition, Rev-Erbα/β double-knockout mice exhibited
altered circadian wheel-running behavior [109]. Rev-Erb−/− mice showed reduced run-
ning capacity due to reduced mitochondrial biogenesis and functions by deactivating
the serine/threonine kinase 11 (STK11)-AMPK-SIRT-1-PGC-1α signaling pathway [59].
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The regenerative capacity of muscle was reduced in Rev-Erb−/− mice; however, partial
loss of Rev-Erbα increased regenerative capacity in response to injury [111]. Rev-Erbα
overexpression increased exercise capacity, mitochondrial content, and activity in C2C12
myocytes via AMPK [59] and reduced dexamethasone-induced atrophy-related genes in
myoblast cells and loss of muscle mass in mice [110]. Rev-Erbβ overexpression affected lipid
metabolism and energy expenditure in SM by downregulating Cd36, Fabp-3, and -4 mRNA
and upregulating IL-6 expression in mouse myogenic C2C12 cells [181]. Rev-Erbα overex-
pression alleviated autophagy and reduced oxidative stress in skeletal muscles by directly
inhibiting genes such as Ulk1 and perkin (Park2) involved in mitochondrial clearance and
mitophagy [59,182]. Welch Billion et al. [123] reported that the Rev-Erb (antagonist SR8278)
improved mitochondrial biogenesis and muscle functions, and fibrosis in dystrophic mice
by activating Wnt signaling. The group suggested differences in mitochondrial biogenesis
in fully differentiated versus proliferating muscles using a dystrophic mouse model [123].

4.6. Rev-Erb in Kidney Fibrosis

Fibrosis is present in chronic kidney disease (CKD) and is characterized by excessive
deposition of ECM in the tubular interstitium and glomeruli. CKD is one of the most
prominent causes of death and suffering globally [183,184], affecting about 850 million
individuals worldwide [185]. Type 2 diabetes and ischemic/hypertensive nephropathy
are the two most common causes of CKD in developed nations. Factors that contribute to
CKD development include, e.g. xenobiotics, toxins, infections, mechanical obstruction, and
autoimmune diseases [186]. The renal medulla is especially prone to hypoxia with increased
expression of fibrillar Col I and Col III but also contains Col IV, V, heparan, fibronectin,
and laminin [187,188]. The cellular mechanism of renal fibrosis is not yet clear, and there is
no specific therapy to halt its progression. In addition, the origin of myofibroblasts in the
kidney is controversial and considered to arise from different cell types such as fibroblasts,
endothelium, epithelium, and podocytes [189,190].

The kidney is under the control of an intrinsic clock, affecting blood flow, glomeru-
lar filtration rate (GFR), water, and electrolyte transport [191–193]. Partial nephrectomy
(5/6Nx) caused glomerulosclerosis, interstitial fibrosis and induced Bmal1, Clock, and
Rev-Erbα expression [194]. Rev-Erbα and Rev-Erbβ were downregulated, and CCGs re-
lated to vascular integrity, endothelial function, inflammation, and thrombogenesis were
severely deregulated in calcified aortas of rats in CKD [195]. Cisplatin-induced increases
in blood urea nitrogen (BUN), serum creatinine, kidney injury molecule (KIM-1), and
neutrophil gelatinase-associated lipocalin (NGAL1) were reduced in Bmal1 knockout
mice [196]. Kidney fibrosis induced by ureteral obstruction was ameliorated in Bmal1
deficient mice [197,198]. Clock-deficient mice showed severe kidney fibrosis via activation
of cyclooxygenase 2 in the unilateral ureteral obstruction model of kidney injury [199]. In
Clock mutant mice, adenine-induced CKD was exacerbated by increased MMPs and 2,8-
dehydroxyadenine, and fibrosis markers deposition [200]. In contrast, clock mutant mice
(Clk/Clk deletion of exon 19 in the Clock locus) ameliorated kidney injury by increased GFR
and reduced creatinine, BUN, and fibrosis markers in partially nephrectomized (5/6Nx)
mice [201]. The different results on the influence of clocks on kidney functions could be
due to various methodologies of acute kidney injury (AKI) and CKD.

Rev-Erbα−/− and Rev-Erbβ−/− mice showed a decreased sensitivity to folic acid-
induced AKI and diminished disease severity [112]. The authors reported that Rev-Erbα/β
inhibition reduced folic-acid-induced inflammatory cytokine (TNFα, IL-1β) secretion, renal
injury (KIM-1 and NGAL), and profibrotic (TGF-β, αMSA) gene expression [112]. Rev-Erbα
expression was increased in the renal cortex and medulla of spontaneously hypertensive
rats (SHRs) and stroke-prone SHR rats (SHRSP), compared to normal Wistar rats [202].
Dexamethasone administration to tubular epithelial cells of mice increased Rev-Erbα, Frag-
ile X mental retardation autosomal homolog 1 (Fxr1), and phosphoribosyl pyrophosphate
amidotransferase (Ppat) expression [202,203]. Fxr1 and Ppat are involved in the formation
of circadian rhythm in kidney tubules [202]. Rev-Erb antagonist (SR8278) reduced kidney
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damage in wild-type mice by increasing gene and protein expressions of solute carrier fam-
ily 7 member 11 (Slc7a11) and heme oxygenase (HO1), which were elevated in Rev-Erbβ−/−

mice [112]. These studies demonstrate the significantly emerging role of Rev-Erb in the
kidney, but it is not yet well understood and needs further investigations.

5. Summary and Conclusions

Circadian rhythms are self-controlled oscillations in all organs regulating body func-
tions by directly driving the cyclic expression of nuclear receptors (NRs) and their lig-
ands. As members of this superfamily, the circadian repressor Rev-Erbs regulate energy
metabolism, inflammation, and fibrosis. Rev-Erb activation is therapeutically beneficial
for alleviating tissue fibrosis in various organs such as the liver, heart, and lungs. The
role of Rev-Erb in adipose tissue fibrosis is not fully understood and needs further investi-
gation. Preclinical studies demonstrated the anti-inflammatory and antifibrotic effects of
Rev-Erbα; however, limited results on inflammation and tissue fibrosis in clinical settings
have been reported.

Rev-Erbs are promising therapeutic targets for the treatment of cardiometabolic dis-
eases and tissue fibrosis, but this is challenging for drug development due to offsite targets.
Several Rev-Erb agonists and antagonists were developed, but currently, there is no specific
agonist or antagonist for Rev-Erbα, which is the major player in circadian rhythm regula-
tions compared to Rev-Erbβ. More mechanistic and clinical studies would be necessary to
further investigate the roles of Rev-Erbs in fibrotic conditions. Target-specific compounds
selective to Rev-Erbα are needed for optimal benefits. Rev-Erb synthetic ligands have
poor pharmacokinetic parameters, which hinder the development of these agents. Hu-
man studies are required to determine whether modulation of Rev-Erbα/β by synthetic
ligands in different organs is beneficial in terms of alleviation of cardiometabolic diseases,
inflammation, and tissue fibrosis.
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