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Abstract 

Background:  The prognosis for metastatic and recurrent tumors of the central nervous system (CNS) remains dismal, 
and the need for newer therapeutic targets and modalities is critical. The cell surface glycoprotein B7H3 is expressed 
on a range of solid tumors with a restricted expression on normal tissues. We hypothesized that compartmental 
radioimmunotherapy (cRIT) with the anti-B7H3 murine monoclonal antibody omburtamab injected intraventricularly 
could safely target CNS malignancies.

Patients and methods:  We conducted a phase I trial of intraventricular 131I-omburtamab using a standard 
3 + 3 design. Eligibility criteria included adequate cerebrospinal fluid (CSF) flow, no major organ toxicity, and for 
patients > dose level 6, availability of autologous stem cells. Patients initially received 74 MBq radioiodinated ombur‑
tamab to evaluate dosimetry and biodistribution followed by therapeutic 131I-omburtamab dose-escalated from 370 
to 2960 MBq. Patients were monitored clinically and biochemically for toxicity graded using CTCAEv 3.0. Dosimetry 
was evaluated using serial CSF and blood sampling, and serial PET or gamma-camera scans. Patients could receive a 
second cycle in the absence of grade 3/4 non-hematologic toxicity or progressive disease.

Results:  Thirty-eight patients received 100 radioiodinated omburtamab injections. Diagnoses included metastatic 
neuroblastoma (n = 16) and other B7H3-expressing solid tumors (n = 22). Thirty-five patients received at least 1 
cycle of treatment with both dosimetry and therapy doses. Acute toxicities included < grade 4 self-limited headache, 
vomiting or fever, and biochemical abnormalities. Grade 3/4 thrombocytopenia was the most common hematologic 
toxicity. Recommended phase 2 dose was 1850 MBq/injection. The median radiation dose to the CSF and blood 
by sampling was 1.01 and 0.04 mGy/MBq, respectively, showing a consistently high therapeutic advantage for CSF. 
Major organ exposure was well below maximum tolerated levels. In patients developing antidrug antibodies, blood 
clearance, and therefore therapeutic index, was significantly increased. In patients receiving cRIT for neuroblastoma, 
survival was markedly increased (median PFS 7.5 years) compared to historical data.
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Background
Metastatic cancers prefer sanctuary sites such as 
the central nervous system (CNS), and the progno-
sis remains dire despite aggressive therapies [1, 2]. 
Compartmental radioimmunotherapy (cRIT) admin-
istering radiolabeled tumor-specific monoclonal 
antibodies (mAbs) could significantly improve the ther-
apeutic index against low tumor burden in the leptome-
ninges while minimizing systemic radiation exposure 
[1–8]. We have previously reported on the feasibility 
of cRIT using 131I-labeled mAbs for CNS metastases 
in non-human primates [9] and in patients [10]. Unlike 
the relatively large blood volume (80–100 ml/kg; 5 L in 
adults), CSF volume is only 130–150 ml, allowing high 
drug concentrations even with small mAb doses [11]. 
Importantly, CSF flow is unidirectional with no recir-
culation, substantially reducing bystander toxicity to 
brain, spinal cord and spinal bone marrow (BM) [12]. 
Ironically, while unable to penetrate the CSF because of 
the blood–brain barrier, neutralizing human antibod-
ies to mouse mAb accelerates blood clearance, reducing 
systemic exposure to vital organs [9].

Omburtamab (a murine IgG1 mAb previously named 
8H9) has a high affinity for B7H3 (CD276), a tumor-
associated surface immunomodulatory glycoprotein 
[13]. When radiolabeled with 124I, it becomes a thera-
nostic agent, emitting positrons (e+) which permit high-
resolution PET for accurate tumor imaging and precise 
determination of radiation dosimetry, while delivering 
β particle therapy either through the CSF, or through 
convection-enhanced delivery into the pons [14]. Unlike 
124I-omburtamab, 131I-omburtamab (γ emitting) can 
only provide gamma or single-photon emission com-
puted tomography (SPECT) images, although its β radi-
ation is equally effective [15]. Both 124I-omburtamab 
and 131I-omburtamab are currently being investigated 
in cRIT for intraperitoneal metastases (clinicaltrials.
gov NCT01099644) [16] and for pontine tumors (clini-
caltrials.gov NCT01502917) [17]. To test the safety of 
131I-omburtamab administered into the CSF compart-
ment, a phase I dose escalation study was completed 
in patients with proven or suspected leptomeningeal 
metastases. Pharmacokinetics (PK) of radiolabeled 8H9 
in serial CSF and blood samples was determined. The 
impact of human anti-mouse antibody (HAMA) on PK 
was also measured.

Methods
Study design and participants
An investigator-initiated, single-arm, single-center, phase 
I trial with a standard 3 + 3 dose escalation and expansion 
cohort design (NCT00089245) [18], the primary objec-
tive of which was to study the toxicity and to establish 
the recommended phase II dose for 131I-omburtamab, 
was performed. Secondary objectives included determin-
ing the biodistribution and dosimetry of intraventricular 
131I-omburtamab. Study patients or legal guardians pro-
vided written informed consent.

Patients of any age with a high risk or recurrent pri-
mary or metastatic CNS malignancy known to express 
B7H3 (i.e., neuroblastoma (NB), retinoblastoma, medul-
loblastoma, rhabdomyosarcoma) [19] were offered 
participation. For tumors known to express B7H3, immu-
nohistochemical assessment was not mandated; for 
other tumors, B7H3 expression on the cell surface was 
analyzed on frozen tumors using previously described 
methods [19]. For the latter, > 1 + results on immunohis-
tochemistry were acceptable for enrollment. Additional 
eligibility criteria included stable neurologic status, no 
obstructive or symptomatic communicating hydro-
cephalus, absolute neutrophil count > 1000/µL, plate-
let count > 50,000/µL, serum bilirubin < 3.0  mg/dL, and 
serum creatinine < 2 mg/dL. Focal or craniospinal irradia-
tion (CSI) or chemotherapy > 3 weeks before enrollment 
and ongoing corticosteroid therapy were allowed. An 
indwelling intraventricular access device (e.g., Ommaya 
catheter) was placed, and position, patency and cerebro-
spinal fluid (CSF) flow were evaluated by intraventricular 
111In-diethylene triamine pentaacetic acid scan. Measur-
able or evaluable disease at study entry was not required. 
For patients who enrolled at > dose level 6, banked autol-
ogous hematopoietic stem cells of any quantity available 
for reinfusion if necessary were required.

Treatment and toxicity assessment
After thyroid blockade with saturated potassium iodide 
oral solution and liothyronine for > 5  days patients 
received a dose of 74 MBq (2 mCi) 124I-omburtamab or 
131I-omburtamab for dosimetry and biodistribution stud-
ies. This was followed about 7  days later by the thera-
peutic dose of 131I-omburtamab escalated in cohorts of 
3 patients each. Doses were adjusted downward by 50% 
for patients ≤ 12  months old and by 33% for patients of 

Conclusions:  cRIT with 131I-omburtamab is safe, has favorable dosimetry and may have a therapeutic benefit as 
adjuvant therapy for B7-H3-expressing leptomeningeal metastases.

Trial registration: clinicaltrials.gov NCT00089245, August 5, 2004.

Keywords:  CNS tumors, CNS metastases, Radioimmunotherapy, B7H3, Omburtamab
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13 to 36  months old [20]. Premedications before each 
dose of omburtamab included dexamethasone, aceta-
minophen and diphenhydramine, administered rou-
tinely in anticipation of a possibly allergic reaction to 
the murine mAb (Additional file 3: Table S1). A specific 
activity or radioiodinated omburtamab was ~ 185  MBq/
mg for the 2–50 mCi dose range and ~ 1850 MBq/mg for 
doses ≥ 50 mCi. Typically, a volume of 2–3 ml of drug was 
administered per injection, with close to an equal volume 
of CSF withdrawn. Outpatient and in-patient settings 
were both permitted for cRIT and MSK radiation safety 
precautions were strictly implemented including the use 
of distance and personal protective equipment, patient 
and caregiver education and dose rate monitoring using 
portable radiation detectors. The dose to family caregiv-
ers was maintained at < 500 millirem in accordance with 
applicable regulations. Thyroid blockers were continued 
for 2 weeks after the last mAb injection. HAMA in blood 
was tested using an enzyme-linked immunosorbent 
assay previously described before and generally 5 weeks 
after injection [21]. Patients were evaluated clinically 
on the day of each injection, days 1 and 2 post-injec-
tion, ~ 2  weeks and ~ 3  weeks post-injection. CBC and 
complete blood chemistry were tested on days of injec-
tion, during weeks 4 or 5 or earlier if clinically indicated. 
CSF was tested prior to each injection and during week 5 
for protein, cell count and cytology.

Toxicity assessment
Toxicity was assessed by clinical and biochemical evalu-
ations and graded by the Common Terminology Crite-
ria for Adverse Events version 3.0 over a 5-week period. 

Dose-limiting toxicity (DLT) observation period was 
5  weeks after the first dose of radioiodinated ombur-
tamab and was defined as non-hematologic grade 3 
or 4 toxicity attributable to cRIT with the following 
exceptions: < grade 4, headache, fever, vomiting and 
hyperglycemia. Myelosuppression, while noted, was 
not considered DLT. If DLT was encountered in ≥ 1/3 
patients at a given dose level, 3 more patients were 
accrued at that dose level. At dose levels 7 and 8, the 
cohort was increased to 6 patients enrolled at each dose 
level to better assess safety. In order to assess the cumula-
tive toxicity of 131I-omburtamab, if patients did not expe-
rience DLT or unexpected grade 3 or 4 toxicity and did 
not have progressive disease, they could receive two fur-
ther doses of radioiodinated omburtamab ≥ 4 weeks after 
the first dose: one at 74 MBq for dosimetry and the other 
at the cohort-specific therapeutic dose.

Dosimetry evaluation
Dosimetry was measured by both CSF and blood sam-
pling and by serial PET or SPECT scans. After adminis-
tration of the initial 74  MBq dose CSF and blood were 
sampled at ~ 15, 30, 60, and 120  min and at ~ 2, 18, and 
42–48  h after injection. Three PET or Gamma camera-
SPECT scans, respectively, at approximately 4, 24 and 
48 h [22] (Fig. 1). Measured CSF and blood aliquots were 
counted to estimate the time-dependent activity con-
centrations. The respective time–activity data were fit to 
exponential functions and integrated to yield the decayed 
area under the curves, representing cumulative CSF and 
blood activity [10]. Radiation dosimetry was done using 
previously described methods including delineating 

Fig. 1  124-I-omburtamab whole-body positron emission tomography (PET) scans obtained approximately 4 h, 24 h and 48 h following a single 
injection of 74 MBq intraventricular 124-I-omburtamab, demonstrating activity throughout the ventricles, the sac and over the convexities
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regions of interest (ROI) around various organs and cal-
culating 124I or 131I time–activity area under the curve 
(AUC) for each ROI [7, 22]. Radiation absorbed doses 
to the ventricles of the CNS and the thecal sac were cal-
culated using the OLINDA  radionuclide dosimetry pro-
gram, version 1.0 [22]. Radiation dosimetry calculations 
for the CSF, ventricles, spinal cord and blood were based 
on the assumption of complete local absorption of the 
beta radiation. For patients undergoing PET scans after 
IO 74  MBq 124I-omburtamab, projected absorbed doses 
to other organs for 131I-omburtamab were also estimated.

Response assessment
For patients with NB, MIBG, CTCAP and bone mar-
row examinations were also performed approximately 
1  month before and after cRIT. Responses were scored 
using International Neuroblastoma Response Crite-
ria [23]. For other diagnoses, objective radiographic 
changes in the size of measurable disease or leptome-
ningeal enhancement from initial pre-131I-omburtamab 
treatment were noted. Progressive disease was defined 
as an increase in the size of a measurable lesion or the 
development of a new lesion. The Response Assessment 
in Neuro-Oncology Brain Metastases initiative [24] had 
not been implemented at study commencement and was 
therefore not utilized for assessing response.

Statistical analysis
Radiation doses to the CSF as determined by serial 
PET/gamma camera scans were correlated with those 

determined by CSF sampling. The impact of human anti-
mouse antibody (HAMA) and dose was assessed by Stu-
dents t test comparisons. Progression-free survival (PFS) 
and overall survival (OS) were estimated using Kaplan–
Meier statistics from the day of 131I-omburtamab admin-
istration and censored on February 1, 2020.

Results
Demographics and dose escalation
Thirty-eight (13 female; 25 male) patients were enrolled 
and received at least one dose of radioiodinated ombur-
tamab. Diagnoses included neuroblastoma (n = 17), 
medulloblastoma (n = 6), ependymoma (n = 3), mela-
noma and rhabdomyosarcoma (n = 3 each), choroid 
plexus carcinoma (n = 2), and atypical rhabdoid tera-
toma, chordoma, pineoblastoma and retinoblastoma 
(n = 1 each). All patients had received at least one prior 
regimen of chemotherapy and radiotherapy before 
receiving cRIT. All patients with neuroblastoma except 
for 1 had received craniospinal irradiation prior to cRIT; 
the remaining patient had received cranial radiotherapy. 
Two patients with neuroblastoma were enrolled, received 
a dosimetry dose only and were subsequently removed, 
one each because of non-compliance and progressive 
disease, respectively. Of the remaining 36 patients, 19 
and 17 received 1 and 2 cycles, respectively (Additional 
file  1: Fig. S1; Table  1). Most patients received cRIT in 
the outpatient setting. One patient received an additional 
imaging dose of 74 MBq due to concerns about catheter 
malfunction; CSF flow study was performed again before 

Table 1  Demographics and dose escalation for the phase I study

DLT dose-limiting toxicity, NB neuroblastoma
a One patient at this dose level received age-based dose reduction per protocol
b One patient at this dose level with DLT
c One patient replaced because treatment dose was not administered due to rapid disease progression after the first imaging dose
d One patient replaced because treatment dose was not administered due to non-compliance after the first imaging dose
e Additional patients treated on compassionate basis after IRB approval
** Other diagnoses (n = 21) included medulloblastoma (n = 6), ependymoma, (n = 3), melanoma and rhabdomyosarcoma (n = 3 each), choroid plexus carcinoma 
(n = 2), and atypical rhabdoid teratoma, chordoma, pineoblastoma and retinoblastoma (n = 1 each)

131I-omburtumab 
dose (MBq)

Number 
planned in the 
absence of DLT

Number 
of patients 
enrolled

No. receiving 
at least one Rx 
dose

Number of NB Number 
of other 
diagnoses**

Median actual 
dose received 
(mCi/MBq)

Number of 
patients treated 
with 2 cycles

370 3 5c,d 3 1 2 10/370 1

740 3 3 3 1 2 20.6/762.2 3

1110 3 61 6b 5 1 30.3/1121.1 4

1480 3 3 3 1 2 40/1480 2

1850 3 6c,e 6 3 3 49.6/1835.2 3

2220 3 4e 4 3 1 58.1/2149.7 1

2590 6 6a 6 1 5 69.9/2586.3 2

2960 6 5 5 0 5 79.4/2937.8 1

Total 30 38 36 15 21 17
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proceeding to a full therapeutic cycle. The median age at 
first cRIT injection was 6.6 (range 1.2–53.5  years). The 
starting therapeutic dose was 370 MBq (10 mCi), which 
was chosen based on our previous experience where 
370 MBq was the maximal tolerated dose when IO radi-
oiodinated anti-GD2 mAb 3F8 was used [10]. Diagnoses, 
dose at trial entry, number of injections and number of 
patients treated at each dose level are summarized in 
Table  1. 37% (11/30 tested) had positive HAMA titers 
prior to cRIT and 39% (14/36) had previously received 
murine mAbs. Two patients (1 each at dose level 1110 
and 2590  MBq, respectively) had an age-appropriate 
dose reduction of 131I-omburtamab by 33%. One patient 
at dose level 1850 MBq was replaced because she experi-
enced rapidly progressive melanoma precluding monitor-
ing for the full DLT period. Only 5 patients were treated 
at 2960 MBq because there were no DLTs encountered, 
and because the RP2D was declared at that point.

Adverse events
Overall cRIT was well tolerated with the common-
est adverse event being myelosuppression most com-
monly seen in patients who had been treated with prior 
craniospinal radiation therapy. Grade 4 thrombocyto-
penia (n = 7) was first observed at a median of 26 (range 
23–42) days post-131I-omburtamab, whereas the cor-
responding time for grade 4 neutropenia (n = 4) was 39 
(range 28–50) days. Adverse events during the observa-
tion period related to cRIT are summarized in Table  2. 
Only one DLT was encountered: transient grade 3 AST/
ALT elevation in 1/6 patients at dose level 3; this patient 
was not known to have preexisting hepatic insufficiency; 
nevertheless, hepatic transaminitis was self-limited 
and normalized without intervention. Non-myelosup-
pressive MTD was not reached. Prolonged thrombo-
cytopenia was encountered in a majority of patients 
receiving > 1850 MBq. Although this did not constitute a 
DLT, 4/6 (67%) patients receiving 131I-omburtamab post-
CSI had grade 4 thrombocytopenia and had not attained 
platelet transfusion independence before the second dose 
would have been due. In contrast, none of the 3 patients 
who received 1850  MBq 131I-omburtamab after CSI 
developed prolonged thrombocytopenia. Since we envis-
aged combining cRIT with CSI for future therapy, espe-
cially for patients with CNS NB, 1850 MBq was declared 
as the RP2D.

Although the toxicity scoring period was defined as 
the first 5  weeks after the first cRIT dose, patients who 
received a second cycle of cRIT were also observed for 
an additional 35  days (or until PD, or until they were 
removed to receive other therapies). Again, treatment 
was well tolerated; salient toxicities are summarized in 
Table  3. One patient at dose level 2590  MBq developed 

grade 3 chemical meningitis manifesting as headache, 
fever, vomiting and sterile CSF pleocytosis after the sec-
ond imaging dose. Therapy with supportive care and 
systemic steroids resulted in the complete resolution 
of meningitis within 3  days. The therapeutic dose was 
not administered to this patient. Two adult patients at 
dose level 8 (2960 MBq) were admitted for grade 3 nau-
sea, dehydration and transient grade 2 hypertension, 
respectively. Three patients underwent elective stem cell 
reinfusion: two to facilitate the continuation of chemo-
therapy for systemic disease and one because of pro-
longed thrombocytopenia. Reasons for not receiving 2 
cycles included progressive disease (n = 12), prolonged 
myelosuppression (n = 4), non-myelosuppressive toxicity 
(n = 2), and patient preference (n = 1). HAMA developed 
in 8/19 (42%) patients who were seronegative at entry.

Radioimaging and dosimetry
In general, prominent activity was seen in the ventricles 
and the thecal space 2–4  h post-injection, with clear-
ance from the ventricles and thecal space 24–48 h post-
injection (Fig.  1). All patients had prominent activity in 
the ventricles showing the adequate distribution of tracer 
throughout the thecal sac, clearing by 24–48 h after injec-
tion. Low activity was observed on scans in the liver, kid-
ney and/or bladder in some patients at 24–48 h (Fig. 1). 
Median ± SD radiation dose to the CSF and blood by 
sampling (n = 33) was 1.01 ± 1.08 and 0.04 ± 0.08  mGy/
MBq, respectively, showing a consistently high therapeu-
tic advantage for CSF versus blood. Median and mean 
CSF/blood radiation dose ratios were 24.2 and 77.1. By 
nuclear imaging (n = 23 patients), ventricular and CSF 
radiation doses were 1.16 ± 0.54 and 1.04 ± 0.95  mGy/
MBq, respectively. There was a moderate correlation 
between CSF radiation dose estimated by tissue sampling 
versus by nuclear imaging (r = 0.54). Interpatient vari-
ability estimated by CSF tissue sampling was higher for 
123I-omburtamab versus 131I-omburtamab (SEM of 0.03 
vs 1 mGy/MBq), while the interpatient variability based 
on nuclear imaging was comparable for 124I-ombur-
tamab PET versus 131I-omburtamab SPECT (SEM 0.03 
vs 0.06). There was wide interpatient variability for CSF/
blood radiation dose ratios, but no obvious relationship 
to the administered dose. However, there appeared to 
be a trend for higher calculated CSF absorbed dose for 
administered activity ≥ 2220  MBq (median 1.37  mGy/
MBq) versus those < 2220 MBq (median 0.89 mGy/MBq). 
Mean cumulative absorbed CSF and blood dose for all 
administrations (n = 34 patients) was 24.8  Gy (range 
314–7152  cGy) and 100  cGy (15–236.9), respectively, 
where the differences were accounted for by the number 
of doses given (Table 4). Absorbed dose for major organs 
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(n = 16) was well below the maximum tolerated radiation 
dose levels (Additional file 3: Table S2).

Patients with prior exposure to murine mAbs, as in the 
case of several patients treated with anti-GD2 antibodies 
for systemic neuroblastoma, often had detectable HAMA 
levels at the time of omburtamab treatment. The pres-
ence of HAMA and exposure to prior murine mAbs prior 
to study entry had a significant impact on omburtamab 
kinetics. Median CSF/blood ratio calculated after the first 
(tracer) and second (therapeutic) dose of radioiodinated 
omburtamab was significantly higher (P < 0.05) both for 
patients with preexisting HAMA vs those with nega-
tive HAMA and for those who had previously received 
murine mAbs (Table 5).

Response and Survival
Response assessment was not a primary endpoint of this 
phase I study, indeed only 17 patients had evaluable or 
measurable disease prior to cRIT, only 2 of whom had 
not received prior radiotherapy. Of the latter, 1 patient 
had mild radiological improvement, and the other had 
stable findings on follow-up MRI (Additional file  3: 
Table  S3). Three patients (none with NB) had malig-
nant cells on CSF cytology immediately prior to therapy. 
These persisted after cRIT. In patients with NB (n = 15) 
receiving cRIT as part of a multimodality salvage ther-
apy, a significant improvement in overall survival and 
progression-free survival was noted when compared to 
historical data (Additional file 3: Table S4). Seven 7 (47%) 

survive without progressive disease 13–17  years from 
cRIT. Of the remaining 8, only 2 experienced a further 
CNS relapse and the remaining 6 were dying of systemic 
relapse or chemotherapy-related toxicity. For patients 
with NB, median PFS, CNS PFS and OS were 7.5, 14.1 
and 11.1  years, respectively (Additional file  2: Fig.  S2). 
Because long-term survivors of CNS neuroblastoma 
relapse were observed at each dose level, it did not appear 
that outcome was related to the dose level or the number 
of doses administered (P > 0.1 for each); however, patients 
with isolated CNS relapse had a significantly better out-
come than those with CNS and systemic relapse (P < 0.05) 
(Additional file  3: Table  S4). This implies that even 
370  MBq 131I-omburtamab may be sufficient in some 
patients to eradicate micrometastases. For patients with 
diagnoses other than NB, RIT was not associated with 
as favorable an impact with median PFS, CNS PFS and 
OS of 0.2, 1 and 1 year, respectively. However, 6 patients 
with relapsed non-NB diagnoses survived > 5 years after 
RIT including 2 with ependymoma and 1 each with 
medulloblastoma, chordoma, choroid plexus carcinoma 
and ETMR. The latter 3 continue to survive disease-free 
7.4 + , 9.3 + and 11.7 years after RIT including 2 who had 
not received radiotherapy to the neuraxis.

Discussion
The B7 family of checkpoint regulators has energized 
cancer immunotherapy; however, the immunoregula-
tory role of B7H3 specifically remains elusive, and it has 
not been as successfully targeted by immunotherapies as 
other related molecules. In previous preclinical and clini-
cal studies, we have shown that B7H3 is a tumor antigen 
that can be targeted for radioimmunotherapy using radi-
oiodinated omburtamab, a murine anti-B7H3 antibody 
[7, 16, 17, 25]. We have also shown that B7H3 is abun-
dantly and homogenously expressed in a wide range of 
embryonal tumors with limited expression on normal tis-
sues, making it an attractive tumor target [19]. We now 
show that anti-B7H3 monoclonal antibody omburtamab 
can be safely used for cRIT even in patients who had pre-
viously received high doses of chemotherapy and radio-
therapy to extensive fields, as is the case for patients with 
relapsed CNS neuroblastoma or medulloblastoma post 
craniospinal irradiation [13]. Related adverse events were 
modest, and therapy could easily be done outpatient. We 
did encounter the expected myelosuppression with the 
use of a radioiodinated antibody, but significant throm-
bocytopenia was noted predominantly in those patients 
previously treated with CSI which significantly affects 
bone marrow reserve. The recommended phase II dose 
of 1850 MBq was chosen in view of the myelosuppression 
noted at higher doses in patients previously treated with 
chemotherapy and CSI, since we anticipated that they 

Table 4  Absorbed radiation doses and CSF/blood ratios

CSF cerebrospinal fluid

*t test comparing patients with absorbed dose of < 2220 rads vs > 2220 rads

Ratios T test

Dose 1 Sampling (n = 33)

CSF (mGy/mCi) 1.01 (0.46–4.6)

Blood (mGy/mCi) 0.04 (0.01–0.24)

CSF/blood ratio 24 (3–767)

Dose 1 Scans (n = 23)

Brain(mGy/mCi) 1.16 (0.2–3.75)

CSF (mGy/mCi) 1.04 (0.25–2.84)

Dose 2 Sampling

 < 2220 MBq (n = 20) CSF 0.89 (0.34–2.18) 0.09*

 > 2220 MBq (n = 13) 1.37 (0.76–3.98)

 < 2220 MBq (n = 20) CSF/blood 
ratio

38.2 (4.8–59.3) 0.02*

 > 2220 MBq (n = 13) 50.7 (14.9–314.2)

Absorbed radiation dose (rads)

Cumulative dose for all administrations

CSF 1672 (336.2–8966)

Blood 82 (15–236.9)
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would constitute most of the subjects in phase II ombur-
tamab trials.

The CSF space is uniquely suited to compartmental 
radioimmunotherapy for leptomeningeal malignancies. It 
is not amenable to intravenous antibody therapy because 
of the blood–brain barrier; conversely, the transfer of 
antibodies between the CSF and the meninges is rela-
tively free [26]. The compartmental approach successfully 
avoids early clearance of the drug in the hepatic circula-
tion, anticipated with intravenous drug administration 
of a murine monoclonal antibody. Moreover, since CSF 
does not recirculate, has few circulating cells, and has 
low protein levels, it is amenable to the modeling of anti-
body circulation and distribution. A two-compartment 
pharmacokinetic modeling method fitted to the radio-
activity measurements in the CSF derived from serial 
sampling from 61 patients receiving 131I-omburtamab 
on this phase I and extension phase II studies supported 
the fractionation of 131I-omburtamab cRIT into two 
doses to optimize therapeutic index [27]. In this phase I 
study, we were able to administer two therapeutic doses 
of cRIT safely in the majority of patients able to receive 
such therapy without PD after the first dose. The CSF-
to-blood ratio was high suggesting a high therapeutic 
index. Interestingly, this ratio was further increased in 
patients who had a preexisting HAMA titer, having pre-
viously received murine antibodies for NB therapy [28]. 
This increase in therapeutic index indicates that HAMA 
accelerates the clearance of antibody from the blood but 
not from the CSF. The emergence of HAMA can nega-
tively impact the PK of intravenously injected antibodies 
by accelerating systemic clearance and diminishing tar-
geting to tumor. However, the presence of HAMA can 
be an advantage when body compartments such as the 

CSF and peritoneum are targeted. Indeed, HAMA sero-
positivity could enhance off-target systemic clearance 
without impacting ventricular and thecal sac exposure as 
has been observed in preclinical studies in non-human 
primates [9]. This observation confirmed what had been 
noted in preclinical studies, namely that HAMA seropos-
itivity could enhance off-target systemic clearance with-
out impacting ventricular and thecal sac exposure [9].

124I-omburtamab allows the use of precise PET imag-
ing to accurately determine radiation exposure of nor-
mal organs to cRIT. We have used this approach to 
demonstrate minimal exposure to normal organs when 
124I-omburtamab is injected into the CSF [22] or into the 
peritoneum [16]. Radioimmuno-PET imaging allowed 
the determination of exposure to organs, all of which 
received doses far below tolerability in cRIT. Although 
the average dose to red marrow was fairly consistent in 
all patients, the CSF absorbed dose delivered by cRIT 
was more variable, likely reflecting multiple factors such 
as CSF flow differences secondary to surgical insults, 
radiation, and presence or absence of bulk lesions. Since 
most patients were treated with cRIT as consolidation for 
micrometastases, dosimetry of small tumor volume was 
difficult to assess and the therapeutic effect of radioiodi-
nated mAb was even harder to isolate. This variability in 
CSF mGy/MBq ratios across many dose levels also made 
an ideal CSF target dose difficult to assess.

While response and survival were not primary end-
points for this study, we observed an impressive long-
term survival for patients with CNS relapse of NB. cRIT 
was an important component of multimodal salvage ther-
apy for these patients [7], and 44% (7/16) of patients are 
long-term survivors 13–17 years after cRIT and only 13% 
(2/16) experienced a further CNS relapse after receiving 

Table 5  Impact of prior murine antibody exposure and antidrug development on omburtamab pharmacokinetics

Med median, STDEV standard deviation from the mean, SEM standard error of the mean, HAHA human antihuman antigen, Ab antibody
* t test comparing HAHA-negative vs HAHA-positive patients
** t test comparing patients with prior mAb exposure vs those without

No. of patients tested CSF/blood ratio t test

Med STDEV Mean SEM

Dose 1

HAHA neg 16 22.3 32.9 36.3 2.1 0.04*

HAHA pos 11 54.2 239.3 162.6 21.8

No prior Ab 17 19.8 22.9 25.5 1.4 0.02**

Prior Ab 14 55.9 213.1 144.6 15.2

Dose 2

HAHA neg 19 20.4 20.3 25.0 1.1 0.04*

HAHA pos 10 28.1 99.9 76.9 2.8

No prior Ab 15 14.9 15.0 19.9 1.0 0.05**

Prior Ab 14 33.7 85.5 65.4 2.4
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cRIT. This compares extremely favorably to published 
data on CNS relapse of NB who have 100% mortality 
with a median survival of less than 6  months [29, 30]. 
Although all patients who are long-term survivors had 
also received CNS radiotherapy, these encouraging out-
comes have not previously been reported suggesting at 
least an additive effect for cRIT. More importantly, the 
incidence of radionecrosis was low among long-term 
survivors despite their significant prior therapies [31]. 
Based on these encouraging data, we have incorporated 
cRIT 131I-omburtamab into salvage therapy for relapsed 
NB [7] and have recently completed the phase II study 
in which a large number of patients with CNS relapse of 
NB have been treated [32]. In addition, we note extended 
survival for several histologic diagnoses of several tumors 
treated with focal radiation therapy and 131I-omburtamab 
including ETMR [33] and Li-Fraumeni-associated recur-
rent choroid plexus carcinoma.

Conclusion
We demonstrated that cRIT targeting B7H3 was safe 
and could be incorporated into multimodality thera-
pies for patients with leptomeningeal malignancies. The 
therapeutic index between CSF and blood was highly 
favorable and myelotoxicity tolerable. There appeared 
to be a benefit on the therapeutic index if there were 
neutralizing antibodies in the blood to accelerate sys-
temic clearance. The long-term survival in a subset of 
patients was totally unexpected.
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