Skip to main content
. 2022 Oct 23;27(21):7166. doi: 10.3390/molecules27217166

Table 1.

Antibacterial silver-based MOFs and their composition on the bacterial strain and antibacterial mechanism.

No. Composition Organic Ligands Bacterial Strain Test Value Antibacterial Mechanism Ref.
Pure Ag-MOFs
1 Ag6(m-O3PC6H4CO2)2 m-Phosphonobenzoic acid S. aureus
P. aeruginosa
MBC = 50–70 µM
MBC = 20–30 µM
The consequent release of silver ions. [98]
2 [Ag2(Cedcp)]n N-(carboxyethyl)-(3,5-dicarboxyl)-Pyridinium bromide E. coli
S. aureus
MIC >37.84 µM
MIC = 37.84 µM
1: The synergistic effect of the aromatic ring and pyridine.
2:The release of Ag+.
[99]
3 [Ag23-PTA)22-chdc)]n·5nH2O 1,3,5-triaza-7-Phosphaadamantane S. aureus
E. coli
P. aeruginosa
MIC = 10 µg mL−1
MIC = 7 µg mL−1
MIC = 6 µg mL−1
The release of Ag+. [100]
4 [Ag24-PTA)(μ4-mal)]n 1,3,5-triaza-7-Phosphaadamantane E. coli
P. aeruginosa
S. aureus
MIC = 7 µg mL−1
MIC = 6 µg mL−1
MIC = 8 µg mL−1
The weak binding tendency of O and N donor atoms toward the center helps the slow release of Ag(I). [101]
5 [Ag4(µ-PTA)23-PTA)24-pma)(H2O)2]n·6nH2O 1,3,5-triaza-7-Phosphaadamantane E. coli
P. aeruginosa
S. aureus
MIC = 5 µg mL−1
MIC = 5 µg mL−1
MIC = 8 µg mL−1
Bond strengthens between Ag(I) and the ligand donor atoms and the Ag+ release. [102]
6 [Ag(u3-PTA=S)] n(NO3) n·nH2O 1,3,5-triaza-7-Phosphaadamantane-7-sulfide E. coli
P. aeruginosa
MIC = 4 µg mL−1
MIC = 5 µg mL−1
Presence of silver nodes. [103]
7 [Ag4(u4-PTA=S)(u5-PTA=S)(u2-SO4)2(H2O)2]n·2nH2O 1,3,5-triaza-7-Phosphaadamantane-7-sulfide E. coli
S. aureus
MIC = 20 µg mL−1
MIC = 40 µg mL−1
Presence of silver nodes. [103]
8 Ag5(PYDC)2(OH) Pyridine-3, 5-dicarboxylic acid E. coli
S. aureus
MIC = 10–15 ppm
MIC = 15–20 ppm
1: The Ag+ interacts with bacteria.
2: The damage to the cell membrane.
[104]
9 [Ag2(O-IPA)(H2O)·(H 3O)] 5-Hydroxyisophthalic acid E. coli MIC = 5 µg mL−1
ZOI = 11.12 mm
Fastest Ag+ release rate and highest equilibrium concentration. [104]
10 [AgL]n·nH2O 4-Cyanobenzoate S. mutans
F. nucleatum
P. gingivalis
GIB = 5.29 ppm
GIB = 5.29 ppm
GIB = 5.29 ppm
Sustained-release of Ag+. [105]
11 Ag (NDI-1)0.5(H2O) Naphthalenediimide E. coli
S. aureus
IR = 100%
IR = 99.52%
The synergistic reaction of the organic radical and the silver cation. [106]
12 Ag7(NDI-2)1.5(CH3S)4(DMSO)3(DMSO) Naphthalenediimide E. coli
S. aureus
IR = 99.96%
IR = 100%
The synergistic reaction of the organic radical and the silver cation. [106]
Hybrid Ag-MOFs
13 PLT@ Ag-MOF-Vanc 2-Methylimidazole MRSA MIC = 0.5 µg mL−1 1: Interfering with the intracellular metabolism of bacteria.
2: Catalytic production of the ROS.
3: Damage to the cell membrane integrity.
[111]
14 Ag-MOF @TFN 2-Aminoterephthalic
acid
E. coli MR = 90–96% The release of Ag+. [112]
15 Ag-MOF/TFC 2-Aminoterephthalic
acid
P. aeruginosa MR ~100% The release
of Ag+.
[113]
16 PVA/Ag-MOF @CS S. aureus
E. coli
ZOI = 12.1 mm
ZOI = 9.7 mm
The release of Ag+. [114]
17 CQDs @Ag-MOF 1,3,5-Benzenetricarboxylic acid E. coli MIC= 4 µg mL−1 1: Nanocomposite interactions with the cell membrane.
2: Degradation of the composite material.
3: The release of Ag+.
[115]
18 {[Ag63-HMNA)43-MNA)2]2−·[(Et3NH)+]2·(DMSO)2·(H2O)} 2-Thio-nicotinic acid P. aeruginosa
S. epidermidis
S. aureus
ZOI = 14.0 ± 1.1 mm
ZOI = 11.3 ± 1.3 mm
ZOI = 11.8 ± 1.8 mm
[116]
19 GO−Ag-MOF
TFN
1,3,5-Benzenetricarboxylic E. coli ER: 95% The synergistic effect of the release of Ag + and the GO. [117]
20 GO-Ag-MOF 1,3,5-Benzenetricarboxylic E. coli
B. subtilis
MIC = 50 ppm
MIC = 50 ppm
The ROS of the GO damages the bacteria.
The release of Ag+.
[117]
21 CS/SS/Ag- MOF–GO 1,3,5-Benzenetricarboxylic S. aureus
E. coli
Synergistic effect of the composite GO and the continuously released Ag. [121]
22 P-CS @Ag-MOF Pyridine-3, 5-dicarboxylic acid S. aureus
E. Coli
ZOI = 7.82 mm
ZOI = 4.32 mm
1: The disruption of cells.
2: Ag(I)interaction with thiol proteins.
3: The combination between the bacterial cell cations and the organic linkers.
4: The release of the ROS.
[122]
23 P-CS @Ag- MOF Pyridine-3, 5-dicarboxylic acid S. aureus
E. Coli
ZOI = 4.45 mm
ZOI = 3.76 mm
1: The disruption of cells.
2: Ag(I) interaction with thiol proteins.
3: The combination between the bacterial cell cations and the organic linkers.
4: The release of the ROS.
[122]
Silver-containing polymer @MOFs
24 SD@Ag@CD-MOF Cyclodextrin E. coli
S. aureus
MIC = 4 µg mL−1
MIC = 4 µg mL−1
The synergistic activity of the releasing Ag+ ions and SD. [124]
25 Ag-Phy@ZIF-8@HA 2-Methylimidazole S. aureus
E. Coli
MIC = 0.13 µg mL−1
MIC = 0.25 µg mL−1
The synergistic activity of ZIF-8, Ag +, and Phy. [125]
26 Ag-GOD@ ZIF-HA 2-Methylimidazole E. Coli
S. aureus
MIC = 39.7 µg mL−1
MIC = 79.3 µg mL−1
Synergetic effect of the release of Ag+ and GOD. [126]
27 Ag-NPs@Ni-MOFs Di-topic carboxylate E. Coli
P. aeruginosa
MIC = 0.025 ìg/mL
MIC = 0.025 ìg/mL
Synergetic effect of the release of Ag+ and Ni-MOF. [81]
28 Poly Cu-MOF@ Ag Poly(terephthalic acid) E. coli
S. aureus
MIC = 2–5 µg mL−1
MIC = 10 µg mL−1
1: Release of Ag+ and Cu2+.
2: Generation of the ROS.
[127]
29 Ag-MIL-101(Cr) Ditopic terephthalic acid E. coli
P. aeruginosaand
S. aureus
MIC = 1ug mL−1
MIC = 1ug mL−1
MIC = 1ug mL−1
The release of smaller-sized Ag+ ions. [128]
30 Ag@MOF-5 1,4-Benzenedicar-boxylic acid E. Coli
S. aureus
ZOI = 16.05 mm
ZOI = 14.62 mm
1: Silver ions hinder the bacterial DNA replication.
2: Nano-silver destroys the cell membrane.
3: Produces the ROS of
[129]
31 Ag@Mg-MOF-PVDF Sebacic acid S. aureus ZOI = 10 mm the release of Ag+. [130]
32 Ag/Zn-MOF 2-Aminoterephthalic acid E. coli
S. aureus
ZOI= 11 mm
ZOI= 12 mm
1: Slow release of the silver ions.
2: Ag+ interacts with the S, O, and N atoms.
[131]
33 GS5-CL-Ag@CD-MOF Cyclodextrin E. Coli
S. aureus
MIC = 16 µg mL−1
MIC = 64 µg mL−1
The Ag NPs released. [127]
34 MN-MOF-GO-Ag Gallic acid S. aureus
E. coli
P. aeruginosa
The synergistic reaction of the GO and Ag. [128]