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Abstract: Proprotein convertase subtilisin/kexin 6 (PCSK6) is a secreted serine protease expressed
in most major organs, where it cleaves a wide range of growth factors, signaling molecules, pep-
tide hormones, proteolytic enzymes, and adhesion proteins. Studies in Pcsk6-deficient mice have
demonstrated the importance of Pcsk6 in embryonic development, body axis specification, ovarian
function, and extracellular matrix remodeling in articular cartilage. In the cardiovascular system,
PCSK6 acts as a key modulator in heart formation, lipoprotein metabolism, body fluid homeosta-
sis, cardiac repair, and vascular remodeling. To date, dysregulated PCSK6 expression or function
has been implicated in major cardiovascular diseases, including atrial septal defects, hypertension,
atherosclerosis, myocardial infarction, and cardiac aging. In this review, we describe biochemical
characteristics and posttranslational modifications of PCSK6. Moreover, we discuss the role of PCSK6
and related molecular mechanisms in cardiovascular biology and disease.

Keywords: atrial septal defect; cardiac aging; corin; endothelial lipase; hypertension; PACE4; PCSK6;
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1. Introduction

Proteolytic cleavage is a key mechanism in regulating protein structure and function.
The proprotein convertase subtilisin/kexin (PCSK) family consists of nine proteolytic
enzymes that process a variety of proteins, including peptide hormones, growth factors,
cell receptors, proteases, and adhesion molecules [1,2]. The PCSK-mediated pathways are
essential for tissue homeostasis and physiological function. PCSKs are also exploited by
pathogens to boost their infectivity. In COVID-19, for example, PCSK-mediated cleavage of
spike protein on the surface of severe acute respiratory syndrome (SARS) coronavirus-2
particles is a crucial step for viral entry in human airways [3,4].

PCSK6, also known as paired basic amino acid cleaving enzyme 4 (PACE4) or subtilisin-
like proprotein convertase 4 (SPC4), is a member of the PCSK family. PCSK6-mediated
protein cleavage has been implicated in diverse biological processes, ranging from embry-
onic development to tissue senescence. Human genetic and animal model studies in recent
years indicate that PCSK6 is an important regulator in cardiovascular biology and disease.
In this review, we briefly describe the current knowledge regarding PCSK6 expression, bio-
chemical and cellular mechanisms in zymogen activation, and protein substrate specificity.
We also examine findings in Pcsk6-deficient mice under various conditions. Finally, we
focus our discussion on the role of PCSK6 in heart development and aging, lipoprotein
metabolism, blood pressure, and cardiovascular remodeling.

2. PCSK6 Gene and Tissue Expression

PCSK6 was identified from human hepatoma cells based on sequence similarities to
other subtilisin-like proteases [5]. The human PCSK6 gene is located on chromosome 15 at
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q26.3, with 23 exons in a locus spanning ~228 kb [6]. PCSK6 orthologues are conserved in
all vertebrates from fish to primates, an indication of functional significance.

PCSK6 mRNA expression has been detected in virtually all major organs, including
the brain, heart, lung, liver, spleen, pancreas, kidney, skeletal muscle, uterus, ovary, and
placenta [7]. Within the heart, high levels of PCSK6 mRNA are expressed in atrial and
ventricular cardiomyocytes [8]. Based on proteomic analysis of human tissues, PCSK6 is
also expressed in cardiac fibroblasts, endothelial cells, and smooth muscle cells (SMCs) [9].
It remains unclear if PCSK6 cleaves similar sets of proteins in different cardiac cell types.

In addition to normal tissues, upregulated PCSK6 expression has been found in many
cancers, including lung cancer [10,11], breast cancer [12,13], prostate cancer [14,15], skin
cancer [16,17], ovarian cancer [18,19], and thyroid cancer [20]. To date, PCSK6-mediated
cleavage of metalloproteinases [17,21], signaling molecules [22,23], and apoptotic pro-
teins [23,24] has been reported as a potential mechanism in tumor invasion and migration.
In animal cancer models, PCSK6 inhibitors have been shown to inhibit tumor progression,
indicating that PCSK6 is a potential cancer target [16,25,26]. In this review, our discussions
focus on the role of PCSK6 in cardiovascular biology. More information on PCSK6 and
cancers can be found in several comprehensive reviews [27–29].

3. Protein Domains and Post-Translational Modifications

The full-length human PCSK6 (NCBI protein accession number: NP_002561.1) consists
of 969 amino acids, with a calculated mass of ~100 kDa. There are PCSK6 isoforms with
shorter sequences from alternative mRNA slicing [6,14]. In cancer tissues, PCSK6 isoforms
may differ from those in normal tissues [20]. Unlike furin, which has a transmembrane
domain [1], PCSK6 is a secreted protein, consisting of an N-terminal signal peptide, a
pro-domain, a subtilisin-like catalytic domain, a P or Homo B domain, and a C-terminal
cysteine-rich domain [30] (Figure 1). Within the catalytic domain, the conserved active
residues Asp, His, and Ser are at positions 205, 246, and 420, respectively.
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PCSK6 is synthesized in a one-chain zymogen form. After the signal peptide is re-
moved by signal peptidase in the endoplasmic reticulum (ER), PCSK6 undergoes a two-
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Figure 1. Schematic presentation of human PCSK6 domains. Human PCSK6 consists of a signal
peptide (Signal), a pro-domain, a subtilisin-like catalytic domain, a P or Homo B domain, and a
C-terminal cysteine-rich domain. In the catalytic domain, the conserved active sites, Asp (D), His (H),
and Ser (S), are at positions 205, 246, and 420, respectively. Three predicted N-glycosylation sites (Y
shaped symbols) are at positions 259, 914, and 932, respectively. Two autoactivation cleavage sites are
at Arg (R) 117 (open arrowhead) (second cleavage) and R149 (red arrowhead) (first cleavage).

PCSK6 is synthesized in a one-chain zymogen form. After the signal peptide is
removed by signal peptidase in the endoplasmic reticulum (ER), PCSK6 undergoes a two-
step autoactivation process, which resembles those in furin and PC5A activation [31,32].
The first autocleavage at RVKR149↓ between the pro-domain and the catalytic domain
occurs in the ER [33] (Figure 2). The cleaved pro-domain is attached to the remaining
fragment, thereby blocking PCSK6 catalytic activity. Moreover, the cleaved pro-domain
acts as an intramolecular chaperone in protein folding and subsequent ER exiting [34].
Upon reaching the cell surface, PCSK6 binds to membrane-associated heparan sulfate
proteoglycans and undergoes another autocleavage at KR117↓ within the pro-domain
(Figure 2) [32]. This second cleavage removes the pro-domain, converting PCSK6 to a fully
active enzyme [32].
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Figure 2. PCSK6 intracellular trafficking and autoactivation. PCSK6 is synthesized as a one-chain
zymogen. The signal peptide is removed by signal peptidase in the ER (not shown). The pro-domain
(white), the catalytic domain (blue), the P/Homo B domain (gray), and the C-terminal cysteine-rich
domain (black) are shown. Within the ER, first autocleavage occurs between the pro-domain and the
catalytic domain (red arrowhead). The cleaved pro-domain remains attached, acts as an inhibitor of
PCSK6, and facilitates PCSK6 folding and ER exiting. Upon secretion, a second autocleavage occurs
within the pro-domain (open arrowhead), which disassociates the pro-domain, converting PCSK6 to
an active enzyme.

The secretion and activation of PCSK6 are regulated by its own structural elements
and interactions with other intracellular proteins. Within the cell, for example, association
with reticulocalbin-3, a protein in the secretory pathway, promotes PCSK6 secretion and
autoactivation [35]. The C-terminal cysteine-rich domain is inhibitory for PCSK6 intracel-
lular trafficking. Deletion of a C-terminal segment or the entire domain increases PCSK6
secretion and autoactivation [36,37]. In addition to heparan sulfate proteoglycans on the
cell surface [32,38], PCSK6 also binds to heparan sulfate proteoglycans in the extracellular
matrix where it may activate matrix metalloproteinases [39]. In the cell-derived condi-
tioned medium, PCSK6 also binds to heparin, which enhances PCSK6 activity [39]. The
heparin-binding site on PCSK6 is in a positively charged segment, between residues 734
and 760, within the C-terminal cysteine-rich domain [39]. There is no evidence to indicate
that PCSK6 binds to chondroitin sulfate [32,39]. To date, the heparan sulfate structures
required for PCSK6 binding have not been determined experimentally [39]. Further studies
will be important to define the biochemical and cellular mechanisms underlying PCSK6
intracellular trafficking and secretion.

In human PCSK6, there are three predicted N-glycosylation sites at N259, N914, and
N932, respectively (Figure 1). These sites are conserved in PCSK6 homologs among
mammalian species, with dogs being an exception, which have only two predicted N-
glycosylation sites (corresponding to N259 and N932 in humans, respectively). In trypsin-
like serine proteases, N-glycosylation facilitates protein folding, intracellular trafficking,
cell surface expression, or secretion [40–43]. N-glycan-mediated interactions with calnexin,
an ER chaperon, are critical for protein folding and ER exiting [41,44]. To date, the signif-
icance of N-glycosylation in PCSK6 remains unclear. Additional studies are required to
verify if those predicted sites are N-glycosylated and to understand the potential role of
N-glycans in PCSK6 biosynthesis and function.
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4. Protein Substrates

Proteases break peptide bonds at preferred amino acid sequences. PCSK6 cleaves at
sequences with paired basic residues, e.g., R-X-K/R-R, where X can be any amino acid, and
K/R-R or non-paired basic residues, e.g., R-X-X-R [45,46]. These recognition sequences,
however, are not unique for PCSK6, as many PCSKs exhibit similar substrate specificities
in biochemical and cellular experiments [1]. Under physiological conditions, the function
of individual PCSKs also depends on their spatial and temporal expression and regulatory
mechanisms in specific tissue environments.

To date, numerous proteins have been reported as potential PCSK6 substrates. A
partial list of the candidate substrates includes growth factors [47,48], cell surface recep-
tors [49,50], blood clotting factors [51,52], matrix metalloproteinases (MMPs) [17,21], serine
proteases [53,54], lysyl oxidase-like 2 [55], group X secretory phospholipase A2 [56], growth
differentiation factor 15 [57], Nodal [58], bone morphogenetic protein-4 (BMP-4) [58,59],
neural and hepatic peptides [60,61], bacterial toxins [45,62], and viral proteins [63,64]. These
findings suggest a potential role of PCSK6 in diverse pathophysiological processes, ranging
from embryonic development to tissue homeostasis to bacterial and viral infection. It is
noted that the majority of the reported PCSK6 substrates are based on in vitro experiments.
Many of the substrates are also cleaved by other PCSKs in similar experimental settings.
It remains to be determined if the observed overlapping activities reflect the functional
redundancy among PCSKs in vivo.

5. Findings from Pcsk6 Knockout (KO) Mice
5.1. Embryonic Development

In mice, Pcsk6 deficiency leads to lethality in ~25% embryos, which exhibit severe
defects in heart formation, craniofacial patterning, and left–right axis specification by
gestational day 15.5 [65]. The phenotype is primarily due to impaired processing and
signaling of transforming growth factor beta (TGFβ) superfamily members, including
Nodal, Bmp4, and Lefty, that are crucial in body axis specification during embryonic
development [65–67]. These findings are consistent with the observed PCSK6 activity in
processing TGFβ-like growth factors in vitro [59,65].

The incomplete penetrance of the embryonic lethality in Pcsk6 KO mice suggests
that the Pcsk6 function in embryogenesis may be partially compensated by other PCSKs,
particularly furin that exhibits similar Nodal and BMP4 processing activity in vitro and
in vivo [58,59]. Moreover, both PCSK6 and furin are shown to bind to Cripto, a glyco-
sylphosphatidylinositol (GPI)-anchored proteoglycan that localizes Nodal processing on
the surface of embryonic cells [68]. It remains unclear how PCSK6 and furin activities are
regulated, temporally and spatially, in embryonic tissues to achieve the overlapping but
not identical function.

5.2. Age-Dependent Decline in Ovarian Function

The PCSK6 function in processing TGFβ-like growth factors appears dispensable for
postnatal survival. The remaining three quarters of Pcsk6 KO mice that are born grow
normally [65,69]. Both male and female Pcsk6 KO mice are fertile [65]. No major defects in
liver and kidney function, blood coagulation, immune response, and tooth formation have
been reported in these mice.

Studies in aged Pcsk6 KO mice, however, indicate a key role of Pcsk6 in preserv-
ing ovarian structure and function [69]. Female Pcsk6 KO mice at or older than nine
months exhibit decreased estrus cyclicity, prolonged whelping intervals, increased serum
follicle-stimulating hormone levels, and ovarian atrophy with less or no follicles [69].
Given the findings of PCSK6 expression in human and mouse ovarian granulosa cells and
oocytes [70–72], the reproductive senescence in female Pcsk6 KO mice is likely related to
impaired processing of Pcsk6 substrate(s) in the ovary. To date, such substrate(s) have yet
to be defined. Among TGFβ superfamily members, oocyte-derived growth differentiation
factor 9 (Gdf9) and Bmp15 are essential for folliculogenesis in mice [73]. In human genetic
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studies, GDF9 and BMP15 variants are found in women with premature ovarian failure and
amenorrhea [74–76], suggesting that GDF9 and BMP15 could be potential PCSK6 substrates
in the ovary.

5.3. Aggrecan Degradation in Articular Cartilage

Analysis of Pcsk6 KO mice substantiates a role of PCSK6 in aggrecan degradation and
osteoarthritis [77]. Aggrecan is a proteoglycan with abundant chondroitin and keratan
sulfate chains [78,79]. It aggregates on hyaluronan filaments in the extracellular matrix
of articular cartilage, protecting the joint from the impact of compressive forces [78,79].
Increased aggrecan degradation is a key factor in the pathogenesis of osteoarthritis [80].
Members of the ADAMTS (a disintegrin and metalloproteinase with thrombospondin
motifs) family, mainly ADAMTS-4 and ADAMTS-5, are major aggrecan-degrading enzymes
in osteoarthritis [78,80].

In human osteoarthritic cartilage, PCSK6 has been identified as a key activator of
ADAMTS-4 and ADAMTS-5 [81]. In mice, Pcsk6 deficiency alleviates pain in osteoarthritis
models [77]. A PCSK6 variant allele is also associated with similar pain protection in
patients with osteoarthritic knees [77]. Moreover, increased PCSK6 expression is found
in synovial tissues in patients with rheumatoid arthritis [82]. PCSK6 inhibition reduces
inflammatory responses in rat and human synoviocytes associated with rheumatoid arthri-
tis [82–84]. These results highlight a crucial role for PCSK6 in cartilage remodeling and
destruction under pathological conditions.

6. PCSK6 and Cardiovascular Pathophysiology
6.1. Atrial Septal Defects

Atrial septal defects are a common form of congenital heart disease [85]. As discussed
earlier, Pcsk6 KO mice exhibit a plethora of cardiac abnormalities, including common atrium,
double-outlet right ventricle, ventricular septal defects, persistent truncus arteriosus, and
dextrocardia [65]. Common atrium is a severe type of atrial septal defect, in which the
entire atrial septum is missing. In mice, Nodal and Bmp4 are downstream effectors of
Pcsk6 in heart formation [65,66]. However, the upstream molecular network that regulates
PCSK6 expression in developing hearts is not well defined.

TBX5, NKX2-5, and GATA4 are major transcription factors in heart development.
Deleterious TBX5, NKX2-5, and GATA4 mutations are found in individuals with congenital
heart disease, including atrial septal defects [86,87]. Protein odd-skipped-related 1 (OSR1) is
a zinc-finger transcription factor, essential for cardiac progenitor growth and atrial septum
formation [88]. In mouse embryonic hearts, Tbx5 is an immediate Osr1 upstream gene in
the second heart field for atrial septation [89]. Osr1 deletion results in common atrium and
embryonic death between E11.5 and E12.5 days [90]. The similar phenotype of atrial septal
defects in Tbx5-, Osr1-, and Pcsk6-deficient mice suggests a possible TBX5-OSR1-PCSK6
pathway in promoting TGFβ-like growth factor signaling in atrial septum formation.

In agreement with this hypothesis, gene profiling in Tbx5- and Osr1-deficient embryos
identifies Pcsk6 as one of the major genes in atrial septation regulated by Tbx5 and Osr1 [91].
Human genome-wide linkage analysis also suggests a connection between PCSK6 and
congenital heart disease [92]. Moreover, a PCSK6 variant is found in a Spanish family
with atrial septal defects and interatrial septal aneurysm [91]. These findings indicate that
TBX5 and OSR1 are possible regulators in PCSK6 expression during heart development,
providing new insights into the genetic mechanisms underlying atrial septal defects.

6.2. Endothelial Lipase Inactivation

Endothelial lipase, a member of the triglyceride lipase family, is a secreted protein, con-
sisting of a signal peptide, a 40 kDa N-terminal catalytic domain, and a 28 kDa C-terminal
domain [93]. Upon secretion, endothelial lipase binds to heparan sulfate proteoglycans on
the cell surface, where it hydrolyzes triglycerides and phospholipids in plasma lipopro-
teins [94]. In addition to endothelial cells, endothelial lipase is expressed in hepatocytes,
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macrophages, and SMCs. Endothelial lipase modifies high-density lipoprotein (HDL)
structure and metabolism, as indicated by high levels of plasma HDL cholesterol, bigger
HDL particle sizes, and slower HDL clearance in endothelial lipase-deficient mice [95,96].
Conversely, plasma HDL cholesterol levels are decreased in endothelial lipase overexpress-
ing mice [96,97]. In humans, deleterious variants in the LIPG gene, encoding endothelial
lipase, are associated with increased plasma HDL cholesterol levels [98–100].

In membrane-bound serine proteases, ectodomain cleavage is a common mechanism
in limiting protease activity on the cell surface [101,102]. A comparable mechanism exists
in endothelial lipase inactivation on the cell surface. In the conditioned medium from
human endothelial cells, a 40 kDa endothelial lipase fragment was detected [46,97]. A
similar fragment was also found from human liver HepG2 cell culture [103]. As revealed
by biochemical analyses, the fragment is derived by cleavage at a specific site, RNKR↓,
which reduces the endothelial lipase activity [46,103]. Furin, PC5A, and PCSK6 are likely
responsible for the cleavage [46,103]. Interestingly, lipoprotein lipase, another member of
the triglyceride lipase family, contains an analogous site, RAKR↓, which is also cleaved
by furin, PC5A, and PCSK6 in similar experiments [46]. These data indicate that PCSK-
mediated endothelial lipase inactivation is a cellular mechanism in regulating lipoprotein
metabolism.

Consistently, hepatic overexpression of pro-furin, an inhibitor of furin, PCSK5, and
PCSK6 reduce endothelial lipase inactivation and lower plasma HDL cholesterol in mice [104].
In Lipg KO mice, such an effect of pro-furin on plasma HDL cholesterol is not observed,
supporting a PCSK-endothelial lipase-dependent mechanism in HDL metabolism. Studies
in those mice also validate a role of PCSK-mediated activation of an endogenous endothelial
lipase inhibitor, angiopoietin-like 3 [104,105]. Further analyses in hepatocyte-specific
Furin and Pcsk5 conditional KO and Pcsk6 global KO mice show that hepatic furin is
primarily responsible for cleavage of endothelial lipase and angiopoietin-like 3 in vivo [106].
However, plasma levels of HDL cholesterol are only slightly reduced in the hepatocyte
Furin conditional KO mice or not changed in the hepatocyte Pcsk5 conditional and Pcsk6
global KO mice, compared to that in WT mice [106]. These findings suggest functional
redundancy among PCSKs in endothelial lipase inactivation, at least in mice.

6.3. Corin Activation and Hypertension

Atrial and B-type natriuretic peptides (ANP and BNP, respectively) are hormones
in the natriuretic peptide system that preserves body fluid balance and cardiovascular
homeostasis [107]. Genetic studies in mice and humans establish ANP as a key factor
in blood pressure regulation [108–110]. Upon binding to its receptor, natriuretic peptide
receptor A (also called guanylate cyclase A), ANP enhances renal salt excretion and relaxes
blood vessels, thereby lowering blood volume and pressure. Variants in the NPPA gene,
encoding ANP, are associated with increased risks of cardiovascular disease, such as
hypertension, stroke, and heart disease [111,112].

Corin is a membrane-bound protease, highly expressed in the heart [113], where it
converts pro-ANP to ANP [114–116]. Like most proteases, corin is produced in a pro-form,
which is activated at a specific site, RMNKR↓ [117]. The cleavage sequence with paired basic
residues indicates that corin is likely activated by one of the PCSKs. Indeed, PCSK6 has been
identified as the corin activator [53]. Both PCSK6 and corin are expressed in cardiomyocytes,
where PCSK6 activates corin on the cell surface [53,118]. In cultured murine cardiomyocytes,
blocking Pcsk6 expression prevents corin activation [53]. In Pcsk6-deficient mice, corin
activation and pro-ANP processing in the heart are eliminated [53]. Like Corin KO mice,
Pcsk6-deficient mice develop salt-sensitive hypertension [53,119], indicating that PCSK6 is
the corin activator in vivo and that this function cannot be substituted by other PCSKs.

In line with these findings, genetic studies support a role of PCSK6 in corin activation
and cardiovascular function in humans. For example, several CORIN variants identified in
hypertensive patients are defective in PCSK6-mediated activation [53,120]. PCSK6 variants
are associated with hypertension [53,120] and coronary artery stenosis [121]. Studies
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in humans and rat models also indicate an important PCSK6-corin-ANP pathway in
regulating renal aquaporin 2 and β-epithelial sodium channel expression in response to a
high-salt diet [122], consistent with salt-sensitive hypertension in Pcsk6, Corin, and Nppa KO
mice [53,109,119,123]. Moreover, reduced cardiac and renal PCSK6 and corin expression
correlates with worsening cardiac and renal function in a rat heart failure model [124].
These data highlight the importance of PCSK6 in corin activation and body fluid-electrolyte
homeostasis.

6.4. Vascular Remodeling in Atherosclerosis

Atherosclerosis is a major vascular disease, characterized by the formation of atheroscle-
rotic plaques in the intima of medium- to large-sized arteries [125]. Depending on disease
stages, the plaque usually contains lipid-packed macrophages, also called foam cells, and
SMCs that are surrounded by accumulated extracellular matrix proteins and proteogly-
cans [125]. As the disease progresses, the macrophages and SMCs undergo apoptosis,
creating a highly thrombotic necrotic core that is prone to rupture, thereby causing throm-
bosis formation [125]. To date, several lines of evidence point to a potential role of PCSK6
in regulating SMC migration, vascular remodeling, and atherosclerotic plaque formation.

In patients with aortic dissections in a Korean population, for example, genomic
alternations are found in a locus where the PCSK6 gene is located [126]. Genome-wide ex-
pression analysis indicates elevated PCSK6 expression in atherosclerotic plaques [127,128].
In cultured human monocytes and endothelial cells, PCSK6 expression and activity are
increased by pro-atherogenic lipid oxidation products [129]. In Pcsk6 KO mice, compro-
mised vascular remodeling, as indicated by enlarged systolic and diastolic circumferences
and reduced contractile SMC markers, is observed in carotid arteries exposed to increased
blood flow [130]. Increased PCSK6 expression is also detected in smooth muscle α-actin
(SMA) (an SMC marker) -positive cells in unstable carotid plaques, where inflammation
and extracellular matrix degradation are active [131]. Moreover, PCSK6 expression in
cultured human carotid SMCs is increased by proinflammatory factors, such as tumor
necrosis factor and interferon-γ [131]. These findings suggest a connection between PCSK6
and SMC-derived cells in the vessel wall where inflammation and pathological remodeling
occur.

Consistently, a recent human study links a PCSK6 variant with SMA-positive cell
numbers in carotid stenosis lesions and artery wall thickness [132]. In human and rodent
carotid arteries, increased PCSK6 expression correlates with SMC activation, intimal hyper-
plasia, and MMP2/MMP14 activation [132]. Conversely, decreased intimal hyperplasia and
MMP14 activation are found in Pcsk6 KO mice with carotid artery ligation [132]. Moreover,
aortic SMCs from Pcsk6 KO mice exhibit poor proliferation and migration induced by
platelet-derived growth factor BB (PGDFBB), whereas in human SMCs overexpressing
PCSK6, PDGFBB-stimulated cell proliferation and migration are increased [132]. PCSK6 is
known to activate MMPs in cancers [133]. The latest findings suggest that PCSK6-mediated
MMP activation may be important in SMC phenotypic changes and pathological vascular
remodeling in atherosclerosis.

6.5. Cardiac Repair after Myocardial Infarction (MI)

MI triggers a series of cellular events, including cell death, inflammatory cell infil-
tration, and gradual wound healing with myofibroblast proliferation and ultimate scar
formation [134]. Tissue remodeling depends on the interplay among various cell types,
including immune cells, cardiomyocytes, fibroblasts, and vascular cells. Both autocrine and
paracrine mechanisms are involved in cell–cell interactions in infarcted hearts [134].

Many serine proteases have been implicated in cardiac structure and function [135].
In a recent study, PCSK6 was identified as one of the highly secreted proteins from hypoxic
cardiomyocytes [136]. The finding is confirmed in mouse hearts undergoing coronary artery
ligation [136]. The PCSK6 expression and secretion in hypoxic cardiomyocytes promote
TGFβ secretion from the same cells and subsequent SMAD (small and mothers against
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decapentapletic) signaling in cardiac fibroblasts [136]. Moreover, high levels of collagen
I production and fibrosis-related gene expression (e.g., Col1a1, Col3a1, and Mmp14) are
observed in cardiac fibroblasts treated with the PCSK6-containing conditioned medium
from hypoxic cardiomyocytes [136]. These findings suggest that upregulated PCSK6 in
ischemic cardiomyocytes activates TGFβ, which, in turn, binds to its receptor on cardiac fi-
broblasts, thereby enhancing downstream SMAD signaling to promote collagen production
and cardiac fibrosis [136].

Increased fibrosis is a hallmark of poor cardiac remodeling, which impairs cardiac
function. Consistently, PCSK6 overexpression in cardiomyocytes increases cardiac hyper-
trophy and fibrosis and decreases cardiac function in a mouse MI model [136]. Moreover,
increased serum PCSK6 levels are observed in patients with acute MI, which peaks on day
3 post incidence [136]. Previously, increased ventricular, but not atrial, Pcsk6 expression
was noticed post MI in a rat model [137]. These data support a role of PCSK6 in a paracrine
mechanism, underlying cardiac remodeling after MI. In another study [138], serum PCSK6
levels were associated with cardiovascular events in a subset of patients undergoing coro-
nary angiography. Further studies will be important to evaluate if serum PCSK6 can be
used as a biomarker to predict cardiac remodeling and function in patients with heart
disease.

6.6. Cardiac Senescence

In aging hearts, altered protein expression and signaling often lead to deteriorating
cardiac structure and function. In addition to apoptosis, senescence is a common feature
in aging cardiomyocytes, as indicated by DNA damage, dysregulated gene expression,
increased oxidative stress, mitochondrial dysfunction, and poor contractility [139,140].
Natriuretic peptide-mediated signaling is critical in cardiomyocyte homeostasis [111]. In
humans, variants in the NPPA gene are associated with impaired cardiovascular respon-
siveness in the elderly [141]. In rodents, decreased ANP secretion is found in aging hearts
and senescent cardiomyocytes in culture [142,143].

PCSK6 is necessary for corin activation and ANP generation in the heart [53]. A
recent study indicates that PCSK6 deficiency may contribute to senescence in cardiomy-
ocytes [144]. In aged mouse hearts and senescent cardiomyocytes, Pcsk6 expression is
reduced. Moreover, Pcsk6 downregulation causes senescence in cultured cardiomyocytes,
as indicated by increased advanced glycation end products, oxidative stress, and apopto-
sis [144]. Conversely, Pcsk6 overexpression prevents senescence and dysfunction in cultured
cardiomyocytes under similar experimental conditions [144].

The function of PCSK6 in cardiomyocyte senescence appears mediated, at least in part,
by pathways related to ER stress. In aging mouse hearts and Pcsk6 knockdown cardiomy-
ocytes, high levels of DNA-damage inducible transcript 3 (Ddit3) are observed [144]. Ddit3,
also called C/EBP homologous protein, is a pro-apoptotic transcription factor inducted by
ER stress [145]. In cardiomyocytes subjected to ER stress, Ddit3 expression is suppressed
by PCSK6 expression [144], suggesting that PCSK6 may regulate cardiomyocyte senescence
by reducing ER stress via a DDIT3-related mechanism. Consistent with these findings,
increased ER stress is reported in human prostate cancer cells, in which the PCSK6 gene is
downregulated [24]. In a mouse model of heart failure, Ddit3 deletion prevents ER-stress-
induced cell death and cardiac dysfunction [146]. As discussed earlier, premature ovarian
senescence is observed in Pcsk6 KO mice [69]. It will be important to examine if similar
premature aging exists in other major organs in Pcsk6 KO mice.

7. Conclusions

PCSK6 is a multifunctional protease that acts in diverse tissues to modulate many
pathophysiological processes, ranging from embryonic development to organ aging. De-
spite the apparent overlapping substrate specificity among PCSKs in biochemical and
cellular studies, PCSK6 exhibits distinct physiological functions that are not fully compen-
sated by other PCSKs, as indicated by findings in Pcsk6-deficient mice. The unique function
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of PCSK6 is likely achieved by mechanisms that regulate PCSK6 activity in specific cellular
environments during various stages of life. To date, such regulatory mechanisms have yet
to be fully understood.

PCSKs are important in the cardiovascular system. PCSK9, for example, is a key regu-
lator in LDL receptor expression and lipid metabolism [147]. Currently, PCSK9 inhibitors
are used to treat patients with familial hypercholesterolemia [147]. By acting on various
growth factors and proteases, PCSK6 too plays a key role in cardiovascular development
and homeostasis (Figure 3). To date, PCSK6 has been implicated in major cardiovascular
diseases, such as atrial septal defects, hypertension, atherosclerosis, MI, and cardiac aging.
More investigations are anticipated to determine if modulating PCSK6 expression and/or
activity is a valid therapeutic strategy for cardiovascular disease.
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