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Abstract: RNA interference (RNAi) is one of the most widely used techniques to study gene functions.
There is still a lack of RNAi techniques that can be applied in Phytoseiidae conveniently and efficiently.
Star Polycation is a new nanomaterial commonly used as a carrier of dsRNA in RNAi. Five genes
of P. persimilis (PpATPb, PpATPd, PpRpL11, PpRpS2, and Pptra-2) were selected to verify whether
SPc promotes the delivery of dsRNA into P. persimilis through soaking. When each of the five genes
were interfered using SPc-mediated dsRNA, the total number of success offspring produced per
female in six days decreased by ca. 92%, 92%, 91%, 96%, and 64%. When PpATPb, PpATPd, PpRpL11,
or PpRpS2 was interfered, both the fecundity and egg hatching rate decreased. In contrast, when
Pptra-2 was interfered, reduction in the reproductive capability was mainly the result of the decreased
egg hatching rate. Correspondingly, when the target gene was interfered, P. persimilis expression
of PpRpL11 reduced by 63.95%, while that of the other four genes reduced by at least 80%. Our
studies showed that nanomaterials, such as SPc, have the potential to be used in RNA interference of
phytoseiid mites.

Keywords: Phytoseiidae; nanomaterial; soaking; reproduction

1. Introduction

Phytoseiid mites (Chelicerata: Arachnida: Acari) play important roles in agroecosys-
tems, as highly effective biocontrol agents of many small pests, including spider mites,
whiteflies, and thrips, etc. [1–3]. Studies on phytoseiids have mainly focused on their
biology, and many interesting phenomena were observed and reported. For example, they
have a reproductive pattern called “paternal genome elimination”, referring to males that
develop from fertilized eggs but become haploid with their paternal genomes lost at early
embryonic stages [4,5]. However, the mechanisms behind such a special pattern are still
unclear. Molecular biological research on Phytoseiidae is overall retarded, especially re-
search on gene function, regulation mechanism and pathway are limited [6–10]. One major
reason is that their highly ossified small bodies became barriers, thus blocking successful
applications of many molecular biological techniques.

RNAi is one of the most widely used techniques to study gene function, regulation,
and interaction [11,12]. The first step of RNAi is delivering exogenous dsRNA into the
target organism. Commonly used methods include microinjection, oral feeding, and soak-
ing. Overall, microinjection is the most commonly used method in dsRNA delivering.
However, microinjection on phytoseiid mites generally cause a high level of physical injury
and mortality [13,14]. Oral feeding was the only RNAi method that was relatively success-
fully applied in Phytoseiidae, with an efficiency ranging from 40% to 80% [15,16]. Since
starvation is required for the oral delivery of dsRNA in phytoseiids, this method can only
be used when expression of the target gene will not be affected by starvation. In addition,
there are high risks that dsRNA may degrade due to an unsuitable pH environment or be
shared by nucleases that exist in their alimentary canals [17]. Among the three methods,
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soaking is the easiest to perform and appears to be less harmful. However, poor interference
efficiency was observed in phytoseiid, possibly due to the low permeability of its dense
body surface [18].

Nanomaterials are natural, incidental, or manufactured materials with sizes ranging
from 1 to 100 nm [19]. Some nanomaterials can bind dsRNA and protect it from degradation
due to their chemical stability, minimal cytotoxicity, and biocompatibility, therefore they
were used as carriers to transfer exogenous dsRNA into cells efficiently and rapidly [20–25].
Star polycation (SPc) is a new nanomaterial synthesized by Li et al. The molecular weight
is 19,440 (GPC) and the pdi is 1.07. It is a cationic dendrimer that consists of four peripheral
amino acid functionalized arms, with outer shells positively charged (+20.9 mV) to bind
the negative charge double strand RNA (dsRNA). This combination could decrease the
zeta potential to +4.0 mV by binding dsRNA. Meanwhile, the size of SPc is 100.5 nm
and increases to 260 nm when bound with dsRNA [24]. Showing improved delivery
efficiency of dsRNA in interfering key genes required for life activities by aphids and black
cutworms [26–29], SPc showed its high potential in pest management [30–34]. It might also
be expected to enhance RNAi efficiency through soaking in Phytoseiidae.

Phytoseiiulus persimilis is probably one of the most well studied species in Phytoseiidae,
but still only a small number of its genes have been studied. Our previous study showed
that, when dsRNA was mediated with nanocarrier SPc, it might be delivered into the P.
persimilis body successfully through soaking [35]. In the present study, five more genes were
selected to verify the capability of this nanomaterial in enhancing RNAi efficiency through
soaking in P. persimilis. Reproductive capabilities of interfered females were evaluated and
the relative expression of the target genes were measured. The aim of the present study is
to establish a nanocarrier SPc-mediated dsRNA delivery system in P. persimilis and provide
a potential tool in studying gene functions of phytoseiids.

2. Methods and Materials
2.1. Mite Colony

Phytoseiulus persimilis used in this study were obtained from the colony maintained in
the Lab of the Predatory Mite, Institute of Plant Protection, Chinese Academy of Agricul-
tural Sciences. Tetranychus urticae Koch (Acari: Tetranychidae), reared on two-week-old
soybean seedlings, were used as the prey of P. persimilis.

For experimental purposes, P. persimilis were reared individually using small units, as
described by Zhang et al. [36]. The major piece to make a rearing unit arena is a transparent
acrylic board (30 × 20 × 3 mm3) with a 10 mm diameter hole in the center. Two pieces of
rectangular glass were used to seal the hole, each on one side, creating a 10 (dia.) × 3 mm3

arena for P. persimilis. A piece of bean leaf was used as the floor, placed between one
rectangular glass and the central board. The four layers were clipped together on both ends
to avoid mites escaping. Individuals were all reared under 25 ± 1 ◦C, 60 ± 5% RH, and
L:D = 16:8.

2.2. Acquisition of the Five Genes and the SPc Mediated dsRNA Complexes
Gene Selection

Five genes were selected for the present study. Three of the selected genes, ribosomal
protein L11 (PpRpL11), ribosomal protein S2 (PpRpS2), and transformer-2 (Pptra-2), were
believed to be involved in P. persimilis reproduction regulation [15,16]. Two V-ATPase
genes (VATPb, VATPd) were also selected. V-ATPases are important enzymes in arthropods,
and are essential for multiple secretory pathways, from the synthesis and modification of
biomolecules to the intracellular transport, secretion, and degradation. ATPases consists
of variant subunits determined by different genes [37,38]. These genes were often used as
RNAi candidate genes because remarkable changes in biological performances of target
organisms were often expected after interference [14,23].

Sequences of VATPb and VATPd were blasted from the transcriptome (submitted to NCBI)
of P. persimilis, referring to orthologs in Aphis gossypii (NCBI Accession XP_027836958.1)
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and Drosophila melanogaster (NCBI Accession NP_001287401.1). These two sequences
were termed as PpVATPb and PpVATPd. Sequences of PpRpL11, PpRpS2 and Pptra-2 were
identical, as reported by Bi et al. [16].

2.3. Gene Cloning and cDNA Synthesis

Approximately 2 µg RNA was extracted from P. persimilis (ca. 100 individuals of
mixed stages), using MicroElute Total RNA Kit (Omega bio-tek, lnc. R6831-01, Norcross,
GA, USA), according to the manufacturer’s recommended protocols. Quality control
of extracted RNA were evaluated with spectroscopic quantitation using nanodrop 2000
(Thermo Fisher Scientific, Waltham, MA, USA). cDNA was reverse-transcribed using 1 µg
RNA following the instructions of UnionScript First-strand cDNA Synthesis Mix for qPCR
(Genesand, Beijing, China).

2.4. dsRNA Synthesis

All sequences (Supplementary File) were cloned using PCR. The reaction mixture
(50 µL) for PCR contained: 25 µL 2 × GS Taq PCR Mix (Genesand, Beijing, China), 1 µL
cDNA template, 0.5 µmol forward and reverse primers and nuclear-free water. Conditions
of PCR reaction were: 95 ◦C for 3 min, 35 cycles of 94 ◦C for 25 s, 58 ◦C for 25 s and 72 ◦C for
30 s. PCR products were purified and cloned into pTOPO-Blunt Simple Vector following
the instructions of Zero Background pTOPO-Blunt Simple Cloning Kit (Aidlab, Beijing,
China). The vectors were transformed into DH5α strain of Escherichia coli (Vazyme, Nanjing,
China) and the positive single colony were selected for Sanger sequencing (Tsingke, Tianjin,
China). Five cloned full sequences were aligned with the transcriptome of P. persimilis to
make sure the accuracy of nucleotide. Primers used in current study were designed in
DANMAN 6.0 and synthesized by Sangon bio-teck (Shanghai, China) (Table 1).

Table 1. All primers used for dsRNA synthesis and RT-qPCR.

Primers Forward (5′–3′) Reverse (5′–3′)

dsRNA synthesis

dsGFP TAATACGACTCACTATAGGG
TGAGCAAGGGCGAGGAG

TAATACGACTCACTATAGGG
CGGCGGTCACGAACTCCAG

dsPpATPb TAATACGACTCACTATAGGG
CCCACTCACTGTAGCCAAT

TAATACGACTCACTATAGGG
TGTCGTTTACGGAACTCGG

dsPpATPd TAATACGACTCACTATAGGG
ACTGGGTGAAGTTGGCTGA

TAATACGACTCACTATAGGG
ATTGCTGAGTCTCGTGGTC

dsPpRpL11 TAATACGACTCACTATAGGG
CCGGCAGAGTTCAGAAAGAC

TAATACGACTCACTATAGGG
CTACGGTGAGGCACGTTGTA

dsPpRpS2 TAATACGACTCACTATAGGG
GACGCTTTTCTTGGAACGAC

TAATACGACTCACTATAGGG
CCACAAGTCCGGAGTCAGAT

dsPptra-2 TAATACGACTCACTATAGGG
GGAGACGAAGGAAAACGTCA

TAATACGACTCACTATAGGG
CGAGTATATCTCCGGCTTCG

RT-qPCR

PpATPb GAGGATGGGCTTCATACCT ACGGCAACTCCTGAGAAGA

PpATPd GGTTCGGAAAGAGGAAATG TCGGCAAGTTTGGGATTC

PpRpl11 CGGGAATACGAACTACGC TCTGCTGGAACCATTTGAT

PpRpS20 CAAGGAAGGCGAGAAGG TGACACCGAGACCAACG

Pptra-2 AGATCGGCGTAGCAGGAGT TCTGGGCATCGTAGACAACC

actin TGGTCGGTATGGGTCAGA TGGCAGGAGTGTTGAAGGTC
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The T7 promoter sequence 5′ TAATACGACTCACTATAGGG 3′ was added in the
front of the forward and reverse PCR primers to synthesize the subsequent dsRNA (Table 1).
Then, 50 µL of the reaction mixture was made, as described in the PCR reaction. Finally,
the dsGFP, dsPpATPb, dsPpATPd, dsPpRpL11, dsPpRpS2, and dsPptra-2 fragments were
synthesized according to the instruction of T7 RNAi Transcription Kit (TR102) produced
by Vazyme.

2.5. SPc Synthesis and RNA Interference

In the present study, SPc was synthesized, as described by Li et al. [24], and provided
by the Department of Entomology and MOA Key Lab of Pest Monitoring and Green
Management, College of Plant Protection, Chinese Agricultural University. For each
gene, SPc and dsRNA were 1:1 mixed to make a complex, with 0.1% tween 20 added.
Concentration of each complex was 500 ng/µL. Stability of the complexes were checked
using 1% agarose gel electrophoresis, with corresponding unbound dsRNA as the control.
The complexes were expected to be blocked with no band presented on the gel.

Approximately 600 newly emerged females were used for interference. According
to our previous attempts, ca. 15–20 mites can be soaked in 5 µL formulation [35]. Each
soaking lasts for 7 min. For each target gene, ca. 100 P. persimilis were interfered in total.
Another ca. 100 individuals were interfered using GFP as the control. Five groups were
designed. In each group, 15–20 mites were conducted in RNAi on all five target genes
simultaneously, with GFP as the control.

After soaking, the complex solution was dried using a piece of filter paper. The
mites were left at room temperature until they could move normally. Then, they were
placed in rearing arenas, and were reared individually (Figure 1). All individuals were
used to evaluate biological performances and measure the relative expression of the
target gene.
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rier SPc; (B) dsRNA; (C) detergent tween 20; (D) formulation of SPc, dsRNA and detergent; and
(E–G) soaking process.

2.6. Change in Reproductive Capabilities of P. persimilis as Affected by RNAi

Each interfered female was provided with a newly emerged male as a mate. Pairs
that mated for at least 2 h were reared for 6 days for observing the females’ reproductive
capability. Daily fecundity and the hatching rate of eggs were recorded. For each individual,
the effective fecundity was estimated as the total number eggs produced in 6 days that
hatched successfully. Daily fecundity, hatching rate, and total effective fecundity were
compared among the five genes and the control, using one-way ANOVA, with multiple
comparisons performed using Tukey’s HSD. For each gene interfered, fecundity and
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hatching rates were also compared across the 6 days using one-way ANOVA. All statistics
were performed using IBM-SPSS 22.0, with diagrams made with GraphPad Prism 8.0. Egg
morphology were also observed, photographed using the M205 FCA (Leica Microsystems
Ltd., Hessian, Germany).

2.7. Relative Expression of the Five Genes in P. persimilis When Interfered

After biological performance observation, all individuals were collected to detect
relative expression of the target gene. Our preliminary experiments showed that most
changes in the P. persimilis reproductive capability due to RNAi could have been observed
in 6 days. For each treatment, ca. 15 females were mixed as a replicate, and 4 biological
replicates were created for expression analysis. Total RNAs were extracted and the first
strand was synthesized using the same method, as described above. CT values of each
gene were obtained by real time quantitative PCR. Reaction mixture (20 µL) contained:
10 µL 2 × GS AntiQ qPCR SYBR Green Master Mix, 0.4 µL ROX Dye, 1 µL cDNA template,
0.4 µmol forward and reverse primers, and RNase-free water. Reactions were conducted as
follows: 95 ◦C for 1 min, 40 cycles of 95 ◦C for 20 s, 58 ◦C for 20 s and 72 ◦C for 30 s. β-actin
gene was used as an internal control. Relative expression of five genes were normalized
using 2−∆∆CT according to the method [39]. For each biological replicate, its expression
of the target gene was estimated as the mean of 4 technique replicates. For each gene,
relative expression when interfered were compared with the GFP control using the t-test
(IBM-SPSS 22.0).

3. Results
3.1. Acquisition of the Five Genes and the SPc Mediated dsRNA Complexes

Sequences of PpVATPb and PpVATPd were obtained from the transcriptome of P.
persimilis. The length of these two sequences was 585 and 525 bp, respectively, and encoded
194 and 174 amino acids. All five target sequences were successfully cloned and were
identical as blasted sequences in transcripts.

The lengths of all five dsRNAs ranged from 400 to 500 bp. When each dsRNA alone
was added into the gel, there was a clear band that showed the same length with the
fragments. When combined with the SPc, the SPc mediated dsRNA complexes were
blocked in the gel with no band observed (Figure 2). The results were consistent with those
reported by Li et al. [24], indicating that SPc can bind dsRNA successfully and stably.
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Figure 2. Gel electrophoresis results of SPc mediated dsRNA complexes and corresponding unbound
dsRNAs. For each gene, when dsRNA was added, a clear band was observed on the gel. In contrast,
no band was observed with dsRNA was mixed with SPc, suggesting that the complex was blocked.
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3.2. Change in Reproductive Capabilities of P. persimilis as Affected by RNAi

Decrease in reproductive capability were observed in all treatments. When each of the
four genes interfered, daily fecundity ranged between 1.9 and 26.3, while the hatching rate
ranged between 0.43 to 0.99 (Figure 3A,B). Overall, total effective fecundity of P. persimilis
in six days decreased by 92%, 92%, 91%, 96%, and 64% when PpATPb, PpATPd, PpRpL11,
PpRpS2, and Pptra-2 were interfered, respectively (Figure 3C).

Nanomaterials 2022, 12, x FOR PEER REVIEW 6 of 12 
 

 

3.2. Change in Reproductive Capabilities of P. persimilis as Affected by RNAi 
Decrease in reproductive capability were observed in all treatments. When each of 

the four genes interfered, daily fecundity ranged between 1.9 and 26.3, while the hatching 
rate ranged between 0.43 to 0.99 (Figure 3A,B). Overall, total effective fecundity of P. per-
similis in six days decreased by 92%, 92%, 91%, 96%, and 64% when PpATPb, PpATPd, 
PpRpL11, PpRpS2, and Pptra-2 were interfered, respectively (Figure 3C). 

 
Figure 3. Reproductive capabilities of P. persimilis when the five genes were interfered. (A). Daily 
fecundity per female. (B) Egg hatching rate. (C) Effective fecundity per female. Letters above each 
bar (Means ± SEM) indicate significant differences across each treatment (SNK tests: p < 0.05). 

The greatest reduction in reproductive capability was observed when PpRpS2 was 
interfered, with 10.2% of individuals becoming completely sterile, and almost all the oth-
ers stopped laying eggs on the second day. When PpATPb, PpATPd, and PpRpL11 were 
interfered, 44%, 75%, and 70% of individuals stopped laying eggs on the second day, while 
the proportion of females who stopped laying eggs increased continuously (Table 2). Al-
most no egg laid after the third day hatched (Table 2). In contrast, when Pptra-2 was in-
terfered, only ca. 5.3% females stopped laying eggs on the second day. Daily fecundity 
was only 30% lower than the control, but the egg hatching rate decreased continuously 
since the third day (Table 3). 

Table 2. Daily fecundity of Phytoseiulus persimilis when five genes were interfered. 

Gene 
Daily Fecundity (Mean ± SEM) 

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 

GFP 
4.03 ± 0.16 a 

(n = 79) 
5.04 ± 0.13 a 

(n = 79) 
4.98 ± 0.17 a 

(n = 79) 
4.36 ± 0.15 a 

(n = 77) 
3.92 ± 0.15 a 

(n = 77) 
3.89 ± 0.24 a 

(n = 77) 

PpATPb 3.32 ± 0.16 a 
(n = 79) 

0.79 ± 0.11 b 
(n = 77) 

0.05 ± 0.05 b  
(n = 74) 

0 b  
(n = 74) 

0 b  
(n = 74) 

0.10 ± 0.07 b 
(n = 71) 

PpATPd 3.49 ± 0.14 a 
(n = 73) 

0.48 ± 0.10 b 
(n = 73) 

0.38 ± 0.08 b  
(n = 73) 

0.11 ± 0.06 b 
(n = 73) 

0.06 ± 0.03 b 
(n = 73) 

0.11 ± 0.04 b 
(n = 72) 

PpRpL11 
2.25 ± 0.11 a 

(n = 92) 
0.61 ± 0.14 b 

(n = 92) 
0.26 ± 0.09 bc 

(n = 92) 
0.21 ± 0.10 bc 

(n = 91) 
0.16 ± 0.09 bc 

(n = 92) 
0.29 ± 0.13 c 

(n = 91) 

PpRpS2 
1.89 ± 0.10 a 

(n = 88) 
0.02 ± 0.02 b 

(n = 88) 
0.01± 0.01 b 

(n = 88) 
0 b 

(n = 88) 
0 b  

(n = 88) 
0 b  

(n = 88) 

Pptra-2 3.60 ± 0.18 a 
(n = 79) 

3.52 ± 0.15 a 
(n = 79) 

2.98 ± 0.20 a  
(n = 79) 

4.32 ± 0.27 a 
(n = 79) 

3.51 ± 0.22 a 
(n = 79) 

4.01 ± 0.27 a 
(n = 77) 

Means within a row followed by different letters are significant differences across each day (SNK 
tests: p < 0.05). 

  

Figure 3. Reproductive capabilities of P. persimilis when the five genes were interfered. (A). Daily
fecundity per female. (B) Egg hatching rate. (C) Effective fecundity per female. Letters above each
bar (Means ± SEM) indicate significant differences across each treatment (SNK tests: p < 0.05).

The greatest reduction in reproductive capability was observed when PpRpS2 was
interfered, with 10.2% of individuals becoming completely sterile, and almost all the
others stopped laying eggs on the second day. When PpATPb, PpATPd, and PpRpL11
were interfered, 44%, 75%, and 70% of individuals stopped laying eggs on the second day,
while the proportion of females who stopped laying eggs increased continuously (Table 2).
Almost no egg laid after the third day hatched (Table 2). In contrast, when Pptra-2 was
interfered, only ca. 5.3% females stopped laying eggs on the second day. Daily fecundity
was only 30% lower than the control, but the egg hatching rate decreased continuously
since the third day (Table 3).

Table 2. Daily fecundity of Phytoseiulus persimilis when five genes were interfered.

Gene
Daily Fecundity (Mean ± SEM)

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

GFP 4.03 ± 0.16 a
(n = 79)

5.04 ± 0.13 a
(n = 79)

4.98 ± 0.17 a
(n = 79)

4.36 ± 0.15 a
(n = 77)

3.92 ± 0.15 a
(n = 77)

3.89 ± 0.24 a
(n = 77)

PpATPb 3.32 ± 0.16 a
(n = 79)

0.79 ± 0.11 b
(n = 77)

0.05 ± 0.05 b
(n = 74)

0 b
(n = 74)

0 b
(n = 74)

0.10 ± 0.07 b
(n = 71)

PpATPd 3.49 ± 0.14 a
(n = 73)

0.48 ± 0.10 b
(n = 73)

0.38 ± 0.08 b
(n = 73)

0.11 ± 0.06 b
(n = 73)

0.06 ± 0.03 b
(n = 73)

0.11 ± 0.04 b
(n = 72)

PpRpL11 2.25 ± 0.11 a
(n = 92)

0.61 ± 0.14 b
(n = 92)

0.26 ± 0.09 bc
(n = 92)

0.21 ± 0.10 bc
(n = 91)

0.16 ± 0.09 bc
(n = 92)

0.29 ± 0.13 c
(n = 91)

PpRpS2 1.89 ± 0.10 a
(n = 88)

0.02 ± 0.02 b
(n = 88)

0.01± 0.01 b
(n = 88)

0 b
(n = 88)

0 b
(n = 88)

0 b
(n = 88)

Pptra-2 3.60 ± 0.18 a
(n = 79)

3.52 ± 0.15 a
(n = 79)

2.98 ± 0.20 a
(n = 79)

4.32 ± 0.27 a
(n = 79)

3.51 ± 0.22 a
(n = 79)

4.01 ± 0.27 a
(n = 77)

Means within a row followed by different letters are significant differences across each day (SNK tests: p < 0.05).
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Table 3. Daily hatching rate of eggs produced by Phytoseiulus persimilis when five genes were interfered.

Gene
Hatching Rate (Mean ± SEM)

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

GFP 0.99 ± 0.01 a
(n = 77)

0.99 ± 0.01 a
(n = 79)

0.99 ± 0.01 a
(n = 78)

1.00 ± 0.00 a
(n = 74)

0.98 ± 0.01 a
(n = 74)

0.99 ± 0.003 a
(n = 72)

PpATPb 0.62 ± 0.03 a
(n = 74)

0.10 ± 0.04 b
(n = 41)

0 b
(n = 1)

0 b
(n = 5) - 0 b

(n = 1)

PpATPd 0.56 ± 0.03 a
(n = 71)

0.04 ± 0.02 b
(n = 46)

0 b
(n = 16) - 0 b

(n = 3)
0 b

(n = 1)

PpRpL11 0.67 ± 0.03 a
(n = 83)

0.18 ± 0.07 b
(n = 28)

0.08 ± 0.13 b
(n = 10)

0 b
(n = 5)

0 b
(n = 4)

0 b
(n = 5)

PpRpS2 0.56 ± 0.04 a
(n = 79)

0 b
(n = 1)

0 b
(n = 1) - - -

Pptra-2 0.96 ± 0.02 a
(n = 69)

0.87 ± 0.03 a
(n = 71)

0.40 ± 0.05 b
(n = 71)

0.19 ± 0.0 c
(n = 63)

0.03 ± 0.02 d
(n = 63)

0.07 ± 0.03 d
(n = 60)

Means within a row followed by different letters are differences across each day (SNK tests: p < 0.05).

3.3. Relative Expression of the Five Genes in P. persimilis When Interfered

Relative expression of all five target genes decreased significantly when interfered
(Figure 4A–E). Among which, relative expression of PpRpL11 reduced by 64% (Figure 4C),
while that of the other four genes decreased by at least 80%. The maximum decrease in
expression (97%) was observed when Pptra-2 was interfered (Figure 4E).

Nanomaterials 2022, 12, x FOR PEER REVIEW 7 of 12 
 

 

Table 3. Daily hatching rate of eggs produced by Phytoseiulus persimilis when five genes were inter-
fered. 

Gene 
Hatching Rate (Mean ± SEM) 

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 

GFP 0.99 ± 0.01 a 
(n = 77) 

0.99 ± 0.01 a 
(n = 79) 

0.99 ± 0.01 a 
(n = 78) 

1.00 ± 0.00 a 
(n = 74) 

0.98 ± 0.01 a 
(n = 74) 

0.99 ± 0.003 a 
(n = 72) 

PpATPb 
0.62 ± 0.03 a 

(n = 74) 
0.10 ± 0.04 b 

(n = 41) 
0 b  

(n = 1) 
0 b  

(n = 5) -— 
0 b  

(n = 1) 

PpATPd 0.56 ± 0.03 a 
(n = 71) 

0.04 ± 0.02 b 
(n = 46) 

0 b  
(n = 16) 

- 0 b  
(n = 3) 

0 b  
(n = 1) 

PpRpL11 0.67 ± 0.03 a 
(n = 83) 

0.18 ± 0.07 b 
(n = 28) 

0.08 ± 0.13 b 
(n = 10) 

0 b  
(n = 5) 

0 b  
(n = 4) 

0 b  
(n = 5) 

PpRpS2 
0.56 ± 0.04 a 

(n = 79) 
0 b  

(n = 1) 
0 b  

(n = 1)  - - - 

Pptra-2 
0.96 ± 0.02 a 

(n = 69)  
0.87 ± 0.03 a 

(n = 71)  
0.40 ± 0.05 b 

(n = 71) 
0.19 ± 0.0 c  

(n = 63) 
0.03 ± 0.02 d 

(n = 63) 
0.07 ± 0.03 d 

(n = 60) 
Means within a row followed by different letters are differences across each day (SNK tests: p < 
0.05). 

3.3. Relative Expression of the Five Genes in P. persimilis When Interfered 
Relative expression of all five target genes decreased significantly when interfered 

(Figure 4A–E). Among which, relative expression of PpRpL11 reduced by 64% (Figure 4C), 
while that of the other four genes decreased by at least 80%. The maximum decrease in 
expression (97%) was observed when Pptra-2 was interfered (Figure 4E). 

 
Figure 4. Relative expression of five genes (A–E) in Phytoseiulus persimilis when interfered or not. 
Total RNAs were extracted from 10–15 P. persimilis individuals. Four biological replicates were set 
for each gene. Differences of relative expression between target gene and GFP were analyzed with 
a t-test using IBM-SPSS 22.0 and all graphs were created using GraphPad Prism 8.0. 

4. Discussion 
After being soaked in the SPc mediated dsRNA complex, both the reproductive capa-

bility of P. persimilis and relative expression of the target genes decreased. These results sug-
gested that SPc mediated dsRNA entered P. persimilis body successfully through soaking, 
which became a RNAi technique that was very convenient to perform. In the present study, 
expression of PpRpL11, PpRpS2 and Pptra-2 when interfered were 6%, 70%, and 55% lower, 
respectively, than those reported by Bi et al. When interferences were performed through 

Figure 4. Relative expression of five genes (A–E) in Phytoseiulus persimilis when interfered or not.
Total RNAs were extracted from 10–15 P. persimilis individuals. Four biological replicates were set
for each gene. Differences of relative expression between target gene and GFP were analyzed with a
t-test using IBM-SPSS 22.0 and all graphs were created using GraphPad Prism 8.0.

4. Discussion

After being soaked in the SPc mediated dsRNA complex, both the reproductive
capability of P. persimilis and relative expression of the target genes decreased. These results
suggested that SPc mediated dsRNA entered P. persimilis body successfully through soaking,
which became a RNAi technique that was very convenient to perform. In the present study,
expression of PpRpL11, PpRpS2 and Pptra-2 when interfered were 6%, 70%, and 55% lower,
respectively, than those reported by Bi et al. When interferences were performed through
oral delivery, suggesting the soaking method is also highly effective [16]. In addition,
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relative expression of the target genes was measured six days after interference, suggesting
the long-term effect of this method.

Previous studies showed that PpRpL11, PpRpS2 and Pptra-2 are involved in repro-
duction regulation in phytoseiids [15,16]. Generally, VATPases were not considered as
directly related to reproduction. However, PpATPb and PpATPd were expected to be tightly
involved in energy metabolism. Arthropod females often had their energetic requirement
increase significantly after mating for reproductive purposes [40–42]. For example, in wolf
spider, the content of Glucose in fertilized female is twice that in virgin individuals [42].
Consumption rates of P. persimilis increased by ca. seven times after mating, suggest-
ing there is also high energetic requirement for egg production [43]. When ATP genes
were interfered, many small arthropods had fecundity reduced due to disturbed energy
metabolic [44,45]. It is reasonable to expect similar patterns in P. persimilis.

Regulation of reproduction is undoubtedly very complicated. For example, in the
model organism D. melanogaster, there were 30,075 distal regulatory elements related to
embryonic development by analyzing cis-regulatory dynamics after egg laying. Gene-
expression at different timings during embryonic development also differ [46,47]. In
the present study, eggs that failed to hatch show different morphological changes when
different genes were interfered. According to the terms generally used in insect embryo
development [48], the opacite and transparent parts of each egg were termed as yolk and
developmental basis, respectively. When PpATPb and PpATPd were interfered, almost all
eggs failed to hatch had the developmental basis shriveled. When PpRpL11 and PpRpS2
were interfered, partial eggs had the yolk shriveled, and some eggs just failed to hatch
with no obvious morphological change observed. When Pptra-2 was interfered, all eggs
that produced from the third to sixth day failed to hatch had the yolk shriveled (Figure 5).
However, due to limitations of our knowledge, we are currently not able to link the
phenotypes to gene functions theoretically.

Studies on molecular mechanism of P. persimilis mainly focused on molecular charac-
teristic, protein structure and expression pattern. Limited molecular biological techniques
have been applied to phytoseiids successfully in investigating and verifying gene functions.
Our study showed that the nanocarrier SPc-mediated dsRNA delivery system can be con-
veniently and effectively applied to interfere functional genes in phytoseiids, which is the
required first step to study gene functions. With this system developed, we expect more
techniques, such as fluorescence in situ hybridization, protein–protein interaction, CRISPR,
etc., can and will be applied to these tiny organisms, to explain the mechanisms behind
their specific biological features.
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Figure 5. Morphology of normal P. persimilis eggs (laid by females interfered with GFP) and unhatched
eggs laid by females had each of the five genes interfered. When the mother had PpATPb and PpATPd
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interfered, all eggs failed to hatch had the developmental basis shriveled. When the mother had
PpRpL11 and PpRpS2 interfered, partial eggs had the yolk shriveled, and some eggs just failed to
hatch with no obvious morphological change observed. When the mother had Pptra-2 interfered, all
eggs produced from the fifth day failed to hatch had the yolk shriveled. Eggs were photographed
using the M205 FCA (Leica Microsystems Ltd., Hessian, Germany).
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