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Simple Summary: Cancer in the head and neck region (HNSCC) is exponentially increasing due
to human papillomavirus (HPV) infections. This paper helps us to understand the complexity of
the inflammatory networks and the mechanisms of immune evasion in HPV+ HNSCC to open up
new avenues and drive the discovery of useful tools to be translated clinically in the screening and
treatment of these cases, especially to overcome resistance and improve patients’ quality of life.

Abstract: Head and neck squamous cell carcinomas (HNSCC) are a heterogeneous group of malig-
nancies which have shown exponential incidence in the last two decades especially due to human
papillomavirus (HPV) infection. The HPV family comprises more than 100 types of viruses with
HPV16 and HPV18 being the most prevalent strains in HNSCC. Literature data reveal that the
mutation profile as well as the response to chemotherapy and radiotherapy are distinct among HPV+
versus HPV-negative tumors. Furthermore, the presence of the virus induces activation of an immune
response, in particular the recruitment of specific antiviral T lymphocytes to tumor sites. These T cells
when activated produce soluble factors including cytokines and chemokines capable of modifying
the local immune tumor microenvironment and impact on tumor response to the treatment. In
this comprehensive review we investigated current knowledge on how the presence of an HPV
can modify the inflammatory response systemically and within the tumor microenvironment’s im-
munological responses, thereby impacting on disease prognosis and survival. We highlighted the
research gaps and emerging approaches necessary to discover novel immunotherapeutic targets for
HPV-associated HNSCC.

Keywords: papillomavirus infections; head and neck squamous cell carcinoma; tumor microenvironment;
cellular immunity; immunotherapy

1. Head and Neck Squamous Cell Carcinoma (HNSCC)

Head and neck squamous cell carcinoma (HNSCC) represents the sixth most frequent
cancer worldwide [1]. HNSCC is etiologically associated to exposure to extrinsic carcino-
gens such as smoking and alcohol consumption [2,3]. Since the late 1990s, there has been
an exponential rise in HNSCC incidence, especially oropharyngeal tumors (OPSCC) in
countries with the highest median income, which is related to human papillomavirus
(HPV) infection [4,5]. HPV has over 200 serotypes, with HPV16 and HPV18 strains being
primarily responsible for HPV-related HNSCC [6]. HPV+ OPSCC is most common in
healthier, younger, and non-smoking patients [5]. Significant progress has been achieved
over the past few decades in the molecular profile and characterization of both HPV- and
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HPV+ HNSCC. These cooperative efforts established the impact of mutations in TP53
(84%), CDKN2A (58%), CCND1 (31%), and the overexpression of PI3K pathways (30%) in
HPV-negative cases associated with tobacco, but fewer genomic alterations were observed
in HPV+ HNSCC [4].

HPV+ OPSCC presents distinctive differences from HPV- tumors in the infiltrating
immune cell population profile, underlining a unique biology of this malignancy [7–9].
The HPV infection is an early event and most of the HNSCC arises from deep lingual
tonsils and palatine crypts. Reticulated crypt epithelium in the oropharynx is unique to
this anatomical location in the head and neck, and may explain why HPV is estimated
to be five times higher in the oropharynx when compared to the oral cavity, larynx, or
hypopharynx [10]. During the course of the HNSCC’s development and progression, the
tumor cells and the surrounding microenvironment (TME) are in constant communication
and continuously evolve together [10,11]. Tumor cells can adapt several mechanisms to
escape immune surveillance, favor tumor growth, proliferation, survival, and promote
invasion [6,12,13]. In this scenario, the understanding of the inflammatory networks and
the mechanisms of immune evasion in HPV+ HNSCC could help us to drive the discovery
of useful tools to be translated clinically in the screening and treatment of these cases,
especially to overcome resistance and improve patients’ quality of life.

2. Inflammatory Response in HNSCC

Inflammation in cancer has been described to initiate genetic instability in tumor
cells [14]. During HPV infection, infiltrating immune cells interact with the virus to induce
and/or activate epithelial cell differentiation [15]. The TME of HNSCC is composed of a
heterogeneous cell population integrated in a complex extracellular matrix (ECM) [16]. The
main cellular components of the TME are tumor-infiltrating lymphocytes (a.k.a.: TILs;
or B and T lymphocytes), tumor-associated macrophages (TAMs), natural killer cells
(NKs), tumor-associated neutrophils (TANs), dendritic cells (DCs), and cancer-associated
fibroblasts (CAFs) [17,18] (Figure 1). In an initial stage, the tumor development can be
enriched by cytotoxic innate lymphocytes (e.g., NKs) and adaptive immune cells (e.g., B
and T lymphocytes); however, progressive cancer cells can regulate different signaling
mechanisms that mimic immune tolerance in order to evade the tumoricidal attack and
eventually lead to tumor metastasis [19].

The better prognosis of HPV+ HNSCC when compared to HPV- HNSCC has been
associated with the higher number of TILs [20–22]. The TIL population can be classified
into two major subsets: CD4+ and CD8+ T lymphocytes (Figure 2). Furthermore, the
effector CD4+ T lymphocytes are subdivided into two groups with distinctive characteris-
tics: regulatory T (Treg) and helper T (Th) cells [23]. In HNSCC, the CD8+ T lymphocyte
infiltration has anti-tumoral activity and its presence is related to a favorable outcome [24].
In HPV+ HNSCC, the tumor antigen tolerance has been attributed to the presence of abun-
dant levels of activated Treg lymphocytes within the TME [25–27]. However, effector T cells
can polarize into exhausted T cells leading to cancer immune evasion [28]. T-cell exhaustion
is a hyporesponsive state of T cells characterized by increased inhibitory receptors (such
as: cytotoxic T lymphocyte antigen-4 (CTLA-4), programmed cell death protein 1 (PD-1),
the T-cell immunoglobulin domain and mucin domain protein 3 (TIM-3), the lymphocyte
activation gene 3 protein (LAG-3), the band T lymphocyte attenuator (BTLA), the T-cell
immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT)),
as well as the decreased effector cytokines (such as: interleukin-2 (IL-2), tumor necrosis
factor-α (TNF-α), interferon-γ (IFN-γ), granzyme B (GzmB)), which impair the cytotoxicity
leading to an inability to eliminate cancer cells [27,29–34]. Therefore, reversing the T-cell
exhaustion status might represent a potential strategy to treat cancer. It is known that
the secretion of immunesuppressive cytokines (such as the transforming growth factor-β
(TGF-β) and interleukin-10 (IL-10)) is a major contributor to immune tolerance by reg-
ulatory T cells (Tregs) [35]. They are able to enhance tumor cell proliferation, survival,
and metastasis by regulating anti-tumor immunity [36,37]. However, the therapeutic ap-
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plication of inhibitory cytokines remains a challenge to exploit their anti-tumor activity
while keeping a low level of toxicity [38]. In the same way, multiple reports demonstrated
the essential role of chemokines receptors (CCR4, CCR5, CXCR3, CXCR4, CCR6, and
CCR7) in the regulation of Tregs for trafficking and homing for inflammatory sites in oral
cell lines [39–43]. Chemokines are a superfamily of proteins that act as mediators not
only affecting immune-cell infiltration into tumor sites, but also having a great impact on
cancer progression by inducing ECM degradation via matrix metalloproteinase (MMP),
and promoting neovascularization [44,45]. Chemokines are potentially dual-functional
(homeostatic and inflammatory) during tumor development. The same chemokines can be
either favorable or unfavorable prognostic indicators depending on the type and/or stage
of the malignancies [45]. The contribution of chemokines to tumor progression depends on
the balance between tumor-promoting and tumor-inhibiting factors [46]. Cytokines and
chemokines may become formidable partners in synergistic therapeutic strategies com-
bined with gene and/or cell therapy and monoclonal antibody-based therapies; however,
further studies need to be carried out to confirm the safety and benefit over the current
therapeutic strategy.
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Figure 1. Tumor microenvironment (TME) associated with HPV+ HNSCC. The TME comprises
malignant epithelial cells, and a heterogeneous cell population integrated in a complex extracellular
matrix (ECM) 16. The main cellular components of the TME are tumor-infiltrating lymphocytes
(a.k.a.: TILs; or B and T lymphocytes), tumor-associated macrophages (TAMs), natural killer cells
(NKs), tumor-associated neutrophils (TANs), dendritic cells (DCs), and cancer-associated fibroblasts
(CAFs). In HPV+ HNSCC the virus has a key role in the immune dysfunction by the recruitment
and activation of cytokines- and chemokines-regulating cells associated with tumor growth and
dissemination (Image created using Canva Pro Software at https://www.canva.com/pro/, accessed
on 28 September 2022).
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Figure 2. Immune cells play a key role in tumor cell growth and dissemination. Cells of the innate
immunity branch provide a rapid response to non-self-antigens. In contrast, cells of the adaptive
immunity branch provide a slower but specific response. Several cell subsets, including TIL and
NK cells, connect both branches of immunity because they express receptors similar to those in
conventional B and T cells. Even though the specificity of these receptors is limited, the response to
specific non-self-antigens is prompt.

The major components in the TME are the tumor-associated macrophages (TAMs)
and they are highly dynamic and heterogeneous and are tamed by tumor cells to promote
tumor growth and progression [47]. TAMs can express cytokines that stimulate tumor cell
proliferation and survival by regulating the transforming growth factor (TGF-β), the ep-
ithelial growth factor (EGF) as well as the EGF ligants and receptor (EGFR), the hepatocyte
growth factor (HGF), the platelet-derived growth factor (PDGF), and the fibroblast growth
factor (FGF) [48]. These cells also play a crucial role in the reorganization of the TME by
promoting tumor cell motility via ECM degradation and the initiation of angiogenesis in
hypoxic areas with a poor blood supply [49]. TAMs involve multiple phenotypes associated
with a wide range of functions under distinctive pathological conditions. For instance,
macrophages can be classified into groups depending on their activity and polarized status,
as classically (M1) or alternatively activated (M2) [50]. The hypoxic tumor area contains
chemokines and immunomodulatory proteins (such as CSF1, TGF-β, CCL2, FTL and FTH)
which promote the polarization of TAMs into M2 macrophages [49]. In conventional cell-
mediated immune responses, M1 macrophages have pro-inflammatory functions activated
through IFN-γ, Th1 cytokines, and lipopolysaccharides in response to the presence of
pathogens [51]. M1 TAM promotes the destruction of cancer cells and the inhibition of
angiogenesis, concomitant with the activation of an inflammatory reaction [52]. Conversely,
the anti-inflammatory and immunosuppressive cytokine-chemokine TME is responsible for
dampening the macrophage activation by inducing its polarization towards the anti-tumor
M2 profile [18,53]. M2 TAMs secrete pro-tumor factors (such as IL-4, IL-6, IL-10, IL-13, EGF,
and VEGF), while the tumor suppressor M1 TAMs expresses anti-tumor factors (such as
IL-12, the major histocompatibility complex (MHC) class II, and TNF-α) [53]. Furthermore,
M2 macrophages may be responsible for inefficient tumor antigen presentation via MHC
class I to cytotoxic cells such as NKs and CD8+ T lymphocytes [18,43]. The overexpression
of polarized M2 TAMs and Tregs in HNSCC is associated with poor overall survival in
HNSCC [11,17,25,26]. The unbalanced immune response at the tumor site interferes with
the recruitment and activation of effector cells to support (or not) an efficient immune
response to the tumor. The circulating Tregs’ and TAMs’ polarization status leading to
increased expression of immune-suppressive cytokines is a fundamental mechanism by
which the tumors can escape the immune surveillance, and they are also a promising target
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for further investigations as anti-cancer therapies. However, the conditions within the TME
endow the immune cells with plasticity and versatility, and this dynamic interaction will
define the specific functions and how the tumor will progress.

3. HPV Infection and the Impact on the Immune System in HNSCC

HPV is a group containing more than 100 different types of viruses with pathogenic
behavior to humans [6]. They are a circular, non-enveloped, double-stranded DNA (ds-
DNA) virus approximately 8kb in size that infects basal keratinocytes [54]. Their genome
can be divided into an early region (E1, E2, E4, E5, E6, and E7, responsible for virus repli-
cation and generation of oncoproteins), a late region (L1 and L2 are the major and minor
capsid or coat proteins responsible for structural components of the virus), the virus-like
particle (VLP), and long control region (LCR, responsible for the virus transcription and
the epithelial tropism) [55,56] (Figure 3). The stratified epithelium of the oral cavity is the
target site for HPV to initiate infection. HPV entry is achieved via complex interactions of
the viral capsid with cellular proteins leading to conformational changes within the capsid
via proteases and chaperones, and interaction of the capsid proteins with different cell
receptors. The key mechanisms in HPV entry and trafficking are still under scientific de-
bate and studies on HPV infection mechanisms produce diverse and contradictory results.
The discrepancies may partially be attributable to the different virus genotypes, cell lines,
and methods of virus production that have been used for the experimental setups and to
different observations from in vivo and in vitro models [57–61].
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Figure 3. Structure and organization of HPV16 genome. E6 mediated p53 manipulation and
E7 mediated inhibition of pRb protein leading to sustained cell proliferation and resistance to
apoptotic barrier.

Among HPV types, HPV16 and HPV18 are considered as high risk (HR) HPV and
they are detected in 90% of the HPV+ HNSCC patients [62–64]. A higher frequency of
oral sex and casual sexual activity involving multiple partners are associated with the
elevated risk of HPV-related cancer in HNSCC [65,66]. Following infection, the virus
can remain in its episomal form, or become integrated into the host genome [67]. In the
majority of cases, HPV infection is transient and it is solved spontaneously; however, in
certain individuals, the viral clearance does not occur and the infection becomes persistent
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resulting in lesions that may eventually progress to cancer. The mechanisms of the clearance
of HPV infection in some individuals remain unknown, but persistent infection with HR-
HPV is necessary for tumor development [68]. Most often, the integration of HPV DNA
hijacks the host cell genome to initiate viral DNA replication and amplification of their own
genome [10,11]. This may result in genetic rearrangements, chromosomal inversions and
translocations, gene deletions, the activation of proto-oncogenes and loss of heterozygosity,
which generates genomic instability and increases the risk of neoplastic cell transformation
through uncontrolled cell proliferation and resistance to death (Figure 3) [68].

The HPV persistent infection also requires a tolerant TME-supporting virus evasion
and/or the suppression of the immunological responses [69]. The intratumor immune
dynamic in HPV+ HNSCC is different from HPV-negative HNSCC [25–27,69–71], mainly
due to the activity of viral proteins constantly stimulating the immune cell repertoire [72].
HPV oncoproteins interact with the host cells leading to (i) the integration of the virus into
the host genome [73]; (ii) the induction of cell proliferation and differentiation; (iii) the
host-cell immortalization [74]; (iv) the inhibition of apoptosis [75–80]; and (v) the immune
evasion [81]. Several mechanisms are involved in promoting these events and initiate
tumorigenesis. Molecular analysis revealed that specific regions of the virus are able to
directly interact with the host transcription factor binding sites orchestrating regulatory
regions used by tumor cells to control immune response [82]. Regarding their immunomod-
ulatory nature, these events impair the activation of neutrophils, NKs, and TILs cells by
dampening the expression of IFN- and IFN-related proteins in both innate and adaptive
immunological responses, that include the activation of non-canonical signaling pathways
such as the mitogen-activated protein kinase (MAPK) [83], phosphatidylinositol 3-kinases
(PI3K) [84], nuclear factor kappa B (NF-κB) pathways [85], as well as the signal transducer
and activator of transcription 3 (STAT3) [86], that prolongs the expression of a subset of
interferon-stimulated immune regulatory genes.

In HPV+ HNSCC, a higher M1/M2 TAM ratio can be observed [87,88]. M1 macrophages
are associated with a better prognosis and survival rate, whereas M2 phenotype is one
of the key determinants of tumor progression and treatment failure [89]. This is partially
explained because HPV can modulate MHC class I on the cell surface of antigen-presenting
cells (APCs), including TAMs, which would impair the viral protein presentation to cyto-
toxic cells [22]. Furthermore, tissue resident dendritic cells (DCs) are essential for immune
surveillance and act as qualified APCs to the effector cells [90,91]. Due to their plasticity
and the presence of multiple receptors on their surface, DCs crosstalk with all cells in the
immune system, and are critical for the initiation of anti-viral and antigen-specific immune
responses [92]. However, to the best of our knowledge, DCs have not been considered a
valid prognostic factor in HPV+ HNSCC.

In general, HPV+ HNSCC show significantly higher levels of TILs, especially CD8+
T cells [11]. Circulating T cells are constantly recruited to the TME in response to inflamma-
tory signals after the recognition of antigen epitopes presented by APCs cells [93]. CD8+
T cells are detectable in 64–75% of HPV+ HNSCC samples [94–96]. These TILs produce
pro-inflammatory cytokines (i.e., IFNγ and IL-17) with anti-tumoral activity that is related
with the favorable prognosis in HPV+ HNSCC [97–99]. Studies have demonstrated that the
quantity and quality of the immune infiltrate is a valid predictive tool that may improve
the stratification of HNSCC patients [26]. Both HPV+ and HPV-negative HNSCC are
infiltrated with Treg cells and NK cells overexpressing CD56dim [100,101]. It was observed
that different NK subsets are detected in HPV+ and HPV-negative tumors [102,103]. A
common mechanism used by the virus to evade the host immune system is the reduction
of MHC type I expression to escape a cytotoxic reaction. However, the specific role of NK
cell-controlling HPV+ HNSCC is still under investigation [104]. This landscape provides a
rationale for the investigation of agents targeting modulators of Tregs (e.g., CTLA-4, GITR,
ICOS, IDO, and VEGFA) and NK cells (e.g., KIR, TIGIT, and 4-1BB) as adjuncts to anti–PD-1
in the treatment of advanced HNSCC [103].
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4. The Impact of Therapeutic Schemes on the Immune Status of HNSCC

The main treatment for HNSCC includes surgery or radiation for the early-stage
disease [105]. For recurrent/metastatic diseases, cytotoxic-based chemotherapy remains
the standard therapeutic option and the median survival of HNSCC patients treated with
palliative chemotherapy alone ranges from 6 to 10 months [106–108]. The combination of
immunotherapeutic strategies represents a challenging approach, with a view to enhance
anti-tumor immunity by targeting several aspects of the immune response [109]. The ma-
jority of HPV+ HNSCC patients have a favorable prognosis, and this raises the discussion
about a less intensive treatment in order to decrease the side effects and improve patients’
quality of life. To date, several clinical trials have been proposed; however, few of them
consider the HPV status for a personalized approach to target the TME dynamics (Table 1).

Furthermore, radiotherapy alone is known to induce substantial changes in the im-
mune microenvironment in solid tumors [110]. Radiotherapy can control tumor growth
by inducing cell death via direct DNA damage or generating reactive oxygen species
(ROS) [110–112]. Although these mechanisms are important to kill cancer cells, radiation
leads to the death of adjacent normal tissues causing severe adverse effects [110,113–115].
The radiotherapy influences the regulation of macrophage polarization [116], DCs phago-
cytosis [117], antigen intracellular processing and presentation to effector T cells [117–119],
NK cell activation [120], as well as the cytokine and chemokine release [121]. The response
of immune cells to radiation can determine the outcome of tumor therapy [122]. Recently, a
large number of experimental and clinical trial studies have been conducted to manipulate
the immune system, aiming to enhance the therapeutic efficiency of radiotherapy [122].
The clinical benefit can be observed in a substantial fraction of HNSCCs treated with
immune checkpoint inhibitors, but the majority of tumors remain treatment-resistant [102].
Deciphering the basic mechanisms of upfront treatment resistance will require a detailed
understanding of the immune infiltrative landscape of these tumors.

Standard treatment for locally advanced HNSCC consists mainly of chemoradiation
using docetaxel, cisplatin, and/or fluorouracil in an attempt to eradicate potential micro-
scopic residual cancer cells and ultimately improve loco-regional control and survival [123].
However, the intensification of therapy for patients who did not respond to the treatment
is not able to overcome biologically aggressive HNSCC [123]. Checkpoint inhibitors such
as anti-PD-1 and anti-PD-L1 antibodies were shown to significantly improve disease-free
survival and overall survival after the failure of platinum-based chemotherapy [124]. With
the introduction of immune checkpoint inhibitors to the clinic, a new set of toxicities, specif-
ically, immune-related adverse events, have emerged. The side effects range from minimal
to lethal and require a completely different management approach. Ipilimumab, in particu-
lar, is associated with grade 3–5 toxicity in 10–45% of HNSCC patients, depending on the
dose, and whether it was given as a single agent or in combination with other immune
therapies, chemotherapies, or molecularly targeted therapies [125]. Several clinical trials
are in progress to evaluate the utility of checkpoint inhibitors in different treatment settings
(Table 1). A cost-benefit and quality-of-life analysis may address the true contribution of
the chemoradiotherapy associated with checkpoint inhibitors as an advantage strategy to
treat patients with advanced HNSCC.
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Table 1. Clinical trials for the treatment of HNSCC patients targeting the immune system.

Target NCT
Number Status Interventions Phases

Enrolled
Patients,

n

Period
(Start Date–

Completion Date)
URL Access

Related
Articles

with Results
HPV

Status

Immune Dynamics Evaluation

Intratumor Microenvironment Peripheral Blood Cells

Inflammatory cell
subsets NCT00210470 Completed

IRX-2 (multiple cytokines)
Cyclophosphamide

Indomethacin
Zinc

Omeprazole

2 27 2005/07–2012/03
https://ClinicalTrials.gov/

show/NCT00210470 (accessed
on 28 September 2022)

[126–129] n.d. **

Increased infiltration of TILs (CD3+,
CD4+, CD8+ and CD20+ B cells)

and CD68+ macrophages in tumor
microenvironment.

Peritumoral accumulation of CD4+
T cells.

Predominance of intratumor CD8+
over CD4+ T cells.

Higher CD20+ cells were associated
with decreased tumor size.

Increased survival rates associated
with intratumor CD3+ and

CD20+ cells.

Decreased levels of naïve T cells
(CD3+CD45RA+CCR7+), central

memory T cells
(CD3+CD45RA−CCR7+CD27+),

B lymphocytes
(CD19+CD3−CD14−) and NKT

cells (CD3+CD16+CD56+).

p-53- expressing
tumor cells NCT00496860 Completed

ALT-801 (humanized soluble
T-cell receptor directed against
the p53-derived antigen fused

to IL-2)

1 26 2007/05–2009/10
https://ClinicalTrials.gov/

show/NCT00496860 (accessed
on 28 September 2022)

[130] n.d. n.d. **
Increased number of

IFN-γ+ cells.
Elevated serum IFN-γ levels.

Phosphodiesterase
type-5 NCT00843635 Completed Tadalafil (phosphodiesterase

5 (PDE5) inhibitor) n/a * 35 2008/09–2015/04
https://ClinicalTrials.gov/

show/NCT00843635 (accessed
on 28 September 2022)

[131] n.d. n.d.

Decrease in m-MDSC and Treg
cells numbers.

Significant downregulation of
MDSCs and nFoxp3:cFoxp3 ratio.
Increased CD8+ cell activation.

Intratumor reactive
T-cells and

endothelial cells
NCT00953849 Completed

Celecoxib (cyclooxygenase
2 inhibitor)

Calcitriol (Vitamin D)
1|2 21 2009/11–2015/12

https://ClinicalTrials.gov/
show/NCT00953849 (accessed

on 28 September 2022)
none n.d.

Intra-tumor increased IL-2, IFN-γ,
and GM-CSF and decreased

IL-6 staining.
n.d.

Tumor cells NCT01302834 Unknown

cetuximab (anti-EGFR mAb)
cisplatin (apoptosis-inducer via

DNA crosslinking)
MRT

3 987 2011/02–
https://ClinicalTrials.gov/

show/NCT01302834 (accessed
on 28 September 2022)

[132] Yes n.d. n.d.

Interleukin-6 NCT01403064 Terminated ALD518 (humanized anti-IL-6
antibody) 2 76 2011/07–2014/03

https://ClinicalTrials.gov/
show/NCT01403064 (accessed

on 28 September 2022)
none n.d. n.d. n.d.

Anti-tumor cellular
immunity NCT01468896 Active, not

recruiting
Cetuximab (anti-EGFR mAb)

Edodekin alfa
(recombinant IL-12)

1|2 23 2011/11–
https://ClinicalTrials.gov/

show/NCT01468896 (accessed
on 28 September 2022)

none n.d. n.d. n.d.

HPV-infected cells
and tumor cells NCT01585428 Completed

Fludarabine (inhibitor of
DNA synthesis)

Cyclophosphamide (inhibitor of
protein synthesis)

Young TIL (Tumor Infiltrating
Lymphocytes)

Aldesleukin (recombinant IL-2)

2 29 2012/04–2016/08
https://ClinicalTrials.gov/

show/NCT01585428 (accessed
on 28 September 2022)

[133] Yes n.d. n.d.

Phosphodiesterase
type-5 NCT01697800 Completed Tadalafil (phosphodiesterase

5 (PDE5) inhibitor) 2 40 2012/09–2014/07
https://ClinicalTrials.gov/

show/NCT01697800 (accessed
on 28 September 2022)

none n.d. n.d. n.d.

Inflammation and
pain NCT01883908 Terminated Acupuncture

Usual medical care for pain relief n/a 4 2012/12–2015/02
https://ClinicalTrials.gov/

show/NCT01883908 (accessed
on 28 September 2022)

none n.d. n.d. n.d.

Innate and
adaptive immunity

crosstalk
NCT01984892 Terminated Poly-ICLC (TLR3-ligand) 2 8 2013/11–2014/08

https://ClinicalTrials.gov/
show/NCT01984892 (accessed

on 28 September 2022)
[134] n.d. n.d. n.d.

HPV-specific T cell
repertoire NCT02002182 Active, not

recruiting

ADXS11-001/ADXS-HPV
(immunobiological product from

Listeria monocytogenes)
2 15 2013/12–2023/08

https://ClinicalTrials.gov/
show/NCT02002182 (accessed

on 28 September 2022)
none Yes n.d.

No difference between treatment
and control groups on

HPV-specific T cell response rate.

HPV-specific T and
B cell repertoires NCT02163057 Completed

INO-3112 (plasmids encoding
HPV oncoproteins delivered by

electroporation system)
1|2 22 2014/08–2017/01

https://ClinicalTrials.gov/
show/NCT02163057 (accessed

on 28 September 2022)
none Yes Suggestive modulation of CD8+,

perforin+ and FoxP3+ TILs. n.d.

https://ClinicalTrials.gov/show/NCT00210470
https://ClinicalTrials.gov/show/NCT00210470
https://ClinicalTrials.gov/show/NCT00496860
https://ClinicalTrials.gov/show/NCT00496860
https://ClinicalTrials.gov/show/NCT00843635
https://ClinicalTrials.gov/show/NCT00843635
https://ClinicalTrials.gov/show/NCT00953849
https://ClinicalTrials.gov/show/NCT00953849
https://ClinicalTrials.gov/show/NCT01302834
https://ClinicalTrials.gov/show/NCT01302834
https://ClinicalTrials.gov/show/NCT01403064
https://ClinicalTrials.gov/show/NCT01403064
https://ClinicalTrials.gov/show/NCT01468896
https://ClinicalTrials.gov/show/NCT01468896
https://ClinicalTrials.gov/show/NCT01585428
https://ClinicalTrials.gov/show/NCT01585428
https://ClinicalTrials.gov/show/NCT01697800
https://ClinicalTrials.gov/show/NCT01697800
https://ClinicalTrials.gov/show/NCT01883908
https://ClinicalTrials.gov/show/NCT01883908
https://ClinicalTrials.gov/show/NCT01984892
https://ClinicalTrials.gov/show/NCT01984892
https://ClinicalTrials.gov/show/NCT02002182
https://ClinicalTrials.gov/show/NCT02002182
https://ClinicalTrials.gov/show/NCT02163057
https://ClinicalTrials.gov/show/NCT02163057
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Table 1. Cont.

Target NCT
Number Status Interventions Phases

Enrolled
Patients,

n

Period
(Start Date–

Completion Date)
URL Access

Related
Articles

with Results
HPV

Status

Immune Dynamics Evaluation

Intratumor Microenvironment Peripheral Blood Cells

HPV-infected cells
and tumor cells NCT02280811 Completed

Fludarabine (inhibitor of
DNA synthesis)

Cyclophosphamide (inhibitor of
protein synthesis)

E6 TCR (T cells genetically
engineered with a TCR targeting

HPV-16 E6 oncoprotein)
Aldesleukin (recombinant IL-2)

1|2 12 2014/10–2016/06
https://ClinicalTrials.gov/

show/NCT02280811 (accessed
on 28 September 2022)

none Yes n.d. Inconclusive results.

Anti-tumor cellular
immunity NCT02315066 Completed PF-04518600 (OX40 agonist)

PF-05082566 (4-1BB agonist) 1 174 2015/04–2020/11
https://ClinicalTrials.gov/

show/NCT02315066 (accessed
on 28 September 2022)

[135] n.d.

Upregulation of gene sets
associated with anti-tumor immune

response, mainly
IFN-γ-related pathways.

Increased CD4+ and CD8+ T-cell
clonal expansion.

Anti-tumor cellular
immunity NCT02521870 Terminated

SD-101 (synthetic CpG
oligonucleotide acting as

TLR9 ligand)
Pembrolizumab (programmed

death receptor-1
(PD-1)-blocking antibody)

1|2 241 2015/09–2020/04
https://ClinicalTrials.gov/

show/NCT02521870 (accessed
on 28 September 2022)

[136] n.d. n.d. n.d.

Lymph system NCT03332160 Completed Flexitouch (pneumatic
compression device) n/a 49 2018/01–2019/07

https://ClinicalTrials.gov/
show/NCT03332160 (accessed

on 28 September 2022)
none n.d. n.d. A slight decrease in IL-6 levels.

Intratumor reactive
T-cells NCT03463161 Terminated

Pembrolizumab (programmed
death receptor-1

(PD-1)-blocking antibody)
Epacadostat (selective inhibitor
of indoleamine 2,3-dioxygenase

1 (IDO1)

2 2 2018/03–2018/12
https://ClinicalTrials.gov/

show/NCT03463161 (accessed
on 28 September 2022)

none Yes n.d. n.d.

Intratumor reactive
T-cells NCT03938337 Terminated

Pembrolizumab (programmed
death receptor-1

(PD-1)-blocking antibody)
Abemaciclib (inhibitor of

cyclin-dependent kinases (CDK))

2 1 2019/10–2020/04
https://ClinicalTrials.gov/

show/NCT03938337 (accessed
on 28 September 2022)

none n.d. n.d. n.d.

HPV-infected cells
and tumor cells NCT04015336 Terminated

E7 TCR (T cells genetically
engineered with a TCR targeting

HPV-16 E7 oncoprotein)
2 1 2020/06–2020/07

https://ClinicalTrials.gov/
show/NCT04015336 (accessed

on 28 September 2022)
none Yes n.d. n.d.

Intratumor reactive
T-cells and NK cells NCT04099277 Terminated

LY3435151 (anti-CD226)
Pembrolizumab (programmed

death receptor-1
(PD-1)-blocking antibody)

1 2 2019/10–2020/03
https://ClinicalTrials.gov/

show/NCT04099277 (accessed
on 28 September 2022)

none n.d. n.d. n.d.

Intratumor reactive
T-cells NCT01848834 Completed

Pembrolizumab (programmed
death receptor-1

(PD-1)-blocking antibody)
1 297 2013/05–2020/06

https://ClinicalTrials.gov/
show/NCT01848834 (accessed

on 28 September 2022)
[137–141] Yes n.d. n.d.

Intratumor reactive
T-cells NCT03083873 Completed

LN-145 (autologous
TIL-mediated adoptive cell

transfer therapy)
recombinant IL-2

non-myeloablative (NMA)
lymphodepletion

2 112 2017/01–2022/03

https://clinicaltrials.gov/ct2
/show/NCT03083873

(accessed on 28 September
2022)

none Yes n.d. n.d.

Data source: adapted from ClinicalTrials.gov. * n/a = not applicable. ** n.d. = not described.

https://ClinicalTrials.gov/show/NCT02280811
https://ClinicalTrials.gov/show/NCT02280811
https://ClinicalTrials.gov/show/NCT02315066
https://ClinicalTrials.gov/show/NCT02315066
https://ClinicalTrials.gov/show/NCT02521870
https://ClinicalTrials.gov/show/NCT02521870
https://ClinicalTrials.gov/show/NCT03332160
https://ClinicalTrials.gov/show/NCT03332160
https://ClinicalTrials.gov/show/NCT03463161
https://ClinicalTrials.gov/show/NCT03463161
https://ClinicalTrials.gov/show/NCT03938337
https://ClinicalTrials.gov/show/NCT03938337
https://ClinicalTrials.gov/show/NCT04015336
https://ClinicalTrials.gov/show/NCT04015336
https://ClinicalTrials.gov/show/NCT04099277
https://ClinicalTrials.gov/show/NCT04099277
https://ClinicalTrials.gov/show/NCT01848834
https://ClinicalTrials.gov/show/NCT01848834
https://clinicaltrials.gov/ct2/show/NCT03083873
https://clinicaltrials.gov/ct2/show/NCT03083873
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5. Treatment Strategy and Vaccine for Patients with HPV+ HNSCC

The determination of the HPV status may guide clinicians in their prognostic assess-
ment and treatment decision-making in the HNSCC population [142]. HPV+ HNSCC has
better outcomes and is more sensitive to radiotherapy and chemotherapy compared with
HPV-negative HNSCC, which may be due to the effective immune responses to viral and
abundant numbers of infiltrating immune cells. The fact that HPV+ HNSCC has a good
prognosis provides the rationale for several clinical trials with de-intensified treatment
or alternative therapeutic approaches. De-intensification strategies involve less invasive
surgery, such as transoral robotic surgery (TORS), which utilizes miniaturized instruments
to perform the resection of selected cancer areas, as well as a reduction in the dose of
chemotherapy and/or radiotherapy [143].

The adoption of anti-viral strategies to combat HPV infections, including anti-HPV vac-
cines, might also modulate the TME and influence the tumor response. HPV vaccines have
a clear role in preventing cervical cancer and conditions related to HPV infection [66,144].
The prophylactic vaccines recommended by the FDA are bivalent (HPV16 and HPV18),
quadrivalent (HPV6, HPV11, HPV16, and HPV18), or nine-valent (HPV6, HPV11, HPV16,
HPV18, HPV31, HPV33, HPV45, HPV52, and HPV58) vaccines. Recently, the FDA and
Health Canada approved an expanded indication for the HPV nine-valent vaccine for the
prevention of HNSCC [144]. There is hope that preventive HPV vaccinations can also
reduce the occurrence of HPV+ HNSCC. Several long-term trials are underway to evaluate
their effectiveness and to understand how these vaccines modulate the anti-viral immunity.
The goal of cancer vaccination is to obtain anti-cancer effects by activating or increasing an
effective CD4+/CD8+ antigen-specific T cell response [145].

HPV vaccines commercially available to date (Gardasil, Gardasil 9, and Cervarix)
are able to induce immune response by blocking the viral fusion and entry into the host
cell [146]. Specifically, all of these vaccines are designed with VLPs from the HPV structural
protein L1 [55], which stimulates naive B cells and increases antibody production [146,147].
These vaccines are now in clinical trials for HPV-driven cancers including HNSCC. How-
ever, the prophylactic HPV against L1 proteins appears to be ineffective in the treatment
of HPV-induced cancers [148]. New HPV vaccines have been designed to target the on-
coproteins E6 and E7 because they are constantly necessary and exclusively produced in
cancer cells [146,149]. The challenge for therapeutic oncological vaccines is to stimulate
an immune T cell response to endogenous antigens that is sufficiently potent to induce
cytotoxic activity and broad enough to take tumors and TME heterogeneity into account.

6. Conclusions

In this review we discussed how the presence of HPV interferes with the local and
systemic immune response that may lead to a complete response or resistance to the
treatment and consequently impact on the prognosis and survival of patients with HNSCC.
Understanding the immunological dynamic associated with tumor cell behavior is the key
to developing novel immunotherapeutic targets and strategies to treat HNSCC.
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