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Abstract: In the semiconductor industry, fluorocarbon (FC) plasma is widely used in SiO2 etching, with
Ar typically employed in the dilution of the FC plasma due to its cost effectiveness and accessibility.
While it has been reported that plasmas with other noble gases, namely Kr and Xe, have distinct physical
properties such as electron density and temperature, their implementation into plasma etching has
not been sufficiently studied. In this work, we conducted SiO2 etching with FC plasmas diluted with
different noble gases, i.e., FC precursors of C4F8 and CH2F2 with Ar, Kr, or Xe, under various gas flow
rates of each as well as plasma diagnostics for the process interpretation. We show that Ar, Kr, and Xe
gas mixtures depend on the FC precursor flow rate and the pattern width in a significantly different
manner and we elucidate these findings based on plasma diagnostic results. The results of this work
are expected to offer a practical etching database for diverse applications including plasma process
engineering and the development of plasma simulation in the semiconductor industry.

Keywords: plasma etching; plasma chemistry; noble gas; plasma diagnostics

1. Introduction

Plasma is of increasing importance in semiconductor manufacturing that proceeds
through multiple and repetitive processes such as lithography, deposition, and etching [1].
In particular, as the feature size of transistors continues to shrink to meet market demands
for higher device performance, the etch process should achieve critical dimensions on the
sub-ten nanometer scale for next-generation semiconductors, leading plasmas to play a
bigger role in the industry [2].

The etching of SiO2, which is one of the most widely used materials in semiconductor
devices, has been intensely studied for decades in terms of etch rate, selectivity, etc. In plasma
SiO2 etching, halogen-containing precursors are employed to generate volatile etch products
such as silicon halide. Gas mixtures with Br and Cl have been studied for SiO2 etching to
overcome the disadvantage of isotropic etching from the use of F-containing precursors such
as SF6 [3]. Perfluorocarbon (PFC) gases such as CF4 and C4F8 are widely used owing to their
characteristic behaviors that improve the etch selectivity of SiO2 over other materials including
Si and Si3N4, as well as their achievement of etch anisotropy by forming fluorocarbon (FC)
films on the surface of SiO2 trench sidewalls [4]. Although there have been numerous reports
on the development of alternative precursors to the conventional PFC gases due to their
high global warming potential [5–8], the conventional PFC gases such as C4F8 still remain
indispensable in plasma SiO2 etching for denser patterning.

The addition of H2 or O2 gas in PFC plasmas has been widely employed to control
the etching characteristics; while H atoms generated through the dissociation of H2 in
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plasma act as a scavenger for F atoms, thereby lowering etch rates and increasing SiO2-
to-Si selectivity, O atoms from O2 dissociation consume C atoms on the material surfaces,
reducing the formation of FC films [9]. Following the same mechanism as H2/O2 addition,
hydrofluorocarbon gases (HFC, CHxF4−x with x = 1, 2, or 3) with H atoms in their molecular
structures instead of F atoms are frequently adopted, and numerous studies on the mixture
of PFC and HFC precursors have been reported over the years [10–18].

Fluorocarbon precursors, referring to one or both of the PFC and HFC precursors in
this paper, are typically diluted with noble gases when used in SiO2 etching to control the
extent of the polymeric properties of the plasma. While Ar is the most widely used for
FC precursor dilution due to its low cost and accessibility, other noble gases have been
examined as diluting gases following reports that plasmas of various noble gases have
significantly different characteristics as compared with Ar plasmas, which mainly originate
from differences in mass and ionization energy [10,19,20]. The employment of diverse
noble gas species in FC precursor dilution can, thus, be another process condition control
knob to adjust the physical and chemical properties of the plasma via variation of plasma
parameters including electron density and temperature. In particular, among the various
noble gas species, Kr and Xe are attracting more research interest since their use in etching
SiO2 with FC plasmas has been relatively less reported as compared with the numerous
studies on their physical and chemical properties [19–21]. Therefore, there is a need to
develop a plasma etch database with respect to various gas mixtures of different noble
gases including Kr and Xe.

In this work, we present experimental results of plasma SiO2 etching with various gas
mixtures of C4F8, CH2F2, and O2 diluted with Ar, Kr, and Xe to provide a SiO2 etching
database, which has been relatively little studied. Changes in the plasma parameters
from process condition variations are identified via various plasma diagnostic methods to
interpret the resulting etch profiles. The scanning electron microscope (SEM) results show
significant changes in the etch profiles according to the process condition variations with
respect to the noble gases.

2. Experiments
2.1. Description of the Processing Chamber

Figure 1 illustrates a schematic of the plasma etching chamber. For etching, coupon
wafers with a diameter of 300 mm are loaded on the electrode and 13.56 MHz radiofre-
quency (RF) power of 500 W is applied. A turbomolecular pump evacuates the chamber,
resulting in a base pressure of approximately 10−5 Torr before etching, and a throttle valve
maintains the processing pressure at 28 mTorr with gases injected by mass flow controllers
through a showerhead that faces the electrode and acts as the grounded electrode (not
shown in Figure 1). Further details are described in our previous reports [21–23]. The refer-
ence gas mixture examined in this work consists of C4F8, CH2F2, O2, and Ar with flow rates
of 6, 6, 3, and 60 sccm, respectively. An increase in the gas flow rate of either the noble gas
(Ar, Kr, or Xe) or the FC precursors is adopted in this work for process condition variation.
As also shown in Figure 1, the plasma diagnostic tools, namely a floating harmonic probe
and quadrupole mass spectrometer (QMS) (PSM, Hidden Analytical, Warrington, UK), are
mounted after plasma processing.
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Figure 1. Top schematic view of the plasma etching chamber and plasma diagnostic tools.

2.2. Sample Preparation

The coupon wafers are prepared for etching by dicing patterned wafers with a diameter
of 300 mm into 1 × 2 cm2 pieces. An amorphous carbon layer (ACL) of 1500 nm deposited
on SiO2 acts as an etch mask, having line patterns with different widths of 185, 196, 221,
and 240 nm. Figure 2 shows a cross-sectional view of a coupon wafer with a pattern width
of 220 nm, obtained using a SEM. While most SEM images of the etch results shown in this
article are the 220 nm width, we briefly address the effect of the pattern width on the etch
profile in Section 3.
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Figure 2. SEM image of the mask pattern on the target silicon dioxide before etching.

2.3. Plasma Diagnostic Methods
2.3.1. Electron Density Measurement

We employ a floating harmonic probe for the electron density measurements, which
has been reported to be suitable for processing plasma diagnostics where the deposition
of polymer films deteriorates the performance of other plasma diagnostic tools such as
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the Langmuir probe [24]. The working principle of the floating harmonic probe is briefly
described below.

Plasma current collected in the biased metallic tip of the probe can be expressed as
modified Bessel functions that represent the harmonic components of the current origi-
nating from the oscillation of the plasma potential [25]. Blocking the direct current (DC)
component of the current, i.e., iDC = i+− i− exp

[
e
(
V −Vp

)
/Te

]
I0(eV0/Te) = 0, the plasma

current ipr has the form ipr = −2i− exp
[
e(V −Vp

)
Te](i1ω + i2ω + · · ·), where i− is the ion

saturation current, V is the DC bias voltage, Te is the electron temperature, ω is the voltage
frequency applied to the probe, and inω is the n-th harmonic components of the current [24].
Thus, the ion density can be calculated using the following equation:

i1ω = −2i+(I1/I0) cos(ωt) = −2(0.61eniuB A)(I1/I0) cos(ωt), (1)

where ni is the ion density, uB is the Bohm velocity, and A is the probe area. The first
harmonic current measurement provides the ion density with Equation (1).

2.3.2. Radical and Ion Density Measurement

FC radical densities such as CF2 and CF3 are measured with a QMS (PSM, Hiden Ana-
lytical, Warrington, UK), one of the most widely used plasma diagnostic tools. Gas-phase
neutral species should be ionized before entering the mass filter, which is a quadrupole
with two pairs of electrodes biased with opposite RF and DC voltages. The applied RF
and DC voltages determine which mass will pass the quadrupole filter [26]. Details of
the working principle can be found in numerous reports [22,27–29]. The QMS chamber
is separated from the main chamber via an orifice with a diameter of 150 µm, and the
QMS chamber pressure in the present work is maintained under 10−6 Torr during the
measurements with a differential pumping unit. While the filament in the QMS ionizer
emits thermionic electrons for the ionization of radicals, it is not necessary for the plasma
ion measurements. Instead, an energy filter, normally termed a Bessel box, is used to obtain
the ion energy distribution for specific ions with a target mass. Note that the measured
radical and ion signals are quantified by normalizing them to the gas density calculated
by the ideal gas law and the electron density obtained by the floating harmonic probe,
respectively [22].

3. Results and Discussion
3.1. Effects of Noble Gas Species

Figure 3 shows the results of SiO2 etching with the addition of different noble gas
species at different flow rates. The left, middle, and right columns represent noble gas flow
rates of 60, 65, 70 sccm, respectively, while the top, middle, and bottom rows represent
the addition of Ar, Kr, and Xe, respectively. Leaving the asymmetric SiO2 etch profiles
observed with Ar and Xe addition aside, it is worth noting that the remaining ACL mask
profiles are found to depend on the noble gas species. The use of Xe instead of Ar or Kr
leads to a wider mask pattern width, which means less selective etching.

The difference in the mask etch profiles according to the noble gas variation can
be explained by using the plasma diagnostic results. Figure 4 plots the changes in the
electron density by noble gas species and flow rate variation. While the electron density
barely changes with an increase in the noble gas flow rate, the different noble gases
themselves show significant differences: electron density is highest for Xe, then Kr, and
then Ar. This trend stems from the different ionization threshold energies among the noble
gases [19,20,30]. Since a higher electron density reflects that more positive ions bombard
the substrate, it is considered that the mask experiences the most intense ion bombardment
when Xe is added to the gas mixture. Moreover, assuming all ions obtain the same kinetic
energy while being accelerated in the sheath, Xe ions having the highest mass among the
tested noble gases would provide the highest momentum transfer to the mask.
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Figure 3. SEM images of the etch profile evolution with different noble gas species of (a) Ar, (b) Kr,
and (c) Xe at varying flow rates of 60 sccm (left column), 65 sccm (middle column), and 70 sccm
(right column). The flow rates of the FC precursors and O2 are 6 sccm and 3 sccm, respectively.
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Figure 4. Electron density obtained from different noble gas species by flow rate. The flow rates of
the FC precursors and O2 are 6 sccm and 3 sccm, respectively.

In addition to the electron density, radical and ion densities with different noble gases
at different flow rates were measured, as shown in Figure 5. Among the various chemical
species in Figure 5a,b, the O radicals are expected to have the greatest impact on the ACL
mask etching [31], yet no notable difference is found in the measured O radical density
with different noble gases at different flow rates. Thus, we consider that the widest mask
pattern width observed in the etch results with the Xe addition might be attributed to the
more intense ion bombardment from Xe than from Ar or Kr, which enhances the chemical
reactions between O radicals and the mask. The discussion about the effects of noble gas
species is summarized in Table 1.
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Figure 5. Radical (left) and ion (right) densities obtained from (a,b) Ar-mixture plasma, (c,d) Kr-
mixture plasma, and (e,f) Xe-mixture plasma, at various noble gas flow rates. The flow rates of the
FC precursors and O2 are 6 sccm and 3 sccm, respectively.

Table 1. Summary on the discussion about the effects of noble gas species.

Gas Species Atomic Mass
Ionization
Threshold

Energy

Electron
Density

Momentum
Transfer

Rate

Mask
Opening

Ar→Kr→Xe Increase Decrease Increase Increase Increase

3.2. Effects of FC Precursor Flow Rate

An increase in the flow rate of the FC precursors (both C4F8 and CH2F2) exhibits
interesting etch profile evolutions. Figure 6 shows the etch results from an increased FC
precursor flow rate from 6 sccm (left column) to 8.5 sccm (right column) with Ar, Kr, and
Xe of 60 sccm (top, middle, and bottom rows, respectively). It can readily be seen that
increasing the FC flow rate results in significantly different etch profiles among the cases of
different noble gases.
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Figure 6. SEM images of the etch profiles with different noble gas species of (a) Ar, (b) Kr, and (c) Xe, at
a fixed flow rate of 60 sccm. The flow rate of the FC precursors is 6 sccm (left column) and 8.5 sccm
(right column), while the O2 flow rate is 3 sccm.

Looking at the Ar results, microtrenching is found as the FC flow rate increases, which
is considered to derive from more ions colliding with the trench sidewalls that have shrunk
by increased FC film deposition, allowing the etch rate at the corners of the trench bottoms
to increase [32]. The effects of the FC flow rate increase are more pronounced in the cases
of Kr and Xe than Ar. With Kr, the FC flow rate increase immediately results in etch stops
of the trench bottoms. In a similar but less effective way, the etch profile evolution with
Xe shows narrower pattern widths and SiO2 etch profiles. Comparing the changes in the
Kr and Xe cases with those of the Ar case, it is found that Kr and Xe plasmas are more
sensitive to changes in the flow rate of the FC precursor gas mixtures. The etch profile
evolutions shown in Figure 6 will be briefly discussed with the plasma diagnostics results.

Moreover, significant differences in the etch profiles among noble gas species are
observed as the pattern width shrinks with the FC flow rate of 8.5 sccm, as shown in
Figure 7. Taking the Ar cases first, Figure 7(a-1–a-4) show that microtrenching disappears
with narrowing pattern widths. In other words, an increase in the pattern width has the
same effect as an increase in the FC precursor flow rate, which reflects that the wider
pattern widths are, the higher the FC radical fluxes are in the trenches. Meanwhile, the
etch stop with Kr, shown in Figure 6(b-2), is also found with different pattern widths, as
shown in Figure 7b. As for Xe, one interesting profile evolution behavior is observed. With
decreasing pattern widths from 245 nm to 185 nm, the trench bottoms become narrower,
leaving seam-like holes near the center of the trench bottoms. This feature has not been
reported to the best of our knowledge. The seam-like etch profile is not clearly understood
here, requiring more rigorous investigations in the future.
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Figure 7. SEM images of the etch profile evolution with different noble gas mixtures of (a-1–a-4) Ar,
(b-1–b-4) Kr, and (c-1–c-4) Xe, by pattern width.

Changes in electron density with an increase in the FC flow rate are plotted in Figure 8.
Note that the electron density at the 6 sccm FC flow rate is the same as the one shown in
Figure 4. As the FC flow rate increases from 6 sccm to 8.5 sccm, the electron density slightly
decreases for all the cases with different noble gas mixtures. These changes in electron
density with FC flow rate increase explain the evolution of the etch profiles in Figure 6,
which was not observed with the noble gas flow rate variations.
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Figure 8. Electron density obtained from different FC gas flow rates. The flow rates of the noble gases
and O2 are 60 sccm and 3 sccm, respectively.

The radical and ion densities of the gas mixtures with an FC flow rate of 8.5 sccm
were measured and compared to those for the 6 sccm FC flow rate in Figure 9. It is seen in
Figure 9a,b that the FC flow rate increase with the Ar mixture leads to overall increases in
both radical and ion density, driving an evolution of the microtrenching profiles shown in
Figure 6(a-2). For the Kr mixture, changes in the ion density with FC flow rate increase are
more notable than those in the radical density. With barely changing radical densities, the
density of PFC ions significantly decreases while that of HFC ions increases, as shown in
Figure 9c,d, respectively. The etch condition transition shown in Figure 6(b-1,b-2) with the
increasing FC flow rate might be elucidated with this notable trend of varying ion densities;
the increase in the H-containing ions, namely CHF2

+, CH2F+, and CHF+, can significantly
impede SiO2 etching since they are more polymeric than non H-containing FC ions [17],
and this phenomenon could be significant in trench bottoms due to their directionality. For
the gas mixture with Xe, the changes in the radical density are more remarkable than those
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in ion density. The increase in FC radical densities can be more effective in the mask region
than near the etch bottom of the trench, as shown in Figure 6(c-2), where mask etching
is reduced possibly due to an enhanced passivation of the mask sidewall by the increase
in FC radical densities. The discussion about the effects of FC precursor flow rates and
pattern widths is summarized in Table 2.
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Table 2. Summary on the discussion about the effects of FC precursor flow rates and pattern widths.

Gas Species FC Flow Rate Radical
Density

Ion
Density

Trench
Profile Pattern Width Trench

Profile

Ar

Increase

Increase Increase Microtrenching Microtrenching
disappeared

Kr Barely change PFC—decrease
HFC—increase Etch stop Decrease Etch stop

Xe Increase Barely change Narrowing Seam-like
etching

4. Conclusions

We examined FC plasma SiO2 etching with gas mixtures of FC precursors (C4F8 and
CH2F2), O2, and a noble gas (Ar, Kr, or Xe) under different gas flow rates of either the
FC precursors or the noble gas. This work was conducted to address the lack of an etch
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database for the additions of Kr and Xe to gas mixtures in SiO2 etching, despite the fact that
the addition of Kr and Xe in place of Ar has been reported to have promising potential as
another process control knob. In the present results, replacing Ar with Kr or Xe is found to
lead to significant differences in the etch profiles, especially when the etch environment is
highly polymeric. These results reflect that changes in the plasma parameters according to
the noble gas species provide more opportunities to vary the plasma processing conditions,
which were identified via various plasma diagnostic methods in this work.

The remarkable evolution of the etch profiles observed with decreasing pattern widths
in the Xe-added polymeric plasma is worth noting again. As the pattern width shrinks,
the SiO2 is only etched near the center of the trench bottoms, eventually leaving seam-like,
narrow etch profiles. This interesting etch profile is not observed with Ar or Kr. Thus, Xe is
expected to be the key factor for the seam-like etch profile, but the underlying mechanism is
currently out of scope. Theoretical and experimental approaches to finding the mechanism
will be explored in future work.
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