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Abstract: PTEN has been implicated in the repair of DNA double-strand breaks (DSBs), particularly
through homologous recombination (HR). However, other data fail to demonstrate a direct role of
PTEN in DSB repair. Therefore, here, we report experiments designed to further investigate the role
of PTEN in DSB repair. We emphasize the consequences of PTEN loss in the engagement of the four
DSB repair pathways—classical non-homologous end-joining (c-NHEJ), HR, alternative end-joining
(alt-EJ) and single strand annealing (SSA)—and analyze the resulting dynamic changes in their
utilization. We quantitate the effect of PTEN knockdown on cell radiosensitivity to killing, as well as
checkpoint responses in normal and tumor cell lines. We find that disruption of PTEN sensitizes cells
to ionizing radiation (IR). This radiosensitization is associated with a reduction in RAD51 expression
that compromises HR and causes a marked increase in SSA engagement, an error-prone DSB repair
pathway, while alt-EJ and c-NHEJ remain unchanged after PTEN knockdown. The G2-checkpoint is
partially suppressed after PTEN knockdown, corroborating the associated HR suppression. Notably,
PTEN deficiency radiosensitizes cells to PARP inhibitors, Olaparib and BMN673. The results show
the crucial role of PTEN in DSB repair and show a molecular link between PTEN and HR through the
regulation of RAD51 expression. The expected benefit from combination treatment with Olaparib
or BMN673 and IR shows that PTEN status may also be useful for patient stratification in clinical
treatment protocols combining IR with PARP inhibitors.
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1. Introduction

The tumor suppressor gene PTEN (phosphatase and tensin homologue deleted on
chromosome 10) was independently identified in 1997 by two groups while mapping
homozygous deletions on human chromosome region 10q23, which is deleted or mutated
in a considerable proportion of human cancers [1,2]. Germline mutations of PTEN are
associated with hereditary cancer predisposition syndromes: Cowden syndrome (CS) and
Bannayan-Zonana syndrome (BRRS) [3,4]. Mutations are inherited in an autosomal domi-
nant manner and are characterized by multiple noncancerous, tumor-like growths called
hamartomas and an increased risk of other malignancies [3,5,6]. The protein encoded by the
PTEN gene is a phosphatidylinositol-3,4,5-triphosphate-3-phosphatase that shares sequence
homology to the protein tyrosine phosphatase (PTPase) superfamily and with tensin, a
cytoskeletal protein that links integrins to the actin cytoskeleton at sites of adhesion [7,8].

The protein encoded by the PTEN gene acts as a dual-specificity lipid phosphatase
that functions as a direct antagonist of phosphoinositide 3-kinase (PI3K), which specifically
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catalyzes the dephosphorylation of the 3′ phosphate of the inositol ring in phosphatidyli-
nositol (3, 4, 5)-trisphosphate (PIP3), resulting in the production of phosphatidylinositol-4,
5 bisphosphate (PIP2) [9]. This dephosphorylation is a vital process because it results in
inhibition of the AKT/PKB (Protein kinase B) signaling pathway [10], which plays an
important role in regulating critical cellular behaviors, such as glucose metabolism, cell
growth, proliferation, survival and migration, through multiple downstream effectors [11].
The function of PTEN as an “off” switch for the AKT/PKB pathway explains its role as a
strong tumor suppressor [9,10].

Hence, the decades after PTEN identification have witnessed the generation of an
impressive body of experimental data supporting this notion. Somatic mutations or loss
of PTEN can be found in numerous sporadic cancers, including endometrial, prostate,
glioblastoma, thyroid, gastric, melanoma, pineal brain and small-cell lung, and are es-
pecially frequent in high degree malignancies [6,12–15]. Thus, PTEN loss or decreased
expression have been recognized as a hallmark of malignant diseases and a strong negative
predictor of patient survival after cancer treatment.

More recently accumulated evidence indicates that PTEN is involved in DNA damage
repair [16]. Thus, the depletion of PTEN sensitizes tumor cells to radiotherapy that relies
on the induction of DNA damage, particularly DSBs [17]. There is also a report that the
disruption of PTEN is associated with reduction in RAD51 expression, a vital homolo-
gous recombination (HR) factor [18]. This implies that PTEN may serve in the clinic as a
biomarker to identify HR-deficient tumors that can then be treated with poly-ADP ribose
polymerase inhibitors (PARPi), ionizing radiation (IR) or cis-platinum (cis-DDP) [19]. How-
ever, other research groups failed to confirm these findings and to observe an association
between PTEN loss and reduced RAD51 expression, even using the same cell lines as the
original publication [19,20]. Some researchers disfavor the hypothesis that PTEN status
affects RAD51 expression or its recruitment to DSBs [21] but agree that PTEN loss is associ-
ated with increased sensitivity to PARPi and certain DNA damaging agents [22–24]. Indeed,
rather complex patterns of sensitivities to DNA damaging agents have been associated
with the disruption of PTEN [19].

Despite their ground-breaking character, the above-presented studies leave open
several questions regarding PTEN function in DNA damage response (DDR) in general
and DSB repair in particular. In the present study, we focus on DSB repair and further
explore the role of PTEN in repair pathway balance and cell cycle control after IR exposure.
We reason that by delineating the role of PTEN in DSB repair, we will inform the next
generation of PTEN effects on DSB repair in glioblastoma cell lines. Our results have the
potential to improve customized therapeutic strategies of glioblastoma (GBM), a form of
cancer with a high incidence of PTEN mutation/loss (~40%) [25].

Our results reveal an altered balance between DSB repair pathways after PTEN knock-
down that is expected to also occur in tumors that lose PTEN function. Specifically, PTEN
knockdown impairs HR, likely by downregulating RAD51 expression. HR suppression
is compensated by single-strand annealing (SSA) that increases nearly twofold, while
alternative end-joining (alt-EJ) and classical non-homologous end-joining (c-NHEJ) remain
unaffected. The suppression of HR is accompanied by the expected suppression of the
G2-checkpoint and by an increase in sensitivity to PAPRi, such as olaparib or BMN673.
The benefit of a combination-treatment with olaparib or BMN673 and IR in PTEN negative
tumors may, thus, be achievable.

2. Results
2.1. PTEN Knockdown Radiosensitizes Normal Epithelial RPE-1 and Glioblastoma M059K Cells

To study the functions of PTEN in DSB repair, we selected a human hTert–immortalized
primary retinal epithelial cell line, RPE-1 (RPE-1 hTert), and a human glioblastoma cell
line, M059K. Both cell lines retain PTEN function and express the protein at similar levels
(Figure 1A). We screened three siRNAs in RPE-1 cells (siRNA-A, siRNA-B and siRNA-C;
sequences under Materials and Methods) for knockdown efficiency. Western blot results of
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the first experiment show a similar degree of protein knockdown after transfection of RPE-1
hTert cells with siRNA-A or siRNA-B and no effect when siRNA-C was utilized (Figure
S1). The second experiment confirms the equal effectiveness of siRNA-A and siRNA-B and
forms the foundation of our selection of siRNA-B—henceforth simply siPTEN (Figure S1).
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Figure 1. PTEN knockdown radiosensitizes RPE-1 hTert and M059K cells. (A) Western blot analysis
of PTEN in RPE-1 hTert and M059K cells transfected with specific siRNA targeting PTEN protein;
β-actin serves as loading control. (B) Flow cytometry histograms of RPE-1 hTert and M059K cells
after transfection with PTEN siRNA. (C) Distribution of PTEN knock-down RPE-1 hTert and M059K
cells in the different cell cycle phases. The analysis shows no significant differences between negative
control (siNC) and PTEN knock-down (siPTEN) cells. (D) Clonogenic survival experiments of RPE-1
hTert and M059K cells transfected or not with PTEN siRNA. Data represent the mean ± SD from
three independent experiments. The significance level, or p-value, is calculated using the two-tailed,
Student’s t-test: ns (not significant), * p < 0.05, ** p < 0.01, *** p < 0.001.

The transfection of RPE-1 or M059K cells with siRNA targeting PTEN causes 48 h
later a profound reduction in PTEN expression (Figure 1A). We opted to knockdown PTEN
and study its role on DDR and DSB repair pathway balance, rather than compare the
responses of many different cell lines expressing or not the protein, because in this way
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we operate for each cell line in an isogenic system. In addition, we also minimize the
influence of compensatory genetic changes caused by PTEN loss during the history of
tumor development that can profoundly change the genetic background of the cells and
influence thus the effects under investigation. Furthermore, the knockdown avoids the
need for PTEN overexpression, frequently used with null cell lines, to generate PTEN
proficient cells for comparison, as this is also associated with secondary effects.

Cell cycle analysis by flow cytometry shows that the distribution of cells throughout
the cell cycle during the exponential phase of growth is similar in RPE-1 hTert and M059K
cells and that PTEN knockdown fails to detectably change this distribution (Figure 1B,C).
The analysis of radiosensitivity in RPE-1 hTert and M059K cells after PTEN knockdown
is summarized in Figure 1D and Figure S1A,B. It is evident that the depletion of PTEN
causes marked increases of similar magnitude in cell radiosensitivity to killing, despite the
fact that RPE-1 hTert cells are intrinsically more radiosensitive. Moreover, this conclusion
is further supported by the survival results of U-2 OS osteosarcoma cell line after PTEN
knockdown (Figure S1C,D). Collectively, these data indicate that the depletion of PTEN
can, in principle, radiosensitize both normal and tumor cells. More cell lines will need to
be tested to confirm the generality of this effect and define the parameters that determine
its magnitude.

2.2. The Role of PTEN in HR, SSA, c-NHEJ and alt-EJ

The observed radiosensitization of RPE-1 hTert and M059K cells after PTEN knock-
down suggests effects on DSB repair. To screen how PTEN knockdown affects the function
of the four available DSB repair pathways, we introduced a battery of four U-2 OS, GFP-
reporter cell lines, a widely accepted standard in the field for such inquiries [26]. Each
of these four cell lines, has stably integrated in their genomes a construct, that reports
the function of a particular DSB repair pathway after processing a DSB introduced by
the I-SceI meganuclease that is transiently expressed by transfecting the corresponding
plasmid. Specifically, DR-GFP-U-2 OS cells report HR function, the SA-GFP-U-2 OS, SSA,
EJ5-GFP-U-2 OS, NHEJ and EJ2-GFP-U-2 OS, alt-EJ [26].

Several reports implicate PTEN in HR [17,27]. We, therefore, firstly investigated how
PTEN knockdown affects HR in U-2 OS DR-GFP cells (Figure 2A). The results show that
effective PTEN knockdown causes non-detectable disturbances in cell cycle distribution
(Figure S2A). PTEN knockdown is in all U-2 OS reporter cell lines, similar to that in
RPE-1 hTert and M059K cells (Figure S2A,B). This correlates with the similar level of
radiosensitization observed with U-2 OS cells (Figure S1D).

PTEN knockdown reduces HR by about ~30%, as compared to cells transfected with
a control siRNA. Because the effect on HR is modest we sought additional evidence to
corroborate the outcome. It has been shown that the suppression of HR is often compen-
sated by an increase in SSA. We, therefore, tested in a similar experiment the effect of PTEN
knockdown in U-2 OS, SA-GFP cells. Notably, PTEN knockdown causes an increase in
SSA by about 70% in these cells (Figure 2B), confirming compensatory actions following
HR suppression. This result is significant for two reasons: first, it indirectly confirms the
suppression for HR and second it shows that suppression of error-free HR is associated
with a substantial increase in an error-prone DSB repair pathway, SSA. Similar experiments
using U-2 OS, EJ2-GFP and U-2 OS, EJ5-GFP, reporting for alt-EJ and NHEJ, respectively,
show that efficient PTEN knockdown (Figure S2B) fails to generate detectable effects on
these DSB repair pathways (Figure 2C,D).
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Figure 2. Effect of PTEN deficiency on HR, SSA, NHEJ and alt-EJ. The established GFP-reporter assays
in U-2 OS cells, specifically designed to report the repair of I-SceI-induced DSBs by HR (DR-GFP),
SSA (SA-GFP), NHEJ (EJ5-GFP) and alt-EJ (EJ2-GFP) were utilized. (A) Percentage of GFP positive cells
(GFP+), in the negative control (siNC) and PTEN knock-down (siPTEN) of DR-GFP cells. Bar plots (right
panel) reflect the siNC-normalized GFP+ cells. (B) Same as panel (A), but for SA-GFP cells. (C) Same as
panel (A), but for EJ5-GFP cells. (D) Same as panel (A), but for EJ2-GFP cells. Data represent the mean
± SD from three independent experiments. The significance level, or p-value, is calculated using the
two-tailed, Student´s t-test: ns (not significant), * p < 0.05, ** p < 0.01, *** p < 0.001.

2.3. Effect of PTEN on RAD51 Foci Formation

To further analyze the above observed reduction in HR after PTEN knockdown, we
measured RAD51 foci formation and decay, specifically in cells irradiated in the G2-phase
of the cell cycle that are proficient for HR. The results summarized in Figure 3 show that in



Int. J. Mol. Sci. 2022, 23, 12876 6 of 20

both RPE-1 hTert and M059K cells exposed to 2 Gy of IR, RAD51 rapidly accrues to DSBs
(Figure 3A,C) and forms foci that reach a maximum at 2 h at about 12 foci per cell that
decay at later times (Figure 3B,D). The pronounced accretion of RAD51 to DSBs is reduced
by almost 70% after PTEN knockdown, corroborating the observations with reporter cell
lines that it suppresses HR.
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tive images of RAD51 foci in RPE-1 hTert cells, irradiated with 2 Gy of X-rays and collected at the 
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Figure 3. PTEN deficiency results in decreased number of IR-induced RAD51 repair foci. (A) Representative
images of RAD51 foci in RPE-1 hTert cells, irradiated with 2 Gy of X-rays and collected at the indicated
times after irradiation. Forty-eight hours before irradiation, cells were transfected with siNC or siPTEN,
siRNA. (B) Quantification of RAD51 foci in siNC and siPTEN, RPE-1 hTert, EdU−, G2-cells. (C) Same
as panel (A), but for M059K cells. (D) Same as panel (B), but for M059K cells. Cell cycle-specific
RAD51 foci analysis was performed in EdU negative, G2-phase cells (EdU-, G2-cells), as described in
Materials and Methods. The scale bar is 30 µm for all images. Data represent the mean and ± SD from
three independent determinations. The significance level, or p-value, is calculated using the two-tailed
Student´s t-test: ns (not significant), * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

Since HR is regulated at the level of DNA end resection, an initial step of HR, we
measured the accumulation of RPA70 at single-stranded DNA generated during that
process, by using flow cytometry in RPE-1 hTert and M059K cells exposed to 5 or 10 Gy
(Figures 4A–D and S2C,D). Notably, the PTEN knockdown fails to detectably modify the
level of DNA end resection in either cell line.
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Figure 4. PTEN knock-down fails to change DNA-end-resection in RPE-1 hTert or M059K cells. (A) Representa-
tive flow cytometry histograms of RPA70 intensity signal in EdU-negative, G2-phase RPE-1 hTert cells
(EdU−, G2-cells). (B) Quantification of the data shown in panel (A). The radiation effect on DNA end
resection is shown after normalization of RPA70 signal, by dividing the mean signal intensity of irradiated
cells by that of non-irradiated cells. (C) Same as panel (A), but for M059K cells. (D) Same as panel (B),
but for M059K cells. (E) Representative IF images of RPA70 foci in exponentially growing RPE-1 hTert
cells exposed to 2 Gy of X-rays. RPA70 foci are scored in EdU-negative, G2-phase cells (EdU-, G2-cells), as
described in Materials and Methods. (F) Same as panel (E), but for M059K cells. The scale bar is 20 µm
for all images. Data are means± SD from three independent determinations. The significance level, or
p-value, is calculated using the two-tailed Student´s t-test: ns (not significant), * p < 0.05.

We also analyzed resection at lower IR doses by measuring RPA70 foci formation
using the same methodology employed to analyze RAD51 foci formation in G2-phase cells.
The results shown in Figure 4E,F demonstrate effective resection detected by foci analysis
in cells exposed to 2 Gy. There is extensive increase in RPA70 foci as a function of time, with
a maximum reached at ~2 h, in line with the results on RAD51 accretion, both in RPE-1
hTert and M059K cells. However, even at the lower radiation doses tested with this assay,
PTEN knockdown fails to modulate resection. We conclude that PTEN knockdown leaves
resection unchanged and that the above observed reduction in HR should be attributed to
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other effects. In fact, the unchanged resection observed after PTEN knockdown explains
the persistence of the SSA function shown above with the reporter cell line.

2.4. PTEN Knockdown Suppresses RAD51 Expression

To gain insights into the mechanism of HR suppression, we evaluated the levels of
RAD51 protein in RPE-1 hTert and M059K cells after PTEN knockdown, specifically for
cells enriched in the G2-phase of the cell cycle. Previous work suggests a PTEN-dependent
regulation of the RAD51 expression [28]. The results in Figure 5A,B demonstrate that the
RAD51 levels are markedly reduced after PTEN knockdown. This strong reduction in
RAD51 levels is in line with the observed reduction in HR, but it remains open whether it
is entirely and exclusively responsible for the effect observed.

There are reports that PTEN inhibition causes AKT hyperactivation, which, in turn, im-
pairs HR - as we actually observe [27]. There are also reports for non-canonical, nuclear PTEN
functions on DSB repair, some of which may compromise HR directly [17,29]. We, therefore,
explore here the extent to which the above observed effects of PTEN knockdown derive from
AKT hyperactivation. For this purpose, we treated RPE-1 hTert (Figures 5C and S4A), M059K
(Figures 5D and S4B) and U2OS (Figures 5E and S4C) cells with bpV(HOpic) or SF1670, two
specific PTEN inhibitors [30,31], at the indicated concentrations and treatment times and mea-
sured AKT activity, by analyzing the phosphorylated form of AKT at Serine 473 (AKT-pS473),
a widely accepted proxy for activated AKT protein. In RPE-1 hTert cells (Figures 5C and S4A),
treatment with either inhibitor causes AKT hyperactivation that is clearly detectable at 2 h
and which increases with increasing treatment time and inhibitor concentration, being highest
at the highest concentration used (100 nM).

Densitometry data shown on Figure S4A help to visualize, in a quantitative man-
ner, the activation of AKT. Qualitatively similar results are also obtained with M059K
cells (Figures 5D and S4B). However, the densitometry results indicate that the SF1670
inhibitors has a higher impact on AKT phosphorylation in M059K cells (Figure S4B).
The clearest activation of AKT following PTEN inhibition is observed with U-2 OS cells
(Figures 5E and S4C). Notably, despite clear AKT hyperactivation after treatment with
PTEN inhibitors, the repair pathway reporter U-2 OS cell lines show no detectable effects
on HR or SSA (Figure 6A). Additionally, survival assays carried out as a proxy for effects
on HR activity show no radiosensitization after treatment with PTEN inhibitors, either in
RPE-1 hTert or in M059K cells (Figure 6B,C). Based on these results we suggest that PTEN
regulates HR in an AKT-independent manner. Notably, it is evident from the results shown
in Figure 5 that treatment of cells with PTEN inhibitors fails to change the levels of RAD51
at least for the treatment times and inhibitor concentrations used. This result further hints
to the relevance of RAD51 suppression in the suppression of HR.
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Figure 5. PTEN knock-down suppresses RAD51 expression. (A) Effect of PTEN deficiency on RAD51
expression in RPE-1 hTert cells. β-Actin serves as loading control. (B) Same as panel (A), but for
M059K cells. (C) Western blot analysis of AKT-pS473, PTEN and RAD51 protein levels in RPE-1
hTert cells treated with the indicated concentrations of bpV(HOpic) or SF1670 (PTEN inhibitors) for
the indicated times. (D) Same as panel (C), but for M059K cells. (E) Same as panel (C), but for U-2
OS cells. Densitometry analysis of the gels are shown in Figure S4. The β−actin normalized values
obtained from densitometry analysis are indicated in magenta below each lane.
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Figure 6. PTEN inhibition by bpV(HOpic) or SF1670 leaves unaffected the levels of HR or SSA determined
by GFP-reporter assays. (A) DR-GFP and SA-GFP reporter U-2 OS cells treated with the indicated
concentrations of PTEN inhibitors. GFP-positive cells (GFP+) are measured 48 h after transfection
with I-SceI expression plasmid. (B) Clonogenic survival assays with RPE-1 hTert cells treated with
the indicated concentrations of PTENi. (C) Same as panel (B), but for M059K cells. Data represent the
means ± SD from three independent experiments. ANOVA analysis with Tukey HSD post hoc test is
used to calculate the statistical significance for the data plotted in Figure 6A, while the significance
level in Figure 6B,C is calculated using the two-tailed Student´s t-test: ns (not significant), * p < 0.05.

2.5. Effect of PTEN on the Regulation of G2-Checkpoint

Previously, we have reported direct connections between the ability of cells to repair
DSB by HR and the activation of the G2-checkpoint [32]. Since PTEN knockdown compro-
mises HR, we considered it likely that it will also compromise the checkpoint response.
This would construe further evidence for HR suppression following PTEN knockdown.
When RPE-1 hTert and M059K cells are irradiated in G2-phase, they activate a checkpoint
that delays their progression into mitosis and causes a rapid decrease in mitotic index
(MI) that lasts for about 4 h, recovering at later times (Figures 7A,B and S5). This response
reflects the transient activation of the G2-checkpoint, specifically in G2-phase irradiated
cells, as only these cells are able to reach mitosis during the time interval investigated [33].
Notably, in both RPE-1 hTert and M059K cells, the G2-checkpoint is markedly suppressed,
i.e., the reduction in MI is lower after PTEN knockdown (Figure 7A,B). The activation of the
G2-checkpoint in cells irradiated in S-phase can be analyzed in the same cell populations by
following the accumulation of cells in G2-phase as a function of time after IR, using single
parameter flow cytometry (Figure 7C,D).
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Figure 7. PTEN knock-down impairs G2-checkpoint activation in RPE-1 hTert and M059K cells. The check-
point activated in cells that are in G2-phase at the time of irradiation is measured by analyzing the
mitotic index (MI), using two-parameter flow cytometry detecting DNA through PI staining and
phosphorylated H3 at Serine 10 (H3pS10), a specific marker of mitotic cells, by antibody staining.
(A) Normalized MI in siNC and siPTEN transfected RPE-1 hTert cells. Normalized MI is calculated by
dividing the MI measured in irradiated cells by that of non-irradiated cells. (B) Same as in panel (A),
but for M059K cells. (C) Single parametric flow cytometry analysis of siNC and siPTEN transfected
RPE-1 hTert cells showing the activation of the G2-checkpoint of S-phase irradiated cells. (D) Same as
in panel (C), but for M059K cells. Data from three independent experiments are presented as mean
± SD. The significance level, or p-value, is calculated using the two-tailed Student´s t-test: ns (not
significant), * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

Here, again a strong accumulation in G2-phase is observed starting 4 h after IR that is
markedly reduced after PTEN knockdown. We conclude that PTEN knockdown suppresses
HR and, as a consequence, the G2-checkpoint activation, both in cells irradiated in G2-phase,
as well as in cells irradiated in S-phase.

2.6. PTEN Depletion Sensitizes Cells to Olaparib and BMN673

PARP inhibitors (PARPi) as single agents show promise in tumor treatment through
the synthetic lethality they induce in cells with defects in BRCA1/BRCA2 and other com-
ponents of the HR repair pathway [34,35]. The results outlined above show that PTEN
knockdown is associated with radiosensitization and HR deficiency, which suggests sen-
sitization to PAPR inhibitors, such as Olaparib or BMN673 [36,37]. To test this possibility,
we conducted survival assays after administering Olaparib or BMN673 as monotherapy
(Figure 8A).
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Figure 8. PTEN knock-down suppresses HR and renders non-irradiated and irradiated cells sensitive to
PARPi, Olaparib and BMN673. (A) Effect of Olaparib and BMN673 on the survival of RPE-1 hTert
and M059K cells. Cells are treated with the indicated PARPi concentrations for 24 h. (B) Clonogenic
survival assays of RPE-1 hTert and M059K cells exposed to increasing doses of X-rays and treated with
PARPi (Olaparib—3 µM or BMN673—50 nM). Data show the mean ± SD from three independent
experiments. The significance level, or p-value, is calculated using the two-tailed Student´s t-test: ns
(not significant), * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. Note that the significance of the
observed effect is cell line dependent.

Cells are plated at low density as required and 6 h later, after cells attach and recover
from trypsinization, inhibitors are added at different concentrations and kept for 24 h.
Growth medium is replaced thereafter and colonies are allowed to develop in the absence
of inhibitors. The results in Figure 8A show that after PTEN knockdown, RPE-1 hTert
and M059K cells are markedly more sensitive to treatment with Olaparib or BMN673, as
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expected from the associated HR defect. This effect is observed at all inhibitor doses tested.
These results suggest that induced PTEN deficiency (here by knockdown) is a predictor of
PARPi sensitivity, as already proposed in different settings [19,27].

We also inquired whether the depletion of PTEN enhances the radiosensitization
usually observed after treating irradiated cells with PARPi. We carried out clonogenic
survival assays combining IR with Olaparib (3 µM) or BMN673 (50 nM), given 1 h before
and maintained for 5 h before plating. Figure 8B shows the results obtained. It is evident
that when PTEN proficient cells are treated post-irradiation with Olaparib or BMN673,
radiosensitivity is only marginally enhanced. Strikingly, following PTEN knockdown,
administration of PARPi results in statistically significant radiosensitization of RPE-1 hTert
and M059K cells, compared to PTEN knockdown-only cells. These results suggest a
potentiation of the effect of PTEN deficiency on DSB repair by PARP inhibition, which may
be a strategy in cancer therapy.

3. Discussion
3.1. PTEN Is a Tumor Suppressor with Functions in DSB Repair

Among the lesions induced in the DNA by diverse chemical or physical agents, the
DSB is rather special because of the high risk for misrepair that is associated with its
processing [38]. To counteract these risks, cells engage several pathways to remove DSBs
from their genome: c-NHEJ, HR, alt-EJ and SSA. However, intriguingly, these multiple
pathways are not equivalent alternatives, but show instead striking differences in speed
and accuracy, as well as cell cycle dependence [39,40].

PTEN is a unique and bona fide tumor suppressor protein, which possesses both
lipid and protein phosphatase activity and is inactivated in various human cancers [1,2,29].
Its inactivation causes AKT activation, which promotes cancer phenotypes and explains
the role of PTEN as a strong tumor suppressor. Notably, however, there is also strong
evidence for additional functions of PTEN that are related to its occasionally observed
nuclear localization and which specifically affects genome stability and DSB repair [41,42].
In the last decade, the role of PTEN in DSB repair has been extensively studied, but
several inconsistencies remain [19,21,27]. In the present study, we have demonstrated that
PTEN is involved in the repair of DSBs via HR by regulating RAD51 expression. As a
consequence, PTEN knockdown increases radiosensitivity, impedes G2-checkpoint and
increases genetic instability. These results suggest that patients with PTEN loss might
benefit from radiotherapy.

3.2. The Role of PTEN in DSB Repair Pathway Balance

We carried out clonogenic survival assays 48 h after efficiently ablating PTEN by siRNA.
We found strong radiosensitization both in normal epithelial RPE-1 hTert cells, as well as
in a malignant GBM cell line, M059K. The radiosensitization observed suggests an effect
in the processing of IR induced DSBs, which, as noted above, are the main culprits of cell
lethality under these conditions. From a detailed analysis of the balance of the four DSB
repair pathways following PTEN knockdown, we were able to show, using U-2 OS GFP-
reporter cell lines, that alt-EJ and NHEJ remain unchanged. Although one report shows that
PTEN promotes c-NHEJ by regulating the expression of XLF [43], effects on c-NHEJ were
not detectable in the cells used in the present study. On the other hand, HR decreased by
over 30%. The decrease in HR is consistent with another recent report [27]. Notably, we also
observed for the first time that PTEN knockdown not only suppresses HR but that it also
increases SSA. Therefore, we propose that the suppression of the error-free HR repair pathway
promotes error-prone processing by SSA, leading to the radiosensitization observed.

RAD51 is the key protein of HR that mediates homologous DNA pairing and strand
exchange, a hallmark of HR [44]. Reduced RAD51 foci formation in irradiated cells deficient
in PTEN confirms the HR defect, and the associated reduction in its expression provides a
mechanistic explanation.
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A process that regulates DSB repair and controls DSB repair pathway choice is
DNA end-resection, which consists of a 5′- to 3′-degradation of one strand on both sides of
the DSB, creating two 3′-overhangs that are quickly protected by ssDNA-binding proteins,
such as RPA [39,45]. It is well known that the length of resection and the cell cycle phase
contribute to DSB repair pathway choice through mechanisms that are under intensive
investigation. HR requires a 3′-ssDNA overhang at the DSB end to promote strand in-
vasion into the sister chromatid, which contains the homology region used as template
for DNA synthesis and repair [46]. We measured resection after PTEN knockdown by
detecting RPA70, a subunit of the RPA heterotrimer, intensity utilizing flow cytometry
and immunofluorescence. We observed similar RPA70 accretion as a function of time and
IR-dose that was not affected by PTEN knockdown. Thus, the observed HR defect in PTEN
deficient cells is unlikely to derive from a suppression of resection.

Furthermore, although PTEN inhibition causes the expected hyperactivation of AKT
that has been implicated by itself in HR suppression, our results show that this line of HR
regulation is unlikely to be the underpinning mechanism, as inhibition of PTEN function
fails to recapitulate this effect or to cause radiosensitization. Therefore, we suggest that the
contributions of PTEN to DSB repair are independent of its canonical function on the AKT
signal transduction pathway [17].

There are reports that PTEN regulates RAD51 transcription by regulating the RAD51
promoter, or by regulating E2F1-mediated RAD51 expression [29,41]. However, this is not
universally accepted [19,27]. The analysis of the effects of PTEN on RAD51 expression
requires further investigations.

3.3. The Role of PTEN on the G2/M Checkpoint

Cells rely on cell cycle checkpoints to prevent cell division in the presence of DSBs
that lead to chromosome breakage. These checkpoints are rapid signaling responses that
delay the progression of cells through the cell cycle, change transcription and mobilize
the DNA repair machinery [47]. Among checkpoints, the G2-checkpoint is particularly
relevant, as it prevents cells from entering into M-phase with unpaired DSBs.

In the present study, we investigated the function of PTEN in the G2-checkpoint and
analyzed its function separately for cells irradiated in G2- or S-phase. The results show that
PTEN knockdown causes a partial suppression of this checkpoint for cells irradiated in
either phase of the cell cycle. We consider this effect as secondary to HR suppression, rather
than as evidence for the direct involvement of PTEN in this cellular response to IR, as we
have reported that HR deficiencies uniformly suppress G2-checkpoint activation [32].

3.4. PTEN Deficient Cells Are Sensitized to Olaparib or BMN673 with or without IR

PARPis have been approved by the U.S. Food and Drug Administration (FDA)
and the European Medicines Agency (EMA) for the treatment of several cancers with
BRCA1/BRCA2 mutations, or other deficiencies in HR components. As a consequence,
there are ongoing phase 2 and 3 clinical trials for expanding their applications in cancer
treatment [48]. In the present study, we show that PTEN deficient cells not only are sen-
sitized to PARPis, as already reported [19,27], but are also further sensitized to IR [19,27].
This suggests a promising potential for their application in radiotherapy of PTEN-deficient
tumors. However, more investigations are required in order to generate a reasonable
rationale for combined treatment of PTEN-deficient tumors.

The present study recapitulates our interest in the comprehensive treatment of GBM.
GBM is a highly malignant brain tumor with a limited median survival ranging from 12 to
16 months after diagnosis [49]. Apart from surgery, radiotherapy and chemotherapy (TMZ
used predominantly), novel and more efficient treatment modalities are urgently needed.
The results of this study provide foundations for broadening our treatment horizons for
GBM treatment, especially for patients with PTEN loss or mutation.

However, as with other targeted therapies, resistance to PARPi arises in advanced
disease. Because GBM is a malignant tumor with high heterogeneity, there must be some
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other elements or genetic characteristics in addition to PTEN, which might affect the efficacy
of PARPi. One of them might be alterations in DSB repair pathway balance. So, determining
the optimal use of PARPi within combination treatments that include IR will be challenging
but worth investigating.

In conclusion, PTEN is involved in the regulation of DSB repair via HR. The depletion
of PTEN increases cell radiosensitivity to killing by downregulating RAD51 expression
through mechanisms that remain to be elucidated. The loss of PTEN function also impedes
the G2-checkpoint and increases genomic instability. Notably, cells deficient in PTEN
benefit from a combination treatment with IR and olaparib or BMN673, which may assist
the design of individualized strategies for GBM therapy, taking advantage of the highly
localized application of IR that reduces effects on normal tissues.

4. Materials and Methods
4.1. Cell Lines, X-ray Irradiation and Drug Treatments

RPE-1 hTert and M059K cells were cultured as monolayers in cell culture dishes with
D-MEM growth medium and supplemented with 10% fetal bovine serum (FBS), 100 µg/mL
penicillin and 100 µg/mL streptomycin.

U-2 OS DR-GFP, U-2 OS SA-GFP, U-2 OS EJ2-GFP and U-2 OS EJ5-GFP were grown
in McCoy’s 5A growth medium, supplemented with 10% FBS, 100 µg/mL penicillin and
100 µg/mL streptomycin and 2 µg/mL puromycin. All cell lines were cultivated at 37 ◦C in
a humidified incubator with 5% CO2. All cell lines were routinely checked for mycoplasma
contamination and only mycoplasma free cells were used in the corresponding experiments.

Cells were irradiated at room temperature using an X-ray generator (GE Healthcare)
operated at 320 kV, 10 mA with a 1.65 mm aluminum filter (effective photon energy
∼70–90 kV). To achieve an optimal dose distribution, the distance between X-ray tube
and irradiation table was adjusted according to the dish size. The 35 mm and 60 mm
diameter cell-culture dishes and 25 cm2 flasks were irradiated at a distance of 50 cm, while
100 mm diameter dishes and 75 cm2 flasks were irradiated at 75 cm distance from radiation
source. The dose rates at 50 cm and 75 cm distance were ~3.6 Gy/min and ~1.6 Gy/min,
respectively. To avoid temperature fluctuations while performing the G2/M checkpoint
assay, cells were irradiated on a warm plate at 37 ◦C. Controls were treated identically but
were not exposed to radiation.

Olaparib and BMN673 were administrated to the cells 1 h before IR at concentrations
of 3 µM and 50 nM, respectively. Cells were plated 5 h after irradiation for further analysis.
PTEN inhibitors (bpV(HOpic) and SF1670) were added into the growth media 2 h before IR
at the indicated concentrations. Cells were incubated for 6 h after irradiation and then plated
for colony formation. Control cells were treated with the corresponding concentrations of
DMSO. In the clonogenic survival assays, the growth medium, containing the inhibitors,
was replaced 24 h later using inhibitor-free growth medium and cells were allowed to
from colonies.

4.2. RNA Interference

Transfection of siRNA into cells was performed using the GenePulser X cell electro-
poration apparatus (Bio-Rad). The siRNAs were as follows: PTEN-siRNAs, siRNA-A: 5′-
CACACAGCUAGAACUUAU-3′, siRNA-B: 5′-CCAGUCAGAGGCGCUAUGU-3′, [50–52],
and siRNA-C: 5′-AGUGGCGGAACUUGCAAUC-3′, negative control (siNC): 5′-UUCUCC
GAACGUGUCACG U-3′. The specificity and efficiency of all 3 PTEN-siRNAs, were de-
termined by Western blot analysis of PTEN level after transfection with specific PTEN
siRNA (Figure S1A). Due to its best performance, in all further experiments, siRNA-
B, simply indicated as siPTEN, was utilized. For transfection, cells were harvested by
trypsinization, centrifuged at 900 rpm for 3 min and resuspended at 4 × 106 cells per
100 µL of HB buffer. Cells were transferred into an Ingenio® cuvette (Mirus, Medison, WI,
USA) and electroporated with the program achieving optimal transfection efficiency for
the corresponding cell line. Transfection efficiency was estimated by transfecting cells with
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a GFP expressing plasmid. The number of GFP positive cells detected by flow cytometry
24 h after transfection served as a measurement of transfection efficiency. Controls were
transfected with a negative-control siRNA.

4.3. Clonogenic Survival Assays

Clonogenic survival assays were employed to estimate cell radiosensitivity to killing.
After transfection with control siRNA or PTEN siRNA, cells were seeded in 60 mm dishes
and incubated at a density of approximately 105 cells/dish for the control group and
2 × 105 cells/dish for the PTEN knockdown group for 48 h. Subsequently, cells were
irradiated and seeded at low numbers in 60 mm dishes, aiming 30 to 150 colonies/dish.
After 11 days of growth for RPE-1 hTert cells and 15 days for M059K cells, colonies were
stained with 1% crystal violet in 70% ethanol, counted under the microscope and used to
calculate plating efficiency and cell survival.

4.4. Flow Cytometry (FC) Analyses of Cell Cycle Distribution, Mitotic Index (H3-pS10) and
DNA End-Resection

Cell cycle distribution was measured by FC analysis of DNA content after staining
with propidium iodide (PI). Cells were collected and fixed overnight in ice-cold 70% ethanol
and were subsequently resuspended in PI staining solution (40 µg/mL PI and 62 µg/mL
RNaseA in PBS) for 15 min at 37 ◦C. Analysis was carried out with a Gallios® flow cytometer
(Beckman-Coulter, Krefeld, Germany).

Two-parameter flow cytometry analyses were employed for determination of the
mitotic index (MI). For this experiment, cells were plated in 25 cm2 cell culture flasks
and were grown for 24 h. Flasks were then transferred to a warm room at 37 ◦C for the
remaining manipulations. At the indicated time points, cells were collected and fixed
overnight in ice-cold 70% ethanol. Subsequently, cells were spun-down and cell pellets
incubated for 15 min in 500 µL permeabilization solution (ice-cold PBS + 0.25% Triton
X-100) and collected by centrifugation at 1500 rpm. Cells were blocked in 500 µL PBG
buffer (0.2% gelatin, 0.5% bovine serum albumin in PBS) for 1 h at RT. Cells were incubated
for 2 h at RT in 150 µL primary antibody solution (anti-H3-pS10, mouse-monoclonal,
Abcam, Cambridge, UK), diluted at 1:2000 in PBG. After two washing steps with PBS, cells
were incubated for 1.5 h at RT in 150 µL secondary antibody solution, (anti-mouse Ab,
conjugated with AlexaFluor®488, Life Technologies, Taufkirchen, Germany). Cell pellets
were incubated with PI staining solution for 15 min at 37 ◦C and were analyzed on a
Gallios® flow cytometer. At least 30,000 events were scored. The acquired data was further
analyzed and visualized by Kaluza software (Beckman-Coulter, Krefeld, Germany).

For three parametric analysis of DNA end resection, cells were plated in 100 mm dishes
and grown for 48 h. Cells were pulse-labeled with 10 µM EdU for 30 min before exposure
to IR. After exposure to IR, cells were collected at different time points and permeabilized
in 500 µL of ice-cold 1 × PBS containing 0.25% Triton X-100 for 2 min on ice. Cells were
fixed in 500 µL 3% PFA solution containing 2% sucrose for 15 min at RT. Additionally, they
were blocked overnight by incubation in 500 µL PBG.

To quantify DNA end-resection, an anti-RPA70 antibody was utilized. Cells were
incubated for 1.5 h in 100 µL primary antibody solution (anti-RPA70 monoclonal antibody),
purified in-house (αSSB70B, mouse hybridoma cell line kindly provided by Dr J. Hurwitz).
Cells were washed twice in PBS and incubated in 100 µL of secondary antibody (anti-
mouse, conjugated with AlexaFluor®488, Life Technologies, Taufkirchen, Germany) for
1 h at RT. EdU incorporation was visualized by incubation of samples in 100 µL of EdU
ClickiT reaction for 30 min at RT. Cells were washed once more with PBS and DNA was
stained with PI solution for 15 min at 37 ◦C. Samples were measured with a Gallios® flow
cytometer. Only G2-phase, EdU-negative cells were analyzed for resection, as described
earlier [26].
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4.5. Indirect Immunofluorescence Staining and Quantitative Image-Based Cytometry (QIBC)
Foci Analysis

For indirect immunofluorescence detection of IR-induced foci (IRIF), cells were plated
on glass coverslips placed in 35 mm cell culture dishes. Before IR, cells were pulse-labeled
with 10 µM EdU for 30 min, then medium containing EdU was exchanged with pre-warmed
fresh medium. At the corresponding time intervals after IR, cells were fixed in 3% PFA;
2% sucrose solution for 15 min and were permeabilized in P-solution (100 mM Tris pH 7.4,
50 mM EDTA pH 8.0, 0.5% Triton X-100) for 10 min at RT. Subsequently, cells were washed
with PBS and blocked in PBG blocking buffer (0.2% gelatin, 0.5% bovine serum albumin in
PBS) overnight at 4 ◦C. For detection of RPA70 foci, an initial permeabilization step with
0.25% Triton X-100 in PBS was performed.

For detection of RAD51 or RPA70 foci, cells were incubated with the primary an-
tibodies diluted in PBG; the primary antibodies used were: anti-RPA70 (αSSB70B) and
anti-RAD51 (mouse monoclonal, Gene Tex, Irvine, CA, USA). Cells were incubated with
primary antibodies for 1.5 h at RT, and after three washing steps were incubated with
AlexaFluor®-conjugated secondary antibodies (anti-mouse, AlexaFluor®647, Abcam, Berlin,
Germany). The EdU ClickiT (Thermo Scientific, Bremen, Germany) reaction was performed
according to the manufacturer’s instructions. Cells were counterstained with 200 ng/mL
4′, 6-diamidino-2-phenylindole (DAPI) dissolved in PBS for 5–10 min at RT in order to
visualize nuclei. Cells were additionally washed in PBS and coverslips were mounted on
microscope slides using the PromoFluor Antifade Reagent (PromoKine, Heidelberg, Ger-
many). Images were captured by AxioScan Z1, automated platform (ZEISS, Jena, Germany)
and foci analyses were carried out by Imaris® software (Bitplane, Oxford, UK).

4.6. SDS-PAGE and Immunoblotting

Proteins from whole cell lysates were extracted using radioimmunoprecipitation assay
(RIPA) buffer supplemented with protease and phosphatase inhibitor cocktails, according
to the manufacturer’s instructions (Themo Scientific, Germany). The 2 × 106 cells were
lysed in 50–100 µL of RIPA buffer. Protein concentrations were determined by the Bradford
assay and 50 µg of total protein extracts were mixed with 2 × Laemmli sample buffer.

Resolved proteins were transferred to a nitrocellulose membrane by wet transfer and
were blocked with 5% non-fat dry milk in TBS, supplemented with 0.5% Tween 20 (TBS-T).
Primary antibodies were diluted in 5% non-fat dry milk in TBS-T and incubated with
the membrane overnight at 4 ◦C. After three times washing with TBS-T, the membrane
was incubated for 1 h at RT with secondary antibodies diluted in TBS-T. The following
primary antibodies were used: anti-PTEN, mouse monoclonal (Santa Cruz, Heidelber, Ger-
many), anti-RAD51, mouse monoclonal (Gene Tex, Irvine, CA, USA), anti-β-Actin, rabbit
polyclonal (Gene Tex, Irvine, CA, USA), anti-AKT-pS473, mouse monoclonal (Santa Cruz,
Heidelber, Germany). The secondary antibodies were: anti-rabbit IgG, conjugated with
IRDye680 (Li-COR Biosciences, Bad Homburg, Germany) and anti-mouse IgG, conjugated
with IRDye800 (Li-COR Biosciences, Bad Homburg, Germany). Prior to detection, the
membrane was washed again, as described above, and was allowed to dry. For detect-
ing proteins of interest, an Odyssey® Infrared Imaging System (LI-COR Biosciences, Bad
Homburg, Germany) was used. All RAW uncropped information about the Western blot
membranes is provided as Supplementary Materials (Figures S6–S9).

4.7. GFP Reporter Cell Lines to Measure HR, SSA, alt-EJ, and NHEJ Activity at I-SceI
Induced DSBs

U-2 OS GFP reporter cell lines (a gift of Dr J. Stark) [53] were exploited to measure the
repair of I-SceI induced DSBs by a specific DSB repair pathway. The DR-GFP reporter cell
line is specific for HR, the EJ5-GFP for NHEJ (total end-joining or distal end-joining), the
SA-GFP for SSA and the EJ2-GFP for alt-EJ [26]. These reporters are stably integrated into
the genomes of the corresponding cell lines. Transfection of cells with I-SceI expression
plasmid (1 µg pDNA/106 cells) was carried out 48 h after transfection with siRNA. The I-
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SceI mediated DSB was, thus, induced at the corresponding site and its repair by the
indicated DSB repair pathway generated a GFP signal that was measured with a Gallios®

flow cytometer (Beckman Coulter) 24 h later. For the reporter assays, including bpV(HOpic)
and SF1670 treatments, the drugs were administrated 6 h after transfection, when cells
were completely adherent and kept until cells were collected for flow cytometry analysis.

4.8. Statistical Analysis

All statistical analysis was carried out by using an online version of MedCalc Software
(MedCalc Software Ltd. Comparison of means calculator. https://www.medcalc.org/calc/
comparison_of_means.php (Version 20.115; accessed on 5 October 2022)). The comparison
of means module calculates the difference between the observed means in two indepen-
dent samples. A significance value (p-value) is the probability of obtaining the observed
difference between the samples if the null hypothesis were true. The comparison of means
algorithm utilizes a two-tailed Student’s t-test to calculate the p-value.

The ANOVA analysis, implemented in Figure 6A was generated by the online applet
(https://statpages.info/anova1sm.html, (accessed on 17 October 2022)), which also applies
the Tukey HSD (“Honestly Significant Difference”) post hoc test, to indicate the significance
between different groups. All the data, represents the means and standard deviations from
three independent experiments. The detailed data of the statistical analysis is included in
the corresponding Supplementary Materials.xlsx files.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms232112876/s1.
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