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Abstract: Vision is one of the dominant senses in humans and eye health is essential to ensure a good
quality of life. Therefore, there is an urgent necessity to identify effective therapeutic candidates to
reverse the progression of different ocular pathologies. Activity-dependent neuroprotective protein
(ADNP) is a protein involved in the physio-pathological processes of the eye. Noteworthy, is the small
peptide derived from ADNP, known as NAP, which shows protective, antioxidant, and anti-apoptotic
properties. Herein, we review the current state of knowledge concerning the role of ADNP in ocular
pathologies, while providing an overview of eye anatomy.
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1. Introduction

Activity-dependent protein (ADNP) is a neuroprotective protein of 123.56 kDa molec-
ular weight, widely expressed throughout the body, including the eye. Morphological and
proteomic studies showed that ADNP is distributed in the retina and cornea of different
species, including humans [1,2]. ADNP was originally discovered as an astroglial secreted
protein, able to modulate the neurotrophic/neuroprotective activity of vasoactive intestinal
peptide (VIP), as well as of pituitary adenylate cyclase-activating peptide (PACAP) [3,4].
PACAP and VIP perform their effects through the activation of G protein-coupled receptors,
pituitary adenylate cyclase-activating polypeptide receptor type 1 (PAC1R), vasoactive
intestinal polypeptide receptor 1 (VPACIR), and vasoactive intestinal polypeptide receptor
2 (VPAC2R). In particular, the PAC1 receptor shows eight different splice variants (Null,
Hip, Hop1, Hop2, Hiphop1, Hiphop2, short, and very short isoforms), whose activation by
the binding to PACAP /VIP activates phospholipase C (PLC) and adenylate cyclase (AC),
or calcium-regulated mechanisms [5]. It is worth noting that a subpicomolar concentration
of PACAP stimulated ADNP expression mainly through the MAPK signaling pathway and
cAMP-dependent protein kinase activation [6]. Both VIP and PACAP showed important
protective effects against different ocular diseases [7—17]. The therapeutic use of PACAP
or VIP presents some limitations, due to their short half-life caused by rapid enzymatic
degradation [18,19].

NAP (davunetide, NAPVSIPQ/ Asn-Ala-Pro-Val-Ser-Ile-Pro-Gln), the short peptide
derived from the ADNP sequence, demonstrated comparable protective effects in the
eye with a longer half-life, as compared to PACAP and VIP. Moreover, clinical trials
conducted with NAP for progressive supranuclear palsy, mild cognitive impairment, and
schizophrenia showed safety and tolerance in hundreds of adult patients [20].

The present review provides an overview on the eye’s anatomy and summarizes data
present in literature regarding the role of ADNP in the eye, particularly in the retina and
cornea, by hypothesizing the possibility of its clinical application.
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2. Overview of Eye Anatomy

The human eye is able to percept a multitude of shapes and colors with a resolution
of 576 gigapixels. This extraordinary ability is facilitated by the complex structure of the
eyeball, which comprises three distinct layers: the fibrous layer, the vascular layer and the
nervous layer (Figure 1).
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Figure 1. The basic anatomy of the human eye.

The fibrous tunic is the outermost layer and is composed of the sclera and the cornea.
The sclera supports the wall and the shape of the eyeball protects it from injury. It is
formed by dense connective tissue, whose type 1 collagen fibers are oriented in different
directions, giving the sclera a white appearance [21]. The cornea covers the anterior
portion of the eyeball. It is mechanically strong and transparent and provides about
70% of the eye’s refractive power [22]. The cornea is formed by five main layers: the
epithelium, the Bowman’s membrane (BM), the stroma, the Descemet’s membrane (DM)
and the endothelium. The epithelium is characterized by ~six layers of nonkeratinized
squamous epithelial cells, morphologically distinguished into the basal columnar, wing,
and superficial squamous cells. The human BM has a thickness ranging from 8 to 12 um
and is formed by collagen fibrils involved in the maintenance of the corneal shape [23].
The stroma, representing 80% of corneal thickness, is a fibrous, tough and transparent
layer, composed of 200 flattened lamellee overlapped with collagen fibrils. The keratocytes
represent the main stromal cells regulating stromal homeostasis through the synthesis of
collagen, glycosaminoglycans, and matrix metalloproteinases [24]. The DM is a dense
and acellular matrix located between the stroma and the endothelium formed by Type
IV collagen and laminin. The innermost layer of the cornea is the endothelium, formed
by a single layer of flat cells with a hexagonal shape, acting as a barrier and functional
pump. The corneal endothelial cells have limited proliferative capability in vivo since they
are arrested in the G1 phase of the cell cycle due to contact inhibition [25]. The vascular
layer, known as the uvea, is distinguished into three anatomical parts. Proceeding from the
posterior to the anterior region of the eyeball, it includes the choroid, ciliary body, and iris.
The choroid, characterized by a dense network of blood vessels, ensures a constant supply
of nourishment to structures of the eye localized in loose connective tissue. The ciliary body
is involved in aqueous humor formation. Moreover, the base of this structure is home to
the ciliary muscle, whose contraction changes the curvature of the lens leading to a process
known as accommodation [26]. The iris is a circular, pigmented diaphragm, which divides
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the space between the cornea and the lens into the anterior and posterior chambers, both
containing the aqueous humor. Through the contraction of the pupil sphincter or dilator
muscle, the iris regulates the amount of light that penetrates the eye [27]. The nervous
layer is the retina, representing a functional part of the central nervous system, able to
convert the light signal into action potentials arriving in the brain through the optic nerve
(ON). The retina comprises five types of neurons: the photoreceptors (cones and rods), the
horizontal cells, the bipolar cells, the amacrine cells and the ganglion cells. The soma of
these neurons is localized in the photoreceptors layer (RCL), outer nuclear layer (ONL),
inner nuclear layer (INL) and ganglion cell layer (GCL), respectively. Instead, the processes
and synaptic contacts are placed in the outer plexiform layer (OPL) and the inner plexiform
layer (IPL). The retina also comprises three types of glial cells, i.e., astrocytes, microglial
cells and Miiller glial cells. The latter can regenerate retinal neurons exposed to different
insults by providing nutrients and trophic factors [28]. The outer part of the retina is formed
by the pigmented epithelial (RPE) cells, involved in tissue homeostasis, since they regulate
the transport of molecules from the choroid to the sub-retinal area and the elimination
of waste products [29]. Moreover, the RPE cells contribute to maintaining the integrity
of the blood-retinal barrier and convert all-trans-retinol to 11-cis-retinal needed for light
perception [30].

Vision begins in the retina when the light crosses its thickness and activates the rods
and cones. The latter converts the light into an electrical signal, passing the information to
the horizontal, bipolar, amacrine cells and, in the end, to the retinal ganglion cells (RGCs),
whose axons form the optic nerve which propagates the visual stimulus from the eye to
the brain [31]. The health and proper functioning of all ocular structures are necessary to
ensure a well-defined vision. Diabetic retinopathy (DR), cataract, glaucoma, uncorrected
refractive error and age-related macular degeneration represent the main causes of serious
vision impairment. Therefore, the research is aimed at identifying new therapeutic targets
to prevent and counteract blindness resulting from these diseases [32].

3. Activity-Dependent Neuroprotective Protein (ADNP): Expression and Functions

The human ADNP gene, discovered in 1999 by Bassan et al. [33], spans ~40 kilobases
and includes five exons and four introns with alternative splicing of an untranslated second
exon. There is a striking degree of homology (90%) between human and mouse mRNA, and
the region is highly conserved between vertebrates. The ADNP gene is located on the q13.13
band of chromosome 20 [34]. The ADNP-containing locus is frequently amplified in several
cancers. Moreover, the down-regulation of ADNP by antisense oligodeoxynucleotides
increases the expression of tumor suppressor p53 and decreases intestinal cancer cells’
vitality up to 90%, suggesting the involvement of ADNP in cell survival, probably through
the modulation of p53 [34]. According to the Genotype-Tissue Expression (GTEx) database,
the ADNP gene is found in central and peripheral nervous systems, as well as in different
tissues and cells of various organs (Figure 2).

The ADNP gene encodes a protein containing nine zinc fingers, a homeobox domain
and a bipartite nuclear localization signal, indicating transcription factor activity. The
ADNP protein is mainly expressed in the cytoplasm of neuronal cells, whereas it is pre-
dominantly localized in the nucleus of non-neural cells [35,36]. Moreover, ADNP-like
immunoreactivity was found in the extracellular milieu of astrocytes following stimulation
with vasoactive intestinal peptide (VIP) [37].

ADNP, by interacting with nuclear chromatin, modulates the transcription of hundreds
of genes involved in different biological events, such as embryogenesis [38], dendritic
spine plasticity, autophagy, autism-linked protein translation and axonal transport [39].
Regarding the latter aspect, through the manganese (Mn?*)-enhanced magnetic resonance
imaging technique, it was found that in Adnp+/+ mice, the signal intensity was significantly
increased in the lateral part of the olfactory nerve and glomerular layer of the olfactory
bulb. The signal intensity was significantly decreased in Adnp+/— mice, suggesting an
alteration in the axonal transport [40,41].
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Figure 2. Boxplot of transcripts per million (TPM) showing the bulk tissue gene expression for ADNP.
GTEx Portal on 29 September 2022.

ADNP is essential for brain formation and maintenance [42—44], and its expression
is altered in different neurodegenerative diseases. In particular, the down-regulation of
ADNP may concur with dopaminergic neurodegeneration in Parkinson’s Disease [45], and
the ADNP plasma/serum and lymphocyte mRNA levels were correlated to clinical stage
and Alzheimer’s disease (AD) biomarkers [46]. ADNP somatic mutations were found in
the brains of AD-affected patients [47], as well as it being one of three genes frequently
associated with autism spectrum disorders (ASD). The ADNP syndrome, also known
as Helsmoortel-Van der Aa syndrome (HVAS), is characterized by a plethora of clinical
symptoms, including global developmental delays, motor dysfunctions, hypotonia, and
repetitive infections, as well as ophthalmic abnormalities, which suggest the multisystem
nature of this disorder [48-53].

In 1999, a small peptide of eight amino acids derived from ADNP was synthesized,
known as NAP (davunetide, NAPVSIPQ/ Asn-Ala-Pro-Val-Ser-Ile-Pro-Gln) [33], and found
to play a protective role at femtomolar concentrations [33]. The SIP motif in NAP interacts
with the microtubule end-binding proteins, such as end-binding proteins 1 and 3 (EB1 and
EB3), promoting microtubule intervention on neuroplasticity and neuroprotection [54,55].
In fact, EB3 plays a pivotal role in dendritic spine formation, and the positive effect of
NAP in this process is EB3-dependent. Furthermore, in rat pheochromocytoma (PC12)
cells and in rat cortical astrocytes, NAP treatment significantly increased the microtubule
network area in the cell, an event preceding neurite outgrowth [56]. NAP is also involved
in Tau-microtubule interaction, avoiding aberrant hyperphosphorylation and aggregation
of Tau, which impairs cognitive functions [57]. Accordingly, Adnp+/— mice exhibited
tauopathy features with a significant increase in phosphorylated Tau [48]. Moreover, NAP
was found to enhance the autophagic process and preserve the cells against the accu-
mulation of misfolded proteins, by promoting ADNP interaction with MAP1-associated
protein 1 light chain 3 (LC3), representing the fundamental constituent of the autophago-
some [58]. The chemical structure of this small fragment peptide allows it to enter the
cells by dynamin-associated endocytosis [59], exerting protective effects, both in vitro and
in vivo [60-63]. NAP protected neuronal-like cells against oxidative stress [64] and coun-
teracted apoptotic cell death in neurons exposed to 3-amyloid or tetrodotoxin treatment
or glucose deprivation [65,66]. NAP ameliorated injury response in mice exposed to a



Int. . Mol. Sci. 2022, 23, 13654

50f 10

closed head injury [67,68] whereas in a diabetes rat model NAP treatment partially rescued
memory deficits by preventing the reduction of gray matter density [69]. Moreover, NAP
intranasal treatment seems to exert moderate improvements on some cognitive deficits of
schizophrenia patients [70,71].

Very recently, Karmon et al. [72] generated transgenic mice carrying the most common
human p.Tyr719 (Tyr) ADNP mutation. This mouse model, as compared to the Adnp+/—
model, showed greater severity of the phenotype due to heterozygous expression of 50%
WT-Adnp (loss of function) and 50% Tyr-Adnp (potential gain of toxic function) alleles. For
example, hyperphosphorylated tau deposits associated with visually evoked potential
impairments were found in the hippocampus of ~2-month-old Tyr-Adnp with respect
to 11-month-old Adnp+/— male mouse brains [48]. Moreover, the Tyr-Adnp mice model
reflects even more sexual dichotomy, as compared to Adnp+/— mice, as confirmed by the
early developmental and motor delay in females, rather than males, with ASD [73].

4. The Role of ADNP in the Eye

ADNP shows widespread tissue and organ distribution. It has been detected in the
brain, endocrine, respiratory, gastrointestinal and reproductive systems, as well as in skin,
bone marrow and lymphoid tissues. In the eye, it was first reported in reference to its
expression in the rat retina [1]. Here, the octapeptide NAP was shown to increase RGC sur-
vival after neurotrophic factor deprivation and to promote neurite outgrowth, confirming
previous studies which demonstrated its ability to enhance neuronal survival and support
axonal elongation [33,74,75]. Its pro-survival effects on RGCs were also displayed in vivo
after retinal ischemia and optic nerve crush in rats after its intravitreal injection [76]. This
immediate method of NAP administration also showed significant ameliorative effects
of rat retinal damage after laser photocoagulation [77]. Moreover, stable transfection of
NAP in rat retinal Miiller cells exerted a protective role, not only in these cells against
hypoxia-induced apoptosis, but also in other retinal neural cells, including neurons, astro-
cytes, and photoreceptors exerting nourishing effects against hypoxia-induced injuries [78].
Retinal diseases associated with hypoxia mainly include glaucoma, retinal ischemia and
diabetic retinopathy [79,80]. The latter is characterized by vessel impairment induced by
hyperglycemia, which contributes to the development of a hypoxic microenvironment in
the retina [81,82]. The hypoxic event induces vascular-endothelial growth factor (VEGF)
over release, responsible for aberrant neo-angiogenesis leading to blood-retinal barrier
(BRB) breakdown [83]. Treatment with NAP was shown to keep the integrity of the outer
BRB, counteracting human RPE apoptotic cell death induced by hyperglycemic/hypoxic
insult [84]. NAP exerted these effects by modulating the expression of hypoxic inducible
factors (HIFs). In particular, the peptide affected HIF-1a and HIF-2 expression, which,
under hypoxia, elude the proteasome degradation system, translocating into the nucleus
and triggering many target genes, including VEGF [85,86]. The ability of NAP to modulate
key elements associated with hyperglycemic/hypoxic damage was also demonstrated in
the retina of diabetic rats. In particular, a single intravitreal injection of NAP significantly
reduced the expression of HIF-1&, HIF-2¢, and VEGEF [87]. It is well known that the hyper-
glycemic/hypoxic event also promotes the release of inflammatory cytokines, which concur
with the impairment of BRB. NAP treatment was shown to modulate the inflammatory
event during the early phase of DR. In fact, the intravitreal administration of NAP inter-
fered with the expression of IL-1family members. Moreover, the peptide preserved outer
BRB integrity after hyperglycemic—inflammatory insult in an in vitro model of DR [88].

The expression of ADNP was also observed in human and rabbit corneal epithelium [2].
In particular, ADNP was mainly expressed in the basal layer that is characterized by limbal
epithelial stem cells involved in the corneal epithelium regeneration [89]. This finding
suggested a possible role of ADNP in corneal regeneration. Furthermore, NAP treatment of
corneal epithelial cells exposed to UV-B radiations prevented ROS generation by reducing
apoptotic cell death via JNK signaling pathway inhibition [2]. Overall, these data are
summarized in Figure 3.
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5. Perspective

Nowadays, there is an urgent need to identify innovative treatments to prevent and
cure ocular diseases. The protective effects exerted by NAP in the eye are not a surprise,
especially considering that HVDAS caused by ADNP mutations is also characterized by
vision problems. In particular, the literature previously described the clinical case of two
children, both carrying a nonsense mutation in the ADNP gene, showing intellectual dis-
ability and peculiar congenital eye anomalies [90], as well as another study which reported
the case of an HVDAS-affected patient carrying a different ADNP gene mutation displaying
convergent strabismus, astigmatism, hyperopia, unilateral iris coloboma and bilateral optic
nerve coloboma [91]. In another paper, a detailed description of the ophthalmologic con-
dition of an HVDAS-affected child bearing an ADNP gene mutation, was provided. This
patient showed various eye dysfunctions mainly affecting the retina [92]. This evidence,
thus, further supports the important protective and regenerative effects of ADNP in the
eye. Considering that NAP treatment was previously approved in clinical trials for some
pathologies, such as progressive supranuclear palsy (PSP), mild cognitive impairment
(MCI), and schizophrenia [20,93], its use for the treatment of some ocular diseases can also
be speculated.
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