Table 3.
Experimental details and network architectures. K is the dimension of zi, N is the number of layers in the inference network, M is the number of layers in GCN, and R is the dimension of X(i).
Inference model (, ) |
Generative model |
|||
---|---|---|---|---|
setting | activation | |||
GATE/reGATE (K = 45) | W1,μ : 45 * 400 | W1,σ : 45 * 400 | k-NN: 16 | h1: Sigmoid |
W2,μ : 400 * 45 | W2,σ : 400 * 45 | M = 2 | h2 : Sigmoid | |
b1,μ : 400 * 1 | b1,σ : 400 * 1 | R = 5 | ||
b2,μ : 45 * 1 | b2,σ : 45 * 1 | |||
φ1,μ = ReLu | φ1,σ = ReLu | |||
φ2,μ = Linear | φ2,σ = Linear |