Skip to main content
. Author manuscript; available in PMC: 2022 Nov 14.
Published in final edited form as: Neuroimage. 2021 Nov 22;245:118750. doi: 10.1016/j.neuroimage.2021.118750

Table 5.

Experimental details and network architectures. K is the dimension of zi, N is the number of layers in the inference network, M is the number of layers in GCN, R is the dimension of X(i).

Inference model (μϕ, σϕ)
Generative model
μϕ(N=2) σϕ(N=2) setting activation
GATE/reGATE (K = 68) W1 : 68 * 256 W1 : 68 * 256 k-NN: 32 h1 : Sigmoid
W2 : 256 * 68 W2 : 256 * 68 M = 2
R = 5
h2 : Sigmoid
b1 : 256 * 1 b1 : 256 * 1 R = 5
b2 : 68 * 1 b2 : 68 * 1
φ1 = ReLu φ1 = ReLu
φ2 = Linear φ2 = Linear