Table 5.
Experimental details and network architectures. K is the dimension of zi, N is the number of layers in the inference network, M is the number of layers in GCN, R is the dimension of X(i).
| Inference model (, ) |
Generative model |
|||
|---|---|---|---|---|
| setting | activation | |||
| GATE/reGATE (K = 68) | W1,μ : 68 * 256 | W1,σ : 68 * 256 | k-NN: 32 | h1 : Sigmoid |
| W2,μ : 256 * 68 | W2,σ : 256 * 68 |
M = 2 R = 5 |
h2 : Sigmoid | |
| b1,μ : 256 * 1 | b1,σ : 256 * 1 | R = 5 | ||
| b2,μ : 68 * 1 | b2,σ : 68 * 1 | |||
| φ1,μ = ReLu | φ1,σ = ReLu | |||
| φ2,μ = Linear | φ2,σ = Linear | |||