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Spatially targeted interventions may be effective alternatives to individual or population-
based prevention strategies against tuberculosis (TB). However, their efficacy may
depend on the mechanisms that lead to geographically constrained hotspots. Local TB
incidence may reflect high levels of local transmission; conversely, they may point to fre-
quent travel of community members to high-risk areas. We used whole-genome sequenc-
ing to explore patterns of TB incidence and transmission in Lima, Peru. Between 2009
and 2012, we recruited incident pulmonary TB patients and their household contacts,
whom we followed for the occurrence of TB disease. We used whole-genome sequences
of 2,712 Mycobacterial tuberculosis isolates from 2,440 patients to estimate pariwise
genomic distances and compared these to the spatial distance between patients’ residen-
ces. Genomic distances increased rapidly as spatial distances increased and remained high
beyond 2 km of separation. Next, we divided the study catchment area into 1 × 1 km
grid-cell surface units and used household spatial coordinates to locate each TB patient
to a specific cell. We estimated cell-specific transmission by calculating the proportion of
patients in each cell with a pairwise genomic distance of 10 or fewer single-nucleotide
polymorphisms. We found that cell-specific TB incidence and local transmission varied
widely but that cell-specific TB incidence did not correlate closely with our estimates of
local transmission (Cohen’s k = 0.27). These findings indicate that an understanding of
the spatial heterogeneity in the relative proportion of TB due to local transmission may
help guide the implementation of spatially targeted interventions.
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With over 9.9 million cases and 1.2 million deaths estimated in 2020, tuberculosis
(TB) is a major global health threat (1). While many tools have been developed for TB
control, mathematical models suggest that TB cannot be eliminated without significant
improvements in optimizing these existing tools by targeting them to the people who
would most benefit from them (2, 3). While current World Health Organization
(WHO) guidelines emphasize targeting them to high-risk individuals like people living
with HIV, others have noted that much transmission occurs outside these defined risk
groups and that a broader targeting strategy is needed (4).
Existing tools for TB control include active case finding, preventive therapy for latent

TB infection, improved access to diagnosis and care, and bacillus Calmette-Gu�erin vacci-
nation and/or revaccination (2, 3). Although recent innovations like short-course preven-
tive therapy make expanded use of these interventions more feasible (5), it is not practical
to implement these labor- and cost-intensive interventions across entire national popula-
tions. In many communities, TB tends to cluster geographically into high-incidence hot-
spots, and the targeting of interventions to spatially defined hotspots has been proposed as
an effective alternative to individual or population-based interventions (4, 6–9). Although
hotspots are usually defined by local TB incidence, it is not always clear if high rates of
local TB transmission correspond to high rates of TB disease occurrence. Because most
people who are infected with Mycobacterial tuberculosis (MTB) never develop TB disease,
much TB transmission goes undetected and high local rates of disease may reflect spatial
heterogeneity in the risk factors that lead to TB progression, rather than pinpointing areas
where TB transmission is ongoing (4).
Understanding the causes of the spatially heterogeneous transmission may help

inform efforts to develop effective spatially targeted TB control interventions. Here, we
measure local TB transmission by examining the pairwise genomic distances between
TB patients’ isolates as a function of spatial distance to identify transmission hotspots,
and we compare these areas to high-incidence hotspots in the same regions.

Materials and Methods

Study Setting and Design. We conducted a prospective cohort study of household TB transmission in Lima,
Peru. The study was implemented in a defined catchment area of metropolitan Lima, consisting of 20 districts
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and including ∼3.3 million residents living in urban areas and periurban, infor-
mal shantytown settlements (10). In brief, between September 2009 and August
2012, we recruited consecutively diagnosed incident pulmonary TB patients 15 y
of age or older as index TB patients. We confirmed their microbiological status
by sputum smear microscopy and/or mycobacterial culture. Within 2 wk of
patient enrollment in the study, we visited their households and invited their
household contacts (HHCs) to participate in a longitudinal study of infection and
disease occurrence. We obtained clinical and demographic data from index
patients and HHCs, including age, body mass index, gender, education, type of
housing, TB symptoms, bacillus Calmette-Guerin vaccination history, and comor-
bidities such as HIV and diabetes. The geographic coordinates of participating
households were collected by a global positioning system.

We also examined TB registries at the participating health clinics to ensure
we captured all incident TB cases during the 12-mo follow-up time. In addition
to baseline samples, we collected sputum from all study patients, both index
patients and HHCs who developed TB disease during follow-up. These were eval-
uated by sputum smear microscopy, mycobacterial culture and drug susceptibil-
ity testing. Where clinically indicated, patients underwent further microbiological
tests up to 4 y after the initial diagnosis of TB disease.

Whole-Genome Sequencing and Genetic Distance. We obtained whole-
genome sequences (WGSs) from a subset of MTB isolates with Illumina HiSeq in
paired-end mode with a read length of 100 to 150 base pairs and mean cover-
age of at least 50-fold. We mapped the paired-end raw sequencing data to the
H37Rv reference genome using the BWA-MEM (Burroughs Wheeler Aligner-
Maximal Exact Match) algorithm (11) and used SAMtools and Pilon to identify
the single-nucleotide polymorphisms (SNPs) and the insertions and deletions
using a coverage-based approach (12, 13). We assigned a variant call as missing
if the valid depth of coverage at a specific variant was less than 12 reads, if the
mean read mapping quality at the site did not reach 10, or if none of the alter-
native alleles accounted for at least 85% of the valid coverage. We retained SNPs
in calculating the genetic distance of pairwise isolates. We excluded the variants
in the PE/PPE gene family, as the error rate of short-read sequencing methodol-
ogy is high in highly repetitive regions (14). We also excluded the isolates with
evidence of mixed infection using the barcode method (15). We determined the
genetic distance between two isolates using the number of SNPs that differ
between the two isolates.

Pathogen Genetic Relatedness as a Function of Geographic Distance.

For all possible pairs of TB patients, we calculated the geographic distance between

their households using an interface between R and the Open Source Routing
Machine, a publicly available tool that analyzes OpenStreetMap road network data,
to obtain the shortest motor vehicle travel time between points in both minutes
and distance in kilometers (16). We estimated the genetic distance between all
pairs of MTB isolates collected at the time of diagnosis and evaluated this distance
by physical distance by levels of geographical proximity. For various levels (SNP dif-
ference cutoffs = 1, 5, and 10) of genetic relatedness, we compared the odds that
a pair of isolates was closely related for various levels of geographical proximity to
the odds of close genetic relatedness for paired isolates from individuals whose
residential households were separated by 10 min or more of travel time.

Heterogeneity of TB Incidence and Local Transmission. We divided Lima
into areas using the 1 × 1 km WorldPop grid-cell surface areas and used house-
hold geographic coordinates to locate each TB patient in a specific cell (17). We
considered only cells in which we had enrolled at least 10 TB patients. We esti-
mated TB incidence for each cell by combining information on the number of TB
patients, cell population estimates obtained from the WorldPop database, and
patients’ study participation duration. In each cell, we used the proportion of
clustered TB patients as a proxy of local transmission. To derive the proportion of
clustered TB patients in each cell, we counted the number of TB patients who
had a pairwise genomic distance of ≤10 with any other TB patient in that cell
divided by the total number of TB study patients in that cell. We used the
weighted Cohen’s kappa statistic test to assess the agreement between the quin-
tiles of the two metrics (18). These analyses were conducted using ArcGIS 10.8,
RStudio, and SAS 9.4 (SAS Institute).

Drug Resistance and Transmission Dynamics. We repeated our analyses in
the subgroup of patients with phenotypic drug-resistant TB (resistant to at least one
of the following drugs: isoniazid, rifampicin, rifabutin, ethambutol, pyrazinamide,
streptomycin, linezolid, moxifloxacin, amikacin, kanamycin, capreomycin, and ethion-
amide) to evaluate the impact of drug resistance on the transmission dynamics (10).

Temporal Variation of Spatial TB Burden. To assess whether the spatial dis-
tribution of TB had changed since the time we had collected our data, we evalu-
ated temporal variation in TB notification data from 11 districts of Lima Ciudad,
one-third of our original study area, in 2015 and 2019. We ranked districts
based on their annual TB burdens and calculated weighted Cohen’s kappa statis-
tic test to determine the consistency of these rankings over time.

Ethical Considerations. Before study participation, all study participants pro-
vided voluntary, written informed consent. The Harvard School of Public Health

Fig. 1. Spatial distribution and description of the TB cohort recruited between 2009 and 2012 in Lima, Peru. (A) Red dots indicate locations of the places of
residency of TB patients in Lima districts. The districts of Lima are labeled. (B) Study flowchart.
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and Peru’s Research Ethics Committee of the NIH provided institutional review
board approval.

Results

Sample Size Description. Among the 3,851 culture-positive
TB patients, 2,916 isolates underwent WGS. After excluding 202
isolates with evidence of mixed infection and poor raw-read qual-
ity, we included 2,714 isolates from 2,440 TB patients living in
2,271 households, geographically located as shown in Fig. 1A.

The number of TB patients by household is reported in Fig. 1B.
We assessed 2,975,879 sequence pairs, 299 of which were repeat
isolates from individual study participants and 191 of which were
from distinct individuals within households. Among individuals
with multiple isolates, 212 contributed two high-quality isolates,
27 had three isolates, and 1 had four isolates.

Genetic Relatedness and Geographic Distance. Fig. 2 A and B
show that genomic distances were bimodally distributed across
geographical distances, suggesting the presence of distinct

Fig. 2. Distributions of pairwise-SNP differences stratified by geographical proximity (A) using travel time in minutes (zoom between 0 and 100 SNP differences)
and (B) using distances in kilometers (zoom between 0 and 100 SNP differences).
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closely related and more distantly related TB isolates. Genomic
distances were smaller for within-household pairs and increased
quickly with increasing geographical distances, suggesting that
local transmission is restricted to nearby households of index

patients (Fig. 2). The log odds of close genetic relatedness fell
rapidly with increasing travel time between individuals’ places
of residence (Fig. 3 and SI Appendix, Tables S1 and S2).

Genomically Linked Isolates. We chose a conservative genomic
difference threshold of one SNP to identify the pairs most likely
to be linked by direct transmission, of which we found 1,015
(0.03%) pairs among 783 patients. Among the 299 paired sam-
ples from the same individuals, 167 (55.8%) pairs were at or
below the threshold, and among the 191 within-household pairs,
77 (40.3%) pairs were at or below the threshold. Among the
genomically linked pairs, 43.3% were located more than 10 min
apart, including some that were located at opposite ends of the
city (Fig. 4A and SI Appendix, Table S1A). When we relaxed the
thresholds, the proportion of the genomically linked pairs with
more than 10 min apart increased (Fig. 4 B and C and SI
Appendix, Table S1 B and C).

TB Incidence and Local Transmission. Among the 245 1 × 1 km
cells in which Lima was divided, 190 cells contained at least a pair
of TB patients and 87 cells at least 10 TB patients. We focused
on these 87 cells, in which the median proportion of patients
sharing a closely related isolate was 10.5% (Inter-quartile range:
0 to 16.7%), with a range of 0 to 41.2%. We observed no clus-
tered TB patients for 39% of the cells. The median TB incidence
was 91.4 cases per 100,000 people per year (IQR: 68.5 to 142.7),
and TB incidence ranged from 33.9 to 506.9 cases per 100,000
people. We found only slight agreement between the TB inci-
dence and the proportion of clustered TB patients (weighted
Cohen’s kappa = 0.27; 95% confidence intervals [CIs]: 0.13 to
0.42) (Fig. 5).

Drug Resistance and Transmission Dynamics. When we repeated
our analyses in the subgroup of patients with drug-resistant TB,
our results were almost identical to those that included all TB
patients (SI Appendix, Figs. S1 to S3).

Temporal Variation of Spatial TB Burden. We found substan-
tial agreement (weighted Cohen’s k = 0.61; 95% CIs: 0.45 to
0.75) in the ranked TB burden in 11 districts in Lima Ciudad
between 2015 and 2019, indicating that there had been little
temporal variation in the spatial distribution of the TB burden
in our study area.

Discussion

In this study, we combined spatial and genomic analysis of con-
secutively diagnosed TB patients to describe a spatially hetero-
geneous transmission pattern in a large catchment area in Lima,
Peru. We observed that MTB WGSs from participants who
had repeated isolates over time had few differences and that
most sequence pairs from those living in the same household
were nearly identical. While we observed that TB patients liv-
ing in the same immediate vicinity were most likely to share a
molecular link, most transmission events occurred between peo-
ple residing more than a 5-min drive apart. While there was lit-
tle variation in the spatial distribution of TB burden in Lima
over time, we noted significant spatial variation in both TB
incidence and local transmission as measured by weighted
Cohen’s kappa in our study area.

While many previous studies have shown that geographically
proximate TB patients are more likely to fall within a genotypic
cluster, only one previous study has described the genetic related-
ness of clinical MTB isolates as a function of geographic distance.
In Shanghai, China, Yang et al. (19) found that for every

Fig. 3. Associations between pairwise geographical proximity (travel time
between the places of residence) and SNP differences using pairs located
10 min or more apart as the reference category, measuring at a log
odds ratio scale. (A) ≤1 SNP difference vs. >1 SNP difference, (B) ≤5 SNP
difference vs. >5 SNP difference, and (C) ≤10 SNP difference vs. >10 SNP
difference. Error bars are 95% CIs.
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additional kilometer separating the residences of any two patients,
the odds of genomic clustering (defined as sharing 10 or fewer
SNPs) decreased by 10%. In our study, we observed that the
genetic link quickly dropped with spatial distance; even among
pairs residing only 1-min driving distance apart, the proportion
of similar strains declined sharply. Although they did not geno-
type MTB isolates, McAllister et al. (20) reported that the
incidence of TB among HHCs and neighboring households in
Bandung, Indonesia, was comparable and about twice that of
randomly selected neighborhoods. Moonan et al. (21) evaluated a
neighbor-based strategy that expanded TB contact investigation
to nearest and next-nearest neighbors of an index TB patient in
Botswana; this approach identified 146% more TB patients than

an approach that implemented TB contact investigation to the
index case’s home residence would have. These findings suggest
that both HHCs and residents of households in close proximity
to an index TB patient may be high-risk groups that would bene-
fit from contact investigation.

Our finding that a substantial proportion of transmission
occurred between people who were not in close geographical
proximity is also consistent with the results of two previous stud-
ies from China. A study from Shanghai found that the median
pairwise geographic distances within each genomic cluster ranged
from 6.5 to 10.1 km (19). In Shenzhen, Jiang et al. (22) found
that 70% of the genomic clusters included patients residing in
different districts. WHO guidelines recommend active screening
for high-risk groups of people, such as HIV-infected individuals,
as well as those exposed to TB at home (23). However, our
results and those findings cited above suggest that this strategy
will miss a substantial proportion of transmission that takes place
outside the household. On top of screening high-risk groups, an
alternative cost-effective strategy could be implementing active
screening within geographically restricted areas (4).

Although several previous studies marked wide spatial hetero-
geneity of TB incidence or prevalence and described the local
geographical transmission hotspots (24–26), none have formally
reported the spatial heterogeneity of local transmission condi-
tional on the same underlying TB incidence. In our study,
we found low agreement of a spatially heterogeneous pattern
between TB incidence and local transmission. This finding indi-
cates that high TB incidence rates do not always correspond to
high rates of local TB transmission. There are several possible
explanations for the finding that an area of high TB incidence
has a low proportion of clustered TB. First, people living in a
low-transmission area may be frequent visitors to other areas
with a high risk of transmission (4). Second, geospatial TB clus-
tering may result from disease progression after infection in peo-
ple with shared geospatially clustered risk factors (such as HIV,
malnutrition, or exposure to biomass fuel use). Because only a
small proportion of people who are infected with TB progress to
disease, the clustering of risk factors for disease progression is
likely to play a stronger role in the spatial patterns of TB inci-
dence than it would for other infections (4). Our results demon-
strate that the degree to which local transmission is responsible
for high TB incidence hotspots may vary greatly.

We found that a substantial proportion of transmission
events for this airborne pathogen occurred between people
residing at a distance of more than 1 km. These results are in
contrast to those from several previous studies that have used
geolocated genotype and serotype data to study the spatiotem-
poral transmission of the vectorborne infection dengue fever.
For example, Salje et al. (27) used dengue serotype data from
Bangkok, Thailand, to evaluate the spatiotemporal distribution

Fig. 4. Histograms by travel time for pairs with (A) ≤1 SNP difference, (B) ≤5 SNP difference, and (C) ≤10 SNP difference.

Fig. 5. Comparison of TB incidence and proportion of clustered TB
patients for 1 × 1 km grids of Lima. (A) Map of the TB incidence by grids, in
which the color of the grids represents the magnitude of the metric, with
the lightest colors corresponding to the lowest TB incidence. (B) Map of the
proportion of clustered TB patients by grids, with the lightest colors corre-
sponding to the lowest proportions. (C) Each dot in the plot represents
a grid. The left-half dot is colored based on the magnitude of the TB
incidence and the right-half dot is colored based on the magnitude of the
correspondent proportion of clustered TB patients.
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of disease risk at a 0.5-km geological scale over 5-y periods and
found that localized transmission occurred at a scale of less
than 1 km. Salje et al. (28) later combined dengue-geolocated
WGSs and serotype data to show that more than 60% of cases
living less than 200 m apart belonged to the same transmission
chain. In a similar study, Villabona-Arenas et al. (29) used sero-
type data to reconstruct dengue transmission chains in Porto
Alegre, Brazil, where they found that the majority of infections
were transmitted by short-distanced human movement and that
cluster size, spatial diameter, and duration were smaller in areas
with more intense control interventions. Because TB transmis-
sion does not require a vector but is transmitted through infec-
tious aerosols, its transmission patterns are likely to correspond
to host mobility patterns, rather than the local distribution of
nonhuman vectors (30). These studies demonstrate the potential
for integrated spatiotemporal and pathogen genetic data to shed
light on the transmission dynamics of infectious diseases (30).
We note some limitations of our study. First, because chil-

dren often are unable to produce sputum, children diagnosed
with TB disease were excluded from our cohort of index
patients. Furthermore, we have only been able to obtain WGSs
for a subset of the isolates that were cultured. It is thus very
likely that we have missed transmission events. Second, our
geographical data included only the locations where patients
resided and did not consider their patterns of mobility within
the city. Third, we may have missed some TB patients residing
in our study area because they may have sought care at private
clinics or health centers outside our study districts. Fourth,

although we observed a low temporal variation of TB burden
in Lima, we cannot rule out the possibility that the data we
presented may not reflect the current situation. These four fac-
tors may have led us to underestimate transmission but should
not change the spatially heterogeneous transmission pattern.

We observed that a portion of transmissions occurred between
households with close proximity, as patients living in close prox-
imity are more likely to have a molecular link. This finding sug-
gests that expanding contact investigations to the neighborhood
of an index TB patient could potentially help detect TB early or
reduce TB transmission. Furthermore, we showed that high rates
of TB incidence often do not correspond to high rates of local
TB transmission. This finding indicates that an understanding of
spatially heterogeneous transmission patterns is essential to evalu-
ate the impact of active screening interventions within geographi-
cally restricted areas.

Data, Materials, and Software Availability. Anonymized MTB genomic
distances and participant metadata are available in the SI Appendix. Some study
data are available. All other study data are included in the article and/or
SI Appendix.
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