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Viruses shape microbial communities, food web dynamics, and carbon and nutrient cycling
in diverse ecosystems. However, little is known about the patterns and drivers of viral
community composition, particularly in soil, precluding a predictive understanding of viral
impacts on terrestrial habitats. To investigate soil viral community assembly processes, here
we analyzed 43 soil viromes from a rainfall manipulation experiment in a Mediterranean
grassland in California. We identified 5,315 viral populations (viral operational taxonomic
units [vOTUs] with a representative sequence ≥10 kbp) and found that viral community
composition exhibited a highly significant distance–decay relationship within the 200-m2

field site. This pattern was recapitulated by the intrapopulation microheterogeneity trends
of prevalent vOTUs (detected in ≥90% of the viromes), which tended to exhibit negative
correlations between spatial distance and the genomic similarity of their predominant allelic
variants. Although significant spatial structuring was also observed in the bacterial and
archaeal communities, the signal was dampened relative to the viromes, suggesting
differences in local assembly drivers for viruses and prokaryotes and/or differences in the
temporal scales captured by viromes and total DNA. Despite the overwhelming spatial
signal, evidence for environmental filtering was revealed in a protein-sharing network
analysis, wherein a group of related vOTUs predicted to infect actinobacteria was shown to
be significantly enriched in low-moisture samples distributed throughout the field. Overall,
our results indicate a highly diverse, dynamic, active, and spatially structured soil virosphere
capable of rapid responses to changing environmental conditions.
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With an estimated area of 52.5 million km2 (1), grasslands are major contributors to the
cycling (2) and storage (3) of soil organic carbon. Soil microorganisms play key roles in
these biogeochemical processes (4, 5), and, by infecting soil microbiota (6, 7), viruses likely
have substantial impacts on carbon dynamics (8). The potential importance of viruses in
soils (9–12), together with their measured high abundance—107 to 1010 virus-like particles
per gram of soil (9)—and improvements in our ability to sequence and track soil viral
genomes (8, 13) have led to a renewed flurry of investigations into soil viral ecology
(14–21). However, despite a new appreciation for the vast diversity of soil viruses (14–18,
22), little is known about the factors that govern soil viral community assembly, precluding
a robust and predictive understanding of viral impacts on terrestrial ecosystem processes.
Soils are physically, chemically, and biologically heterogeneous (23). The intricate

network of aggregates and pore spaces that constitutes the soil matrix (24) not only sustains
a varying landscape of edaphic properties but also restricts the movement of microorgan-
isms (25). Such environmental gradients and dispersal limitations often lead to the spatial
structuring of microbial diversity (26). For example, distance–decay of community similar-
ity, a biogeographical relationship in which communities become more compositionally
dissimilar as the spatial distance between them increases (27), has been reported for soil
bacteria across multiple scales and habitats (28–30). Yet, despite evidence of local
adaptation of soil bacteriophages to host strains at the centimeter scale (31), the extent to
which the soil virosphere is also spatially structured has not been thoroughly explored. An
understanding of the compositional turnover of viral communities across space is, there-
fore, necessary to begin unraveling the spatial constraints of host–virus interactions in soil.
Given its multifaceted role as a resource, solvent, and transport medium, water is a

central regulator of the activity, abundance, and dispersal of soil microorganisms (32). In
Mediterranean climate grasslands, where wet winters follow dry summers, seasonal rainfalls
dictate the compositional dynamics of soil microbiomes (33). Thus, the forecasted
alteration of precipitation patterns due to climate change (34) could impact soil trophic
networks and their contributions to the biogeochemical processes in these habitats (35).
Rainfall manipulation experiments have shown that reduced precipitation can reshape soil
bacterial community composition (36, 37). Whether these shifts are coupled to changes in
the soil virosphere remains unknown, although recent observations suggest that water
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availability could be a major driver of soil viral community assem-
bly. For example, a comparison of three distinct grassland sites
revealed a significant correlation between soil moisture and viral
richness (21), and a laboratory study identified a substantial shift in
viral diversity triggered by the wetting of dry biocrust soil (20). As
such, characterizing the compositional response of soil viral commu-
nities to reduced precipitation can help us understand the potential
impact of a changing environment on host–virus interactions.
In this study, we generated viral-size-fraction metagenomes

(viromes) to profile the double-stranded DNA (dsDNA) viruses
inhabiting a Mediterranean grassland exposed to rainfall-exclusion
treatments. The comprehensive access to soil viral diversity enabled
by this viromics approach (14, 38) allowed us to characterize the
spatial turnover of viral populations and genotypes at a local scale
and dissect viral community responses to changes in soil moisture.
Complementary analyses of 16S ribosomal RNA (rRNA) gene
amplicon sequencing data from the same samples allowed for
comparisons of community assembly patterns for viruses and their
bacterial and archaeal hosts. Our results revealed a spatially struc-
tured soil virosphere that can respond cohesively to reduced
precipitation.

Results and Discussion

To characterize dsDNA viral diversity and investigate viral com-
munity compositional patterns in Mediterranean grasslands, we
collected surface (0 to 15 cm) soil samples from a field site at the
Hopland Research and Extension Center in northern California
(Fig. 1A). Soils were harvested from 22 subplots distributed
across 15 experimental plots arranged in two separate blocks (SI
Appendix, Fig. 1 A and B). These plots have been maintained since
2017 with either 100% or 50% of the average historical precipita-
tion via rainfall-excluding shelters and controlled irrigation (39) (SI
Appendix, Fig. 1 C and D). Samples were collected from densely
rooted locations (SI Appendix, Fig. 1B) at two time points (March
and April, T1 and T2, respectively) during the 2020 growing sea-
son of Avena barbata (slender wild oat), the naturalized annual
grass that dominates the site (SI Appendix, Fig. 1E).
Soil viral community composition was profiled via 44 viral-size-

fraction metagenomes. These viromes were generated from frozen
soil samples, and their processing did not include the DNase
digestion typically performed to remove extracellular DNA con-
taminants prior to virion DNA extraction (see Materials and
Methods). Yet, despite potential overrepresentation of microbial
sequences, 18,040 out of 30,238 contigs assembled across viromes
were identified as viral by VIBRANT (40), a viral enrichment
comparable to previous reports from non-DNase-treated viromes
generated from fresh soil samples (38). Viral contig clustering at
≥95% average nucleotide identity (ANI) across 85% of the align-
ment fraction yielded 6,088 approximately species-level viral
operational taxonomic units (vOTUs) that served as references for
read recruitment to establish vOTU relative abundances (41).
After removing vOTUs exclusively detected in single viromes and
excluding one virome due to poor vOTU recovery, the final data-
set consisted of 43 viromes and 5,315 vOTUs (Dataset S1).

Viral Community Composition Followed a Stronger Distance–
Decay Relationship than Bacterial and Archaeal Communities
at the Field Scale. Viral community beta-diversity patterns were
largely explained by the spatial arrangement of the field plots, as
evidenced by a longitudinal gradient captured by the first axis of a
principal coordinates analysis (PCoA) and the separation of upper
and lower field blocks along the second PCoA axis (Fig. 1B). In
contrast, no meaningful clustering based on time point or

watering treatment was observed along these two axes (SI
Appendix, Fig. 2 A and B). A permutational multivariate analysis
of variance (PERMANOVA) further confirmed the predominant
role of spatial structuring on viral community composition relative
to other experimental factors (SI Appendix, Table 1). Additionally,
we identified a significant negative correlation between viral
Bray–Curtis similarity and spatial distance between plots
(Fig. 1C), indicating that distance–decay relationships were a key
driver of viral community composition. These trends were driven,
in part, by substantial differences in vOTU detection patterns
across viromes: of 5,135 vOTUs, 50% were detected in 9 or fewer
of the 43 viromes (SI Appendix, Fig. 3A). Moreover, the percent-
age of vOTUs shared between pairs of viromes declined steeply as
spatial separation increased (SI Appendix, Fig. 3B). This strong
spatial structuring of viral diversity within one field is consistent
with prior work in agricultural soils (14) and over larger spatial
distances (42), suggesting that distance–decay relationships could
be a conserved feature of the soil virosphere. For example, a recent
viromic survey of five different natural reserves, including grass-
lands and other habitats, in northern California found that more
than 90% of the dsDNA vOTUs were exclusively found in indi-
vidual locations (43). Similarly, minimal overlap in soil RNA viral
community composition was observed across five sites, including
four grasslands, within a 3-km transect (42). Thus, the observed
turnover of viral populations at the local scale in this study
(Fig. 1B) may translate to stark compositional distinctions at the
regional scale. Future studies with a broader spatial and temporal
range will be needed to fully assess the prevalence of these biogeo-
graphical patterns.

To assess whether bacterial and archaeal communities displayed
similar spatial patterns at our field site, we performed 16S rRNA
gene amplicon profiling on total DNA extracted from the same
soil samples used to generate the viromes. In contrast to the strong
spatial patterns in the viral communities, collection time point
was the main factor shaping prokaryotic beta-diversity, as indi-
cated by a significant PERMANOVA (SI Appendix, Table 2) and
a clear distinction between March and April samples along the
first axis of a PCoA (SI Appendix, Fig. 2 C and D). While spatial
structuring was also detected in the bacterial and archaeal commu-
nities (SI Appendix, Table 2), its effect was only evident along the
fourth and fifth PCoA axes (Fig. 2D). Further, even though spa-
tial distance was significantly negatively correlated with microbial
community Bray–Curtis similarity (Fig. 2E), this association was
not as pronounced as for the viral communities. Specifically, the
spatial turnover rate of community similarity (the slope of the
distance–decay relationship) was 5.8 times higher for viruses than
for bacteria and archaea. Similar observations of spatial succession
of viral but not prokaryotic communities along an 18-m gradient
in an agricultural field (14) raise the possibility that stronger spa-
tial structuring in viral relative to bacterial and archaeal communi-
ties (Fig. 1 B and D) might be a generalizable pattern across soils.

The observed differences in distance–decay patterns between
viral and prokaryotic communities suggest that the underlying
assembly processes governing spatial structuring at local scales
could be differentially impacting these two components of the soil
microbiome. For example, viruses and cellular microorganisms
likely experience distinct dispersal limitations linked to size,
adsorption specificities, and transport mechanisms (44, 45). Some
of the observed spatial gradients in the abiotic environment in our
study (SI Appendix, Fig. 4A), such as spatially structured soil cal-
cium concentrations (SI Appendix, Fig. 4B), are consistent with
this scenario, as attachment to soil surfaces in the presence of
Ca2+ has been shown to be significantly higher for viral particles
than for bacteria (45), potentially impacting their relative
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movement in soil. Environmental filtering, whereby abiotic
and/or biotic factors influence the distribution of microbial popu-
lations through selective pressure (26), may also be particularly
relevant for viral community assembly. For instance, edaphic
properties can directly affect viral viability and transport (11, 46),
while viral reliance on hosts for replication renders the hosts

themselves to be unavoidable environmental filters (47). Interest-
ingly, viral beta-diversity was significantly correlated with both the
abiotic environment and prokaryotic community composition (SI
Appendix, Fig. 5 A and B), suggesting that even the dampened
spatial structuring of edaphic properties (SI Appendix, Fig. 4A)
and prokayrotic beta-diversity (Fig. 1E) could have contributed to

A

B

D E

C

Fig. 1. Spatial structuring of viral and prokaryotic communities in a Mediterranean grassland. (A) Aerial view of the field site. Colored squares mark the
locations of the sampled plots within the upper (blue) and lower (red) blocks. Square outlines indicate the rainfall manipulation regime assigned to each
plot. Differences in font color are for legibility only. (B and D) Unconstrained analysis of principal coordinates performed on (B) vOTU and (D) 16S rRNA gene
OTU Bray–Curtis dissimilarities. B displays the first and second axes and D displays the fourth and fifth axes, as they best captured the spatial structuring in
(B) viral and (D) bacterial and archaeal communities. Color reflects the plot from which the sample was collected and corresponds to the gradient palette in A.
Point shape represents the collection time point. Axis labels indicate the percentage of total variance explained. (C and E) Relationship between Bray–Curtis
similarity and spatial distance in (C) viral communities and (E) bacterial and archaeal communities. Each point represents a pair of samples, and the spatial
distance between them was measured as the length of the line connecting the centers of the corresponding plots. Pairs of samples involving different time points
were excluded from these analyses. Trend lines display the least squares linear regression model. Inset statistics correspond to the Pearson’s correlation
coefficient (r), the linear regression slope, and the associated P value.
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the amplified spatial structuring of viruses in this study (Fig. 1C).
Consistent with biotic environmental selection, RNA viral com-
munities in grasslands differed significantly in the presence of
plant litter and across soil compartments (16), and dsDNA viral
communities differed along a permafrost thaw gradient (18), with

patterns similar to those of their host communities in both cases
(16, 48). Differences in the strength of the spatial patterns
between viruses and prokaryotes could also be related to differ-
ences in the integrated temporal scales captured by DNA pools in
viromes compared to total DNA (49). For example, fast viral

A

C D

B

Fig. 2. Spatial structuring of viral population microdiversity. (A and B) Kernel density plots showing the distributions of (A) microdiversity (measured as the
percentage of polymorphic sites in a vOTU sequence) and (B) mean relative abundance within prevalent (≥90% occupancy) and nonprevalent (<90% occu-
pancy) vOTUs. (C) Distributions of ANIs for each prevalent vOTU, calculated between pairs of sample-specific vOTU consensus sequences. Each box plot cor-
responds to a single vOTU, and the y axis is in rank order (ascending from top to bottom) of the median ANI value for each vOTU. Boxes display the median
and interquartile range (IQR), and data points farther than 1.5× IQR from box hinges are plotted as outliers. The heat map on the right shows the Pearson’s
correlation coefficients between consensus ANI and spatial distance. Bold outlines indicate a significant P value (<0.05) for the correlation after multiple
comparisons correction (Holm algorithm). Filled black squares correspond to vOTUs with no variation across samples (i.e., all ANIs were equal to 1). (D) The
top five vOTUs with the most significant correlations (lowest P values) between consensus ANI and spatial distance. Each point represents a pair of samples,
and the spatial distance between them was measured as the length of the line connecting the centers of the corresponding plots. Pairs of samples involving
different time points were excluded from these analyses. The trend line displays the least squares linear regression model. Note that vOTUs are defined in
part by sharing ≥95% ANI (see Materials and Methods), so within-vOTU ANI values will necessarily be ≥95% ANI. Also note subtle differences in the y axis
range across graphs.
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particle decay rates and the large burst sizes (11, 50, 51) character-
istic of viral replication could amplify the signal of recent viral
infections in the viromes, while relic DNA (52) and DNA from
dormant biota (53) could mask the signal from active microbes in
total DNA. Together, our results suggest that dispersal, abiotic,
and biotic factors could all contribute to soil viral community
assembly patterns and, potentially, to differences between soil host
and viral biogeography.

Genomic Microdiversity of Viral Populations Tended to Be
Spatially Structured. In addition to environmental filtering
and dispersal, diversification (i.e., the generation of novel
genetic variation) can contribute to diversity patterns in micro-
bial communities (26, 54, 55). To explore the role of spatial
structuring on viral genotypic heterogeneity across our field
site, we profiled within-population genomic variation. Briefly,
using inStrain (56), we scanned all mapped reads assigned to
individual vOTUs and identified polymorphic sites. Then, to
assess intersample vOTU genomic similarities, we reconstructed
sample-specific consensus vOTU sequences and performed
pairwise ANI comparisons. Given that most vOTUs were
detected in a limited number of viromes (SI Appendix, Fig.
3A), we restricted this analysis to a subset of 130 vOTUs that
were detected in at least 90% of the viromes. This set of preva-
lent vOTUs had high levels of intrapopulation heterogeneity
(Fig. 2A) and also consisted of some of the most abundant viral
community members (Fig. 2B). The ANI distributions revealed
a wide range of genomic variation among dominant allelic var-
iants: While some prevalent vOTUs had mean pairwise variant
similarities close to 0.95 ANI (the threshold used to define a
viral population), others appeared nearly clonal across samples
(Fig. 2C). Moreover, the microdiversity of many vOTUs was
spatially structured within our field site. For 21% of the preva-
lent vOTUs and 54% of the 26 vOTUs that displayed the
most variation (prevalent vOTUs with median ANIs <99.5%),
genomic similarity displayed a significant negative correlation
with spatial distance, indicating that the predominant allelic
variants tended to diverge with increasing distance (Fig. 2D
and SI Appendix, Table 3). Together, these results show that
viral community composition and the genetic makeup of viral
populations exhibited significant distance–decay relationships
across our field site.

Low-Moisture Soils Had Significantly Different Viral
Communities and Were Enriched in Putative Actinophages.
Although spatial structuring emerged as the predominant driver of
soil viral diversity patterns (Fig. 1 B and C), viral community com-
position was also shaped by the experimental precipitation treat-
ments. In particular, the third axis of our PCoA, which accounted
for 8.24% of variance in the dataset, captured a significant distinc-
tion between the April viromes from 50% precipitation plots
(“T2-50” samples) and the rest of the viromes (Fig. 3A). Gravimet-
ric soil moisture contents were also significantly lower for these
T2-50 samples (Fig. 3B), a distinction that likely reflects the differ-
ential precipitation exclusion patterns preceding each collection
time point. In particular, both 50% and 100% plots were fully
exposed to rainfall during the month leading up to the first sample
collection; in contrast, 50% treatment plots underwent a 24-d-
long precipitation exclusion immediately before the second sample
collection (SI Appendix, Fig. 1 C and D). These differences in
recent precipitation likely explain why T1-50 samples had similar
soil moisture to the 100% precipitation treatment samples from
both time points, whereas T2-50 samples had lower soil moisture
and correspondingly distinct viral communities. Together, these

trends suggest that viral communities were directly or indirectly
structured by changes in soil moisture during the growing season.

We next identified vOTUs with significant responses to
these soil moisture patterns to assess potential commonalities
among them. An indicator species analysis revealed 529 vOTUs
that were significantly enriched in T2-50 viromes relative to
the rest of the viromes and 384 vOTUs that were significantly
depleted (Fig. 3C). As functional traits can be phylogenetically
conserved in bacteria (57), we assessed whether analyses at
higher levels of viral genome conservation might reveal a simi-
larly cohesive response to soil moisture. Using vConTACT2
(58), we constructed a network of vOTUs (nodes), in which
each edge indicated a significant overlap in predicted protein
contents between a pair of vOTUs. We then adapted an algo-
rithm designed to assess local overrepresentation of traits in bio-
logical networks (59) to characterize the network distribution
of soil-moisture-responding vOTUs. Briefly, for each vOTU,
we identified a local neighborhood of all vOTUs that could be
reached, either directly or indirectly, via an edge path with a
length shorter than the first percentile of all pairwise node dis-
tances in the network. After discarding all local neighborhoods
with fewer than 10 vOTUs, we recovered 2,865 subnetworks
of highly interconnected nodes with a median size of 39
vOTUs, allowing us to consider many more sizeable groups of
related vOTUs than a standard vConTACT2 analysis of
“genus-level” viral clusters (VCs) (15, 60), as there were only
24 VCs with at least 10 vOTUs in this dataset. Next, we per-
formed hypergeometric tests to assess the overrepresentation of
indicator vOTUs enriched or depleted in T2-50 samples within
each network neighborhood. A total of 108 neighborhoods
showed a significant overabundance of vOTUs consistently
enriched in T2-50 samples, with 26 to 67% of vOTUs in these
neighborhoods displaying this trait, compared to only 10% of
vOTUs in the whole network (SI Appendix, Fig. 6 A–C). This
pattern contrasted with the lack of substantial network aggrega-
tion of vOTUs depleted in T2-50 samples, as only four small,
local neighborhoods displayed a significant, albeit weak,
overrepresentation of this trait (SI Appendix, Fig. 6 A and B).
Interestingly, all of the significantly T2-50 enriched trait neigh-
borhoods were constrained to a single region in the protein-
sharing network, indicating that a relatively cohesive group of
related vOTUs tended to be enriched in T2-50 samples (Fig.
3D). Further, the indicator vOTUs within this subnetwork
covered a range of detection patterns across viromes (occupan-
cies) and were spatially distributed across the field site
(SI Appendix, Fig. 7 A and B). This suggests that, despite the
strong spatial structuring of viral communities overall, this
group of genomically related vOTUs responded cohesively to
changes in soil moisture, regardless of their field plot locations.

To further explore the subnetwork with a significant overrepre-
sentation of low-moisture (T2-50)-enriched vOTUs, we performed
a second protein-sharing network analysis, with all prokaryotic viral
genomes in the NCBI RefSeq database. We identified edge con-
nections between vOTUs in the low-moisture trait subnetwork
and RefSeq viral genomes to assess network neighborhood trends
in viral and host taxonomy (SI Appendix, Fig. 8 A–C). Of 326
vOTUs in the subnetwork, 96 were connected to at least one
RefSeq viral genome, all of which were classified as Siphoviridae or
as undefined viruses from the order Caudovirales (SI Appendix,
Fig. 8B), both taxonomic classifications currently under consider-
ation to be replaced by monophyletic genome-based families (61).
More interestingly, all 191 RefSeq viral genomes connected to a
trait subnetwork vOTU were isolated from Actinobacteria hosts,
suggesting that the low-moisture-responsive vOTU subnetwork
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was largely composed of actinobacteriophages (Fig. 3E). In con-
trast, only 38% of all 971 vOTUs associated with RefSeq genomes
across the entire network were exclusively linked to an actinobac-
teriophage (SI Appendix, Fig. 8C), indicating a substantial concen-
tration of putative actinobacteriophages in the subnetwork. These
results suggest that low soil moisture could have increased the
activity of actinobacteria, in turn driving increased predation by
actinophages.

The Relative Enrichment of Putative Actinophages in Low-
Moisture Soils Coincided with an Increase in Relic DNA from
Actinobacteria. Many actinobacteria are drought-resistant
members of soil microbiomes that can increase their activity
and abundance under low-moisture conditions across multiple
environments (36, 62–64), including Mediterranean grasslands
(33). While actinobacteria were among the most abundant
members in the 16S rRNA gene amplicon profiles, there were

A

D E

B C

Fig. 3. Viral community trends associated with soil moisture content. In A–C, samples are grouped along the x axis by collection time point (T1 and T2)
and precipitation regime (100% and 50%). (A) Distribution of scores along the third axis of a PCoA performed on vOTU Bray–Curtis dissimilarities. The y
axis label indicates the percentage of total variance explained. The first two axes of the same analysis are shown in Fig. 1B. (B) Gravimetric soil moisture
contents. Boxes display the median and interquartile range (IQR), and data points farther than 1.5× IQR from box hinges are plotted as outliers. In A and B,
different letters indicate significantly different sample groupings (P < 0.05), as determined by two-tailed Tukey’s range tests. (C) Summed mean relative abundan-
ces of the sets of vOTUs detected as indicator species differentiating T2-50 communities from the rest of the viromes. Facets distinguish indicator vOTUs that
were relatively enriched or depleted, respectively, in T2-50 viromes. (D) Gene-sharing network displaying significant overlaps in predicted protein content (edges)
between vOTUs (nodes). Node color shows whether a vOTU was an indicator species enriched or depleted in T2-50 samples or not an indicator species (defined
by P values below or above 0.05, respectively, from an indicator value permutation test). Bold outlines highlight a subnetwork of all local neighborhoods with a
significant overrepresentation of vOTUs enriched in T2-50 viromes (SI Appendix, Fig. S6 B and C). (E) Zoomed-in version of the subnetwork highlighted in D. Nodes
surrounded by squares correspond to vOTUs with a significant overlap in their predicted protein contents with any of 971 RefSeq phage genomes, according to
the network analysis shown in SI Appendix, Fig. S8. All such RefSeq phage genomes with significant links to this subnetwork were from phages isolated on Actino-
bacteria hosts, indicated by tagging vOTU nodes linked to RefSeq actinophages with the letter “A.” In D and E, inset donut plots on the lower right show the total
number of vOTUs in the displayed network (center), along with the proportions of the indicator and nonindicator vOTUs in that network (fractions of the circle).
Network visualization layouts were generated with the Fruchterman–Reingold algorithm.
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no significant differences in their relative abundances across
watering treatments or time points (Fig. 4 A and B). Further,
even though the first axis of a PCoA captured a microbial com-
munity compositional shift from March to April (SI Appendix,
Fig. 2D), there was no clear distinction between T2-50 pro-
karyotic communities and the rest of the samples (SI Appendix,
Fig. 9). Given that microbial community sensitivity to an envi-
ronmental disturbance is linked to the intensity and duration
of the stressor (65), the absence of a significant effect of water-
ing treatment on prokaryotic community composition could
stem from the temporal scale of the dry-down captured in this
study. In particular, the 24-d-long rainfall exclusion that 50%
treatment plots experienced between the two collection time
points (SI Appendix, Fig. 1C) might not have been long enough
to detect the compositional shifts previously observed during
more prolonged desiccation periods (33). Additionally, given
that rainfall-exclusion treatments in our site started in 2017,
treatment legacy effects could have also dampened the micro-
biome response under low-moisture conditions, as preexposure
to drought can increase the resistance of soil bacteria to future
desiccation events (36).
While the effects of low moisture observed in the virosphere

were not recapitulated by bacterial and archaeal communities
overall or by actinobacterial relative abundances specifically, it
is possible that the presence of genetic material from dead and
dormant cells in the total DNA profiles could have concealed
underlying ecological dynamics driven by physiologically active

microorganisms (52, 53). Because of its high abundance in soils
(66), extracellular DNA from dead cells can introduce substan-
tial biases in estimates of microbial abundance, especially when
the turnover rate of this relic DNA is disrupted by environmen-
tal perturbations, such as bacteriophage blooms (49). To con-
sider the relic DNA pool in our samples more directly, we
recovered reads classified as 16S rRNA gene fragments from
virome profiles. Given that viral enrichment in viromes was
achieved via 0.22-μm filtration prior to DNA extraction, any
bacterial and archaeal sequences present in these libraries likely
originated from relic DNA or small (<0.22 μm) microbial cells
(38, 67). Interestingly, the relative abundance of Actinobacteria
16S rRNA gene reads recovered from T2-50 viromes was sig-
nificantly higher than in any other group of samples (Fig. 4 C
and D and SI Appendix, Fig. 10). This increase in (presumably)
free actinobacteria DNA, coupled with the enrichment of puta-
tive actinophages in the T2-50 subnetworks (Fig. 3E), suggests
that actinobacteria hosts may have experienced higher infection
and lysis under lower-moisture conditions, a scenario com-
patible with the capacity of environmental relic DNA to
retain signatures of recent viral infections (68). Interestingly,
actinobacteria can display enhanced transcriptional activity
under drought conditions (33, 62), suggesting that the poten-
tial increase in actinobacteria–actinophage interactions observed
in this study could stem from a heightened metabolic
state in actinobacteria under low-moisture conditions. Future
studies dissecting the functional changes that soil microbiomes

A B

DC

Fig. 4. Abundance patterns of actinobacteria in total and relic DNA profiles. (A and C) Phylum abundances in 16S rRNA gene profiles from (A) total DNA 16S
rRNA gene amplicon libraries and (C) virome DNA libraries. Each stacked bar plot corresponds to a sample, and the 10 most abundant phyla are colored. All
other phyla are grouped in the “Low abundance” category. (B and D) Relative abundances of actinobacteria in (B) total DNA 16S rRNA gene amplicon libraries
and (D) virome DNA libraries. Samples are organized by collection time point (T1 and T2) and precipitation treatment regime (100% and 50%). Boxes display
the median and interquartile range (IQR), and data points farther than 1.5× IQR from box hinges are plotted as outliers. Letters above boxes indicate signifi-
cantly different groupings (P < 0.05), as determined by pairwise Wilcoxon’s rank-sum tests. For C and D, abundances were normalized to the number of
reads classified as 16S rRNA genes in each virome profile; a complementary analysis with abundances normalized to the total number of reads in each
virome profile is provided in SI Appendix, Fig. S10.
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undergo during reduced precipitation could help us understand
the mechanisms enabling these dynamics.

Conclusions

Here, we show that grasslands harbor an active and highly
dynamic soil virosphere that is structured over space and can
respond to a changing environment. The high degree of spatial
turnover that we observed—within one field site during one
growing season—suggests dispersal limitations for viral popula-
tions and genotypes on scales of meters and months, hinting at
the potential spatial patterning of host–virus interactions in
soil. Moreover, the disparity in distance–decay relationships
between viral and prokaryotic communities could reflect poten-
tial differences in the assembly processes shaping these two
components of the soil microbiome. The compositional shift
triggered by reduced precipitation further indicates that, despite
the underlying spatial structuring, groups of genomically related
viruses can respond cohesively to environmental conditions,
such as decreases in soil moisture, presumably by way of their
hosts. Finally, the coupled enrichment of putative actinophages
and relic DNA from actinobacteria under low-moisture condi-
tions raises the possibility that reduced precipitation increased
the infection and lysis of a prevalent, drought-responsive group
of soil microorganisms. In summary, soil viral community
assembly seems to be tightly coupled to the heterogeneous and
dynamic biotic and abiotic landscape of the local environment,
and it will be interesting to see how these patterns scale over
more extensive temporal and spatial distances.

Materials and Methods

Field Experiment and Sample Collection. Samples were collected as part of
a rainfall manipulation field experiment (39) at the University of California Hop-
land Research and Extension Center (39° 000 14.600 N, 123° 050 09.100 W). The
field site contained 16 plots (1.8 × 1.8 m) arranged in two separate blocks
7.5 m apart: a 16.2-m-long upper block with nine plots and a 12.6-m-long
lower block with seven plots (SI Appendix, Fig. 1A). Plot boundaries were delim-
ited by 1-m-deep vertical plastic liners, installed in the spring of 2017, that lim-
ited water transfer between adjacent soils. Each plot contained eight circular
subplots (40-cm diameter) delineated by 15-cm-deep polyvinyl chloride collars
(SI Appendix, Fig. 1B). Starting in 2017 and continuing until 2020, plots were
exposed to two precipitation regimes, where the amount of water received by
each plot was adjusted to match 100% or 50% of the average historical precipi-
tation at the site. Differential watering was achieved by the periodic deployment
of rainfall-excluding shelters (SI Appendix, Fig. 1C) and by controlled irrigation
of individual plots (SI Appendix, Fig. 1D). For this study, soils were harvested
from 22 subplots distributed across 15 of the 16 plots (SI Appendix, Fig. 1A).
All of these subplots were segmented in two halves by a 15-cm-deep Plexiglas
divider (SI Appendix, Fig. 1B), and they were located within a 60-cm radius
from the center of each plot. Sample collections were performed on 13 March
and 14 April 2020 (T1 and T2, respectively) during the active growth phase of
A. barbata (SI Appendix, Fig. 1E). At each time point, half of each subplot was
destructively harvested. Samples were processed by removing any visible roots,
homogenizing the soil, and storing the soil at �80 °C until further processing.
For soil moisture measurements, separate fresh soil subsamples were collected
and processed immediately.

Virome DNA Extraction, Library Construction, and Shotgun Sequencing.

Due to the COVID-19 2020 lockdown, we could not perform virome extractions
on fresh samples as intended and instead stored soils at �80 °C until process-
ing. Soil virions were enriched through filtration and concentration prior to DNA
extraction, following a modified version of a previously published protocol (69).
For each sample, 10 g of soil were resuspended in 10 mL of protein-
supplemented phosphate-buffered saline solution (PPBS: 2% bovine serum
albumin, 10% phosphate-buffered saline, 1% potassium citrate, and 150 mM

MgSO4). To elute virions, soil suspensions were vortexed until homogenized,
placed on an orbital shaker (10 min, 400 rpm, 4 °C), and centrifuged
(10 min, 3,095 × g, 4 °C). Supernatants were recovered and stored briefly
at 4 °C, while pellets were resuspended in 10 mL of fresh PPBS for back-
extraction of the remaining soil. This process was repeated for a total of
three rounds of extraction of the same soil. Supernatants from the same
sample were then pooled and centrifuged three times (10 min, 10,000 × g,
4 °C), retaining the supernatant and discarding the pellet each time to
remove residual soil particles. Purified supernatants were then filtered
through a 0.22-μm polyethersulfone membrane to remove cells. Eluted viri-
ons in the filtrate were concentrated via ultracentrifugation (2 h 25 min,
32,000 × g, 4 °C) in an Optima LE-80K ultracentrifuge with a 50.2 Ti rotor
(Beckman-Coulter). Supernatants were removed, and pellets were resus-
pended in 100 μL of ultrapure water. As previously shown (38, 70), the
DNase treatment step that serves to remove free DNA at this stage is not
compatible with samples stored frozen (we suspect that this is because
freezing compromises virions), so we were unable to perform a DNase treat-
ment. We have previously shown that non-DNase-treated soil viromes still
successfully enrich the viral signal relative to total metagenomes and cap-
ture the same ecological trends as DNase-treated viromes from the same
samples (38).

DNA was extracted from the viral fraction with the DNeasy PowerSoil Pro kit
(Qiagen), following the manufacturer’s protocol, with the addition of a 10-min
incubation at 65 °C prior to the bead-beating step. Shotgun metagenomic librar-
ies were constructed with the DNA Hyper Prep kit (Kapa Biosystems-Roche), and
paired-end sequencing (150 bp) was performed on the NovaSeq S4 platform
(Illumina).

Total DNA Extraction, Amplicon Library Construction, and Sequencing.

Total DNA was extracted from 0.25 g of soil with the DNeasy PowerSoil Pro kit
(Qiagen), following the manufacturer’s instructions, with the addition of a
10-min incubation at 65 °C prior to the bead-beating step. Construction of
amplicon libraries followed a previously described dual-indexing strategy
(71, 72). Briefly, universal primers 515F and 806R were used to target the V4
region of the 16S rRNA gene. Amplifications were performed with the Platinum
Hot Start PCR Master Mix (Thermo Fisher) following the Earth Microbiome Proj-
ect’s PCR protocol (73): an initial denaturation step at 94 °C for 3 min, 35 cycles
of 94 °C for 45 s, 50 °C for 60 s, and 72 °C for 90 s, and a final extension step
at 72 °C for 10 min. To account for any potential amplification of reagent con-
taminants (74), we used a DNA-free control (molecular-grade water processed
through the same DNA extraction protocol) as a template to generate a blank
library. Libraries were cleaned with AmpureXP magnetic beads (Beckman Coul-
ter), quantified (Qubit 4 fluorometer; Thermo Fisher), and pooled in equimolar
concentrations. Paired-end sequencing (250 bp) was performed on the MiSeq
platform (Illumina).

Soil Chemistry and Moisture Measurements. Soil moisture was calculated
as the ratio of mass of water per mass of dry soil. While soil moisture was origi-
nally measured for all samples, data for a subset of 11 March samples (five
from 100% plots and six from 50% plots) were lost and could not be included
in downstream analyses. Soil chemistry profiling was performed by Ward Labo-
ratories: Soil pH and soluble salts were measured using a 1:1 soil:water sus-
pension; soil organic matter was measured as the percentage weight loss on
ignition; nitrate was measured via a KCl extraction; potassium, calcium, magne-
sium, and sodium were measured via an ammonium acetate extraction; zinc,
iron, manganese, and copper were measured via a DTPA extraction; phosphorus
was measured via the Olsen method; and sulfate was measured via a Mehlich-
3 extraction. Soil chemistry measurements were only performed on the set of
22 soil samples collected in March (T1).

Bioinformatic Processing.
Virome processing. We used Trimmomatic v0.33 (75) to remove Illumina
adapter sequences and quality-trim reads (minimum q-score of 30 evaluated on
4-base sliding windows; minimum read length of 50) and BBDuk v38.82 (76) to
remove PhiX sequences. Next, we generated de novo assemblies of individual
libraries with MEGAHIT v1.2.9 (77) in metalarge mode (–k-min 27 –k-max 127
–k-step 10), using a contig minimum size threshold of 10,000 bp. Assembled
contigs were then classified as viral with VIBRANT v1.2.1 (40) in virome mode.
Consistent with established best practices (41), the resulting viral contigs were
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dereplicated into nonredundant vOTUs with dRep v3.2.2 (78), using the follow-
ing parameters: a threshold of ≥95% ANI across ≥85% alignment fraction
(�sa = 0.95, �nc = 0.85), single-linkage algorithm for hierarchical clustering
(–clusterAlg = single), and filtered nucmer alignments for secondary clustering
comparisons (–S_algorithm = ANImf). Representative sequences were selected
based exclusively on length (�N50W = 0, sizeW= 1). Competitive read recruit-
ment against the dereplicated database of vOTUs was performed with Bowtie
2 v2.4.2 (79) in sensitive mode, and the resulting alignments were sorted and
indexed with SAMtools v1.11 (80). We used CoverM v0.5.0 (https://github.com/
wwood/CoverM) to generate two vOTU coverage tables: one displaying the
trimmed mean coverage (�m = trimmed_mean) and the other displaying the
absolute number of mapped reads (�m = count). In both cases, all vOTUs with
<75% horizontal coverage were discarded (–min-covered-fraction = 0.75). We
filtered out 773 vOTUs that were exclusively detected in single viromes and
removed one virome due to poor vOTU recovery (136 vOTUs compared to a
median of 1,562 vOTUs). The final dataset consisted of 43 viromes and
5,315 vOTUs.
Microdiversity profiling. Intrapopulation genetic diversity was characterized
with inStrain v1.4.0 (56). First, the Bowtie 2 alignments described above were
parsed with the profile module to identify divergent sites within the set of
mapped reads assigned to each vOTU. Variants were only called if a site had a
minimum coverage of five reads. We then used the compare module to calculate
average nucleotide identities between sample-specific consensus sequences,
which were reconstructed based on the most common allele detected at each
variant site. Pairwise comparisons were considered for downstream analyses
only if more than 25% of the vOTU sequence length was covered by the profile
module in both samples (percent_genome_compared > 0.25).
Gene-sharing network construction.We used Prodigal v2.6.3 (81) in metage-
nome mode to predict protein content for each dereplicated vOTU and used the
resulting amino acid file to construct a gene-sharing network with vConTACT2
v0.9.19 (58). The protein alignment step was performed with Diamond (82),
and the protein cluster step was calculated with the MCL algorithm (83). The
NCBI RefSeq database of bacterial and archaeal viral genomes (v85) was
included as a reference. Layouts used to visualize the resulting network were cal-
culated with the Fruchterman–Reingold algorithm implemented in the GGally
package (84).
Detection and classification of 16S rRNA gene fragments in virome
libraries. As previously described (14), we used SortMeRNA v4.2.0 (85) against
representative versions of the bacterial and archaeal SILVA database v132 (86) to
recover reads containing 16S rRNA gene sequences from the set of quality-
filtered virome reads. We assigned taxonomy with the RDP classifier (87) using
the RDP database v18 (88) as reference. A count table was generated from the
resulting hierarchical file with the hier2phyloseq() function from the RDPutils
package (89).
Processing of 16S rRNA gene amplicon libraries. Assembly of paired-end
reads into single sequences was performed with PANDAseq v2.9 (90), followed
by chimeric sequence removal with usearch v6.1 (91). OTU clustering was per-
formed at a 97% sequence identity threshold with the QIIME (92) implementa-
tion of UCLUST v1.2.22 (91) following the open reference protocol against the
SILVA database v132 (86). For consistency with 16S rRNA gene analysis
performed on viromes, representative sequences were reannotated with the RDP
classifier (87) using the RDP database v18 (88) as reference. After discarding
singletons and OTUs also detected in the blank library, the final dataset con-
sisted of 53,854 OTUs.

Data Analysis. All statistical analyses were conducted using R v3.6.3 (93).
Unless otherwise noted, all viral analyses were performed on the trimmed mean
coverage vOTU table. For vOTU and 16S OTU profiles, Bray–Curtis dissimilarities
were calculated on log-transformed relative abundances with the vegdist() func-
tion from vegan v2.5-7 (94). PERMANOVAs were performed with the adonis()
function from vegan v2.5-7 (94).To calculate the environmental distance, we first
computed the z-score for each soil chemistry variable and then used the dist()
function to determine the Euclidean distances between pairs of samples. Princi-
pal coordinates analyses were performed with the pcoa() function from ape
v5.4-1 (95). Pearson’s correlation tests evaluating the association of spatial dis-
tance with Bray–Curtis similarity, community overlap, environmental distance,
edaphic variables, and vOTU microdiversity were performed using the cor.test()
function with the alternative parameter set to “two.tailed.” The associated linear

regression slope was calculated with the lm() function. In all cases, spatial dis-
tance between pairs of samples was measured as the length of the line connect-
ing the centers of the corresponding plots. To remove any effect of time point on
our spatial correlation analyses, we excluded all pairwise comparisons between
samples collected at different time points. For correlation analyses involving mul-
tiple comparisons (edaphic variables and microdiversity), P values were corrected
with the Holm algorithm. Indicator species analysis was performed with the mul-
tipatt() function from indicspecies v1.7.9 (96). For this analysis, we divided the
dataset into two groups, one with the T2-50 viromes and the other with the rest
of the samples, and we identified vOTUs significantly associated with each
group. We used the lm() function to fit linear models evaluating the effect of col-
lection time point and watering treatment on beta-diversity (as captured by indi-
vidual principal coordinates) and gravimetric soil moisture. We then used the
glht() function from the multcomp package (97) to perform Tukey’s range tests.
We used the pairwise.wilcox.test() function to perform pairwise Wilcoxon rank-
sum tests to assess the effect of collection time point and watering treatment on
the relative abundances of actinobacteria 16S rRNA gene profiles from total DNA
and virome DNA. To determine the relative enrichment of vOTUs along the hori-
zontal field transect, we performed a differential abundance analysis with
DESeq2 (98), using vOTU nonnormalized count tables as input. In particular, we
used the DESeq() function to implement negative binomial generalized models
to test the effect of the position of each plot on the abundance of individual
vOTUs and used the effect size to rank each viral population. All plots were gen-
erated with ggplot2 (99).
Local neighborhood enrichment. To assess whether vOTUs detected as indica-
tor species of T2-50 samples tended to share similar genomic attributes, we
adapted a previously described algorithm designed to systematically assess the
distribution of traits in biological networks (59). This algorithm consists of two
main steps: 1) For each node in the network, determine a local neighborhood
comprised of all nodes that can be directly or indirectly reached via an edge
path with a length shorter than a defined threshold, and 2) for each local neigh-
borhood, assess the overrepresentation of a particular attribute among its mem-
bers. In this study, we used the gene-sharing network generated by vConTACT2
(58), in which nodes represent vOTUs, edges indicate a significant overlap in the
predicted content between vOTUs, and edge scores denote the statistical signifi-
cance of the associated overlap (expressed as �log10 P value). To determine
the distance threshold for local neighborhoods, we first calculated the length of
the weighted shortest path for each possible pair of nodes in the network and
then identified the first percentile. We performed this step with the distances()
function from the igraph package (100), using the reciprocal of the edge scores
assigned by vConTACT2 as edge weights. We explored the distribution of the fol-
lowing node attributes across the network: 1) enrichment or 2) depletion in
T2-50 samples. To assess the overrepresentation of each of these traits in each of
the local neighborhoods, we performed hypergeometric tests using the phyper()
function with the “lower.tail” parameter set to false. Local neighborhoods with
less than 10 nodes were not considered for the overrepresentation analyses.
Multiple comparisons correction was performed with the Holm algorithm.

Data, Materials, and Software Availability. All raw sequences have been
deposited in the NCBI Sequence Read Archive under the BioProject accession
PRJNA818793 (101). The database of dereplicated vOTUs is available at https://
zenodo.org/record/7076890#.Y1BMPEzMJPY (102). All scripts and intermediate
files are available at https://github.com/cmsantosm/HoplandViromes (103).
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