
INTRODUCTION

Social animals can quickly and accurately discriminate conspe-
cifics using various external sensory information such as visual, 
auditory, olfactory, and tactile cues [1, 2]. Humans are extremely ef-
ficient in integrating social information into episodic memory. In 
contrast, rodents, the most widely used animals for social behavior, 
have been thought to have poor vision compared to humans. Thus, 
most of the sociality-related studies with rodents focus on olfac-
tory social cues, whereas very few studies have focused on “visuo-

social memory”. Visuosocial memory can be defined as one kind 
of social memory which contains visual information associated 
with social context. One potential brain region to store visuosocial 
memory is the hippocampus because; 1) Hippocampus has been 
considered as a key brain region to associate different types of in-
formation such as space, object, sound cues, and context into epi-
sodic memory [3-5], and 2) Recently the CA2 hippocampus was 
suggested as the critical brain region for social memory in mouse 
[6, 7]. Interestingly, receptors of oxytocin and vasopressin which 
are well-known for their function in social cognition are highly 
and specifically expressed in hippocampal CA2 [8, 9]. In addition, 
CA2 has been recently established as a distinct area with specific 
molecular markers such as Amigo2 and RGS14 with unique elec-
trophysiological properties [10, 11]. CA2 has been revealed to play 
an essential role in social memory and exhibit long-term potentia-
tion (LTP) at the entorhinal cortical input to CA2 synapses in mice 
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[6, 12, 13]. However, up to date, no study has demonstrated the 
existence of visuosocial memory in rodents and the role of CA2 in 
this particular memory.

Memory can be formed by associating various types of stimuli 
with valence. For example, mice can associate a novel place with 
negative valences such as foot shock-induced fear [14] or empathic 
fear [15]. In contrast, mice can be conditioned to prefer a specific 
place by the treatment with DAMGO, a μ-opioid receptor (MOR) 
agonist [16]. Therefore, if visuosocial memory exists in mice, mice 
should associate a visuosocial stimulus with electric foot shock or 
DAMGO to establish visuosocial avoidance memory or visuo-
social preference memory, respectively. During this association 
process, specific signaling pathways or molecules in CA2 must be 
involved.

Considerable lines of accumulating evidence demonstrate that 
brain-derived neurotrophic factor (BDNF) is required for synaptic 
plasticity and hippocampus-dependent memory [17, 18]. In ani-
mal studies, BDNF signaling in the hippocampus and mesolimbic 
circuit plays an important role in antidepressant action to relieve 
chronic social stress [19, 20]. Phospholipase C gamma 1 (PLCγ1) 
is known to be direct downstream signaling molecule of BDNF 
and its high-affinity receptor, tyrosine receptor kinase B (TrkB) 
[21]. Also, a previous report suggested that PLCγ1 is necessary for 
TrkB-mediated long-term potentiation in CA1 hippocampus [22]. 
However, little is known about whether PLCγ1-mediated BDNF 
signaling in CA2 is linked with social cognition and memory. In 
this study, we investigated the role of CA2 PLCγ1 in associating 
an episodic experience with visuosocial stimulus by utilizing a 
novel CA2-specific deletion of PLCγ1 mouse model, RGS14-
cre×PLCγ1f/f.

MATERIALS AND METHODS

Animals

PLCγ1f/f mice were developed and genotyped as previously 
described [23]. They were maintained as heterozygotes on 
the C57BL/6J background and crossed to obtain homozygote 
mutants. RGS14-cre mouse (036535-UCD, MMRRC) was 
crossed with PLCγ1f/f mouse (PLCγ1f/f×RGS14-cre) for CA2-
specific knockout of PLCγ1. To validate the CA2-specificity of 
RGS14-cre, tdTomatof/f mouse (007914, Jackson Laboratory) 
was crossed with RGS14-cre mouse (RGS14-cre×tdTomatof/f). 
To validate PLCγ1 expression level, triple transgenic mice were 
used (PLCγ1f/f×RGS14-cre×tdTomatof/f). Wildtype C57BL/6J 
and C57BL/6N mice were used for visuosocial memory test. All 
experiments were performed with 8 to 16-week-old male mice. 
Mice were kept on a 12 hr light-dark cycle in a specific-patho-

gen-free facility with controlled temperature and humidity and 
had free access to food and water. All experimental procedures, 
animal care, and handling were performed according to the 
directives of the Animal Care and Use Committee and the insti-
tutional guidelines of IBS (Daejeon, Korea).

Behavioral tests

Mice were group-housed two to five in each cage and had free 
access to food and water. They were kept on a 12 hr (8:00 to 20:00) 
light-dark cycle in the mouse facility with tightly maintained 
temperature (18 to 22℃) and humidity (40 to 60%). All tests were 
performed at a similar time in the light cycle (14:00 to 20:00). Mice 
were gently handled daily for 3 days before the first day of experi-
ments. Mice were given at least 1 hr to habituate after moving to 
the behavioral room before experiments. All behavior experiments 
were performed under 10 to 20 lux light intensity except the ‘Dark-
room shock’ experiment (complete dark, 0 lux).

Visuosocial memory test

The overall experimental scheme of visuosocial avoidance and 
preference memory tests is described in Fig 1. For visuosocial 
avoidance test, one day before the experiment, the subject was al-
lowed to explore the 2-chamber arena connected by a tunnel in 
the middle for 10 min to acclimate the apparatus (40 cm length×20 
cm width×20 cm height for each chamber). Mice passed a tunnel 
at least one time in habituation session went to next session. On 
Day 1, one more habituation session (10 min) was done. Right 
after habituation, mice were placed into a fear conditioning cham-
ber (H10-11M-TC, Coulbourn, see Fig. 1D). In this chamber, a 
visuosocial cue (mirror, pictures of C57BL/6, Balb/c, or chipmunk, 
see Fig. 1E) was attached at one side of the wall. The subject re-
ceived the electric foot shock (0.3 mA, 2 sec) 2 times when the 
mouse interacted with the cue (head toward the cue). The subject 
returned to the home cage 1 min after the last shock. On Day 2, 
mice were freely moved in the arena same as on Day 1 for 10 min 
(Open tunnel session). After that, the cue was installed at the end 
of the tunnel and the number of entering the tunnel was recorded 
(Test session). For a control cue, white paper was used. To normal-
ize the activity during the test session by basal activity, we used the 
discrimination index for comparison (Entering frequency in test 
session / Entering frequency in open tunnel session). We counted 
entering numbers only when a whole mouse body entered the tun-
nel. For the ‘No shock’ control experiment, mice were placed into 
the fear conditioning chamber with a mirror for 5 min without any 
electric shock. For the ‘Darkroom shock’ control experiment, there 
was no light in the chamber, and mouse behavior was recorded 
by the infrared camera. For visuosocial preference test, instead of 
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foot shock, DAMGO (1 mg/kg, i.p., 1171, Tocris) was injected right 
before transferring into the fear conditioning chamber and let 
mice stay for 30 min for 3 consecutive days (see Fig. 1B). We found 
that there is no significantly different entering frequency between 
before and after stimulation (foot shock or DAMGO) in both con-
trol and PLCγ1 cKO groups by comparing open tunnel session of 
Day 1 with Day 2 (foot shock) or Day 5 (DAMGO).

Immunohistochemistry

Mice were deeply anesthetized with 2% avertin (i.p.) and per-
fused with 0.9% saline followed by ice-cold 4% paraformaldehyde 
(PFA) in 0.1 M phosphate-buffered saline (PBS). Excised brains 
were post-fixed overnight in 4% PFA at 4℃ and immersed in 30% 
sucrose for over 24 hr for cryoprotection. Brain slices (30 μm, 
coronal) containing the hippocampus were obtained. Sections 
were incubated for 1 hr in a blocking solution (0.3% Triton–X 
100, 2% goat serum, and 2% donkey serum in 0.1M PBS) and then 
immunostained with a primary antibody (anti-RGS14, 1:50 dilu-
tion; 73-170; NeuroMab) in a blocking solution at 4℃ on a shaker 
overnight. After washing in 0.1M PBS 3 times, sections were 
incubated with secondary antibody (anti-mouse 488, 1:500 dilu-
tion; 715-545-150; Jackson ImmunoResearch) for 1 hr and then 
washed with PBS 3 times. Finally, sections were mounted with a 
fluorescent mounting medium (S3023, Dako). All slice images 
were obtained by slide scanner (Axio scan.Z1, Zeiss).

Brain cell isolation

RGS14-cre×tdTomatof/f and PLCγ1×RGS14-cre×tdTomatof/f 
mice were deeply anesthetized with 3% isoflurane and brains from 
these mice were quickly removed from the skull and submerged 
in ice-cold 0.1 M PBS. For brain cell isolation, the adult brain dis-
sociation kit (130-107-677, Miltenyi Biotec) was used for brain cell 
isolation following the manufacturer’s instructions. After dissocia-
tion, to collect tdTomato-positive cells specifically, fluorescence-
activated cell sorting (FACS) experiment was performed using 
MoFlo Astrios Cell Sorter (Beckman Coulter). FACS-sorted 
tdTomato-positive cells were used for qRT-PCR and western blot 
to detect PLCγ1 mRNA and protein level, respectively. We used 2 
mice brains to make one sample. For qRT-PCR and western blot, 
we used 2 samples for each condition with duplicate or triplicate.

Quantitative real-time PCR (qRT-PCR)

Using FACS-sorted cells, RNA extraction (Qiagen RNeasy 
mini kit, 74104) and cDNA synthesis (SuperScriptTM III First-
Strand Synthesis System, Invitrogen) were performed following 
the manufacturer’s instructions. After cDNA synthesis, qRT-PCR 
(QuantStudio 1, Applied Biosystems) was performed in triplicates 

in a total volume of 20 μl containing 10 pM primers (forward 
and reverse), 4 ul cDNA, and 5 ul Power SYBR Green Master Mix 
(4367659, Applied Biosystems). The following sequences of prim-
ers were used for qRT-PCR.

PLCγ1 forward: 5’-CCG GCC AGA TCA ATC ACA CT-3’; 
PLCγ1 reverse: CCG GAG CCA CCT CTC AAT TT.

GAPDH forward: 5’- ACC CAG AAG ACT GTG GAT GG -3’; 
GAPDH reverse: 5’-CAC ATT GGG GGT AGG AAC AC-3’.

Western blot

For cell lysis, FACS-sorted cells were mixed with a lysis buffer 
containing 50mM Tris-HCl (pH 7.5), 150 mM NaCl, 1% NP-40, 
10 mM NaF, and protease and phosphatase inhibitor cocktail. The 
total protein concentration was determined with the BCA protein 
assay. Equal amounts of samples were loaded into 8% acrylamide 
gel and proteins were separated by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS–PAGE). After separation, 
gel was electrophoretically transferred to polyvinylidene fluoride 
(PVDF, Millipore) membrane by the gel transfer device (iBlot 2, 
Invitrogen). The membranes went through a blocking step using 
5% skimmed milk in TBS-T buffer (Tris-buffered saline contain-
ing 0.05% Tween 20) for 1 hr. The membranes were incubated with 
primary antibody overnight at 4℃. After washing in TBS-T buf-
fer, the membranes were incubated with horseradish peroxidase-
labeled secondary antibody for 1 hr at room temperature. Protein 
bands were visualized by ECL reagents (GE Healthcare). Mono-
clonal anti-PLCγ1 antibody was generated as previously described 
[24]. For loading control, anti-β-actin (691001, MP Biomedicals) 
antibody was used.

Three chamber test

The test was performed in three sessions within a three-cham-
bered open arena (40 cm length×20 cm width×20 cm height for 
each chamber). In the habituation session (Day 1), the subject 
freely explored the apparatus for 10 min. In the sociability session 
(Day 2), the subject encountered a stranger mouse within a metal 
cup and an empty metal cup for 10 min. In the social novelty ses-
sion (Day 3), the subject encountered the familiar one as well as a 
novel mouse in another metal cup in the social novelty session for 
10 min. The duration for exploring each cup was analyzed.

Five-trial social memory test

This test was run as described previously with a minor modifica-
tion [25]. In brief, animals were housed individually for 7~10 days 
before testing. On testing, a female C57BL/6 stimulus mouse was 
introduced into the home cage of each subject for 1 min and then 
returned to an individual holding cage. Four trials (1~4 trials) were 
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repeated with 10 min inter-trial intervals and the same stimulus to 
the resident in all four trials. In a fifth dishabituation trial, a novel 
stimulus female mouse was introduced. The time spent in the ol-
factory investigation for each trial was recorded and analyzed.

Novel object recognition test

Test was conducted in an open field arena (40 cm length×40 cm 
width×40 cm height) with two different kinds of objects (A, B). 
Initially there was no preference in both objects. During habitua-
tion, mouse was allowed to explore an empty arena for 10 min. 24 
hr after habituation, the subject was exposed to the familiar arena 
with two identical objects (A, A’) placed at an equal distance for 10 
min (Acquisition). 1 hr later the subject explored the open field 
in the presence of the familiar object and a novel object (A, B) to 
test recognition memory for 10 min (Retention). The time spent 
exploring each object and the discrimination index was analyzed.

Discrimination index (Acquisition) =
time spent in A

time spent in A + time spent in A'

Discrimination index (Retention) =
time spent in B

time spent in B + time spent in A

Statistical analyses

All statistical analyses were performed using Prism 9 (GraphPad). 
Differences between two different groups were analyzed with a 
two-tailed Student’s t-test. For comparison of multiple groups, one-
way analysis of variance (ANOVA) with Tukey’s multiple compari-
son test, or two-way ANOVA with Sidak’s multiple comparison test 
was assessed. Animals were randomly and evenly allocated to each 
group for all experiments. All data were presented as mean±SEM. 
Asterisks indicate a significant difference as follow: ns, not signifi-
cant, p>0.05; *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001.

RESULTS

To directly test whether mouse has an ability to form visuosocial 
memories, we designed a novel visuosocial memory test (Fig. 1, 
see detail in materials and methods session), in which mice learn 
to associate mirrored self-image or mouse-photo associated with 
electric shock-induced fear (visuosocial avoidance) or DAMGO-
induced positive valence (visuosocial preference).

After pairing mirrored self-image or mouse-photo with electric 
shock, mice entered significantly less into the mirror- or photo-
installed tunnel, compared to no-mirror control (white paper), 
no-shock control, or dark room condition (Fig. 2A), suggesting 
that mouse is capable of forming visuosocial avoidance memories 

based on vision-specific fear-associated social cues. Unexpectedly, 
the C57BL/6-photo-shock paired mice showed a significant avoid-
ance not only to C57BL/6-photo but also to Balb/c-photo and vice 
versa (Fig. 2B). This avoidance to the conspecific (Balb/c-photo) 
was not due to avoidance to the Balb/c-photo itself because the no-
shock control showed no avoidance (Fig. 2B). Because C57BL/6 
and Balb/c are conspecific, we hypothesized that mice can distin-
guish conspecific from heterospecific. To test this hypothesis, we 
used a photo of a chipmunk, a heterospecific animal. Surprisingly, 
mice did not avoid C57BL/6-photo when they received electric 
shock with chipmunk-photo or vice versa (Fig. 2C). In contrast, 
mice showed avoidance to chipmunk-photo when they received 
electric shock with chipmunk-photo (Fig. 2C), indicating that 
mice can distinguish conspecific from heterospecific and form vi-
suosocial memories. Furthermore, mice can successfully associate 
not only visuosocial cues but also a neural cue (food pellet-photo) 
with electric shock-induced fear (Fig. 2D). Lastly, we test whether 
mice can associate positive valence with C57BL/6 photo using 
DAMGO (Fig. 2E). Interestingly, opposite to avoidance test, mice 
treated with DAMGO increased discrimination index, indicating 
that mice can associate positive valence with visuosocial cue (Fig. 
2E). Taken together, using our novel visuosocial memory test, we 
discovered that mice can associate visuosocial cues with negative 
valence (fear) or positive valence (DAMGO).

To investigate the involvement of BDNF signaling in social 
memory in CA2, we utilized a previously reported CA2-specific 
cre-expressing mouse, RGS14-cre [26]. We validated cre expression 
in CA2 hippocampus using RGS14-cre crossed with tdTomatof/f 
mice (Fig. 3A). Then, to remove PLCγ1 selectively in CA2 pyrami-
dal neurons, we additionally crossed PLCγ1f/f mice to make triple 
transgenic mice (PLCγ1f/f×RGS14-cre×tdTomatof/f). Using qRT-
PCR and western blot, we found a significant reduction of PLCγ1 
mRNA and protein expression in FACS-sorted cre-expressing 
cells (Fig. 3B~E). Taken together, we successfully developed CA2-
specific PLCγ1 KO using PLCγ1f/f×RGS14-cre mice.

To examine whether PLCγ1 in CA2 is involved in social behav-
ior, we performed three-chamber test with PLCγ1f/f (Control) and 
PLCγ1f/f×RGS14-cre (PLCγ1 cKO) mice to assess sociability and 
social novelty (Fig. 4A~F). We firstly found that there was no dif-
ference in locomotor activity between control and PLCγ1 cKO 
(Data not shown). We also found that there was no impairment of 
sociability in both groups (Fig. 4B, C), but impaired social novelty 
in PLCγ1 cKO group (Fig. 4E, F). This finding was consistent with 
the previous report of normal sociability but impaired social nov-
elty in mice with CA2 pyramidal neuron inactivation by overex-
pression of tetanus-neurotoxin [6].

 We performed another well-known social memory test, the five-
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trial social memory test (Fig. 4G), in which the process of famil-
iarization is assessed. We found that PLCγ1 cKO group showed a 
significantly impaired familiarization at the fourth trial, compared 
to the control group (Fig. 4H), suggesting that familiarization 
requires PLCγ1 in CA2. The impaired familiarization in PLCγ1 
cKO group suggested that PLCγ1 is involved in a subset of social 
cues. To test if visuosocial cue is required for familiarization, we 
performed the same five-trial social memory test in the dark con-
dition (Dark control) with naïve C57BL/6 mice. Surprisingly, inter-
action time in the entire trial was significantly reduced in the dark 
control condition (Fig. 4H), suggesting that the visuosocial cues 

are required for social interaction but not for familiarization. Dele-
tion of PLCγ1 in CA2 did not alter the ability to recognize non-
social objects (Fig. 4I, J), suggesting that CA2 might be specific for 
visuosocial memory. Taken together, we concluded that PLCγ1 in 
CA2 is critical for both social novelty memory and familiarization 
which requires visuosocial information.

Finally, to evaluate which valence is assoicated with visuosocial 
cue by PLCγ1 in CA2, we tested both visuosocial avoidance mem-
ory and visuosocial preference memory with control and PLCγ1 
cKO mice. We found that PLCγ1 cKO mice showed no significant 
difference in visuosocial avoidance memory with C57BL/6 photo 
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(Fig. 5A), as well as with a neutral cue (Fig. 5B). On the other hand, 
PLCγ1 cKO mice showed significantly decreased visuosocial pref-
erence memory (Fig. 5C), whereas neutral cue (food pellet photo)-
induced preference memory was intact (Fig. 5D), indicating that 
PLCγ1 in CA2 is crucial for visuosocial preference memory. Also, 

these data suggested that mice recognize C57BL/6 photo as a 
social stimulus which is fundamentally different from a neutral 
object such as a food pellet. We additionally confirmed that these 
behavioral results were not affected by foot shock or DAMGO 
(Fig. 5E). Based on these results, we concluded that PLCγ1 in CA2 

Fig. 4. Deletion of PLCγ1 in CA2 shows intact sociability and object recognition memory but impaired social memory. (A) Schematic illustration of 
sociability test (ST1, stranger 1). (B, C) Summary bar graphs of interaction time (B) and discrimination index (C) of sociability (n=15 and 18). Two-way 
ANOVA (B), PLCγ1f/f vs PLCγ1f/f×RGS14-cre, p>0.05; Student’s t-test, Empty vs ST1 in PLCγ1f/f and PLCγ1f/f×RGS14-cre, ****p<0.0001. Student’s t-test 
(C), ns, not significant. (D) Schematic illustration of social novelty test (ST1, stranger 1; ST2, stranger 2). (E-F) Summary bar graphs of interaction time (E) 
and discrimination index (F) of social novelty test (n=15 and 18). Two-way ANOVA (E), PLCγ1f/f vs PLCγ1f/f×RGS14-cre, *p<0.05; ST1 vs ST2 in PLCγ1f/f, 
**p<0.01; ST1 vs ST2 in PLCγ1f/f×RGS14-cre, ns, not significant. Student’s t-test (F), **p<0.01. (G) Schematic diagram of five-trial social memory test. 
(H) Summary graph of five-trial social memory test with PLCγ1f/f, PLCγ1f/f×RGS14-cre, and dark control conditions (n=17, 14, and 14). Repeated two-
way ANOVA, PLCγ1f/f vs PLCγ1f/f×RGS14-cre, **p<0.01; PLCγ1f/f vs dark control, ****p<0.0001; PLCγ1f/f vs dark control in 3rd trial, *p<0.05; PLCγ1f/f vs 
PLCγ1f/f×RGS14-cre in 4th trial and PLCγ1f/f vs dark control in 5th trial, **p<0.01; PLCγ1f/f vs dark control in 2nd and 4th trials, ***p<0.001; PLCγ1f/f vs 
dark control in 1st trial, ****p<0.0001. (I) Schematic illustration of novel object recognition test (NOR, Acq, acquisition; Ret, retention). (J) Summary bar 
graphs of discrimination index of NOR (n=8 and 11). Two-way ANOVA, PLCγ1f/f vs PLCγ1f/f×RGS14-cre, p>0.05; Student’s t-test, Acq vs Ret in PLCγ1f/f, 
**p<0.01; Acq vs Ret in PLCγ1f/f×RGS14-cre, ****p<0.0001. Results are mean±SEM.
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Fig. 5. PLCγ1 in CA2 hippocampus is critical for visuosocial preference, but not avoidance, memory. (A) Summary bar graph of visuosocial avoidance 
memory test with C57BL/6 photo (n=5, 10, 6, and 10). Two-way ANOVA, p>0.05. 1st vs 2nd lanes, *p<0.05; 3rd vs 4th lanes, **p<0.01. (B) Summary bar 
graph of visuosocial avoidance memory test with a neutral cue (n=6 and 6). Student’s t-test, ns, not significant. (C) Summary bar graph of visuosocial 
preference memory test with PLCγ1f/f (control) and PLCγ1f/f×RGS14-cre (PLCγ1 cKO) mice (n=19 and 13). Student’s t-test, *p<0.05. (D) Summary bar 
graph of visuosocial preference memory test with a neutral cue (n=6 and 4). Student’s t-test, ns, not significant. (E) Comparison of entering frequency in 
open tunnel session between Day 1 (Before foot shock or DAMGO) and Day 2 (After foot shock or DAMGO) in control and PLCγ1 cKO mice. Two-
way ANOVA, ns, not significant. Results are mean±SEM.
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is critical for visuosocial preference memory, but not avoidance 
memory.

DISCUSSION

In this study, we have developed a novel animal model and be-
havioral test using visuosocial cue-fear (Foot shock) or positive 
valence (DAMGO) association to examine the neural network 
and molecular mechanisms of visuosocial memory. Our results 
propose that CA2 PLCγ1, which is one of the key components of 
BDNF signaling, is critically involved in visuosocial preference 
memory, but not avoidance memory. DAMGO is known to ac-
tivate MOR in CA1 hippocampal astrocyte to release glutamate 
which activates presynaptic mGluR1 to enhance synaptic plasticity 
and cause conditioned place preference [16]. Therefore, it is highly 
possible that visuosocial preference memory is formed through 
the similar mechanism by CA2 astrocytic MOR. Also, during so-
cial memory tests (three chamber test and five-trial social memory 
test) and visuosocial preference memory test, BDNF is released to 
CA2 neurons to induce PLCγ1-mediated synaptic potentiation. 
These interesting hypotheses should be examined in the future.

In contrast to visuosocial preference memory, we found that 
visuosocial avoidance memory is unaltered in KO. This raises a 
possibility that visuosocial avoidance memory might be encoded 
in other hippocampal areas. One possible candidate can be ventral 
CA1, which has been suggested as a critical brain region for social 
memory [27] and fear memory encoding [28]. This interesting 
possibility should be investigated in the future.

There is one potential caveat of using RGS14-cre mouse. Even 
though RGS14-cre can target CA2 specifically in hippocampus, we 
observed cre expression in other brain areas such as piriform area 
and lateral part of cerebellum. Therefore, we cannot completely 
rule out the possible role of PLCγ1 in the formation of visuosocial 
preference memory in those brain areas.

The molecular, genetic, and behavioral tools that we have devel-
oped will be useful in understanding the social memory process-
ing in social animals including human, who is very well known 
for having a high capacity for visuosocial memories through the 
ability to recognize conspecifics by visual cues. Moreover, it would 
be the first step to addressing a critical question of how human 
remembers conspecific’s face and associated memories. Finally, we 
propose that the BDNF-TrkB-PLCγ1 axis in CA2 can be a novel 
therapeutic target for impaired facial information processing and 
related diseases such as prosopagnosia, dementia, and autism.
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