
fnut-09-977278 October 25, 2022 Time: 13:40 # 1

TYPE Original Research
PUBLISHED 31 October 2022
DOI 10.3389/fnut.2022.977278

OPEN ACCESS

EDITED BY

Rikard Landberg,
Chalmers University of Technology,
Sweden

REVIEWED BY

Caiming Li,
Jiangnan University, China
Huicui Meng,
Sun Yat-sen University, China

*CORRESPONDENCE

Zhi-hong Fan
daisyfan@cau.edu.cn

†These authors have contributed
equally to this work and share last
authorship

SPECIALTY SECTION

This article was submitted to
Nutrition and Metabolism,
a section of the journal
Frontiers in Nutrition

RECEIVED 30 June 2022
ACCEPTED 03 October 2022
PUBLISHED 31 October 2022

CITATION

Liu A-s, Fan Z-h, Lu X-j, Wu Y-x,
Zhao W-q, Lou X-l, Hu J-h and
Peng X-y-h (2022) The characteristics
of postprandial glycemic response
patterns to white rice and glucose
in healthy adults: Identifying
subgroups by clustering analysis.
Front. Nutr. 9:977278.
doi: 10.3389/fnut.2022.977278

COPYRIGHT

© 2022 Liu, Fan, Lu, Wu, Zhao, Lou, Hu
and Peng. This is an open-access
article distributed under the terms of
the Creative Commons Attribution
License (CC BY). The use, distribution
or reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

The characteristics of
postprandial glycemic response
patterns to white rice and
glucose in healthy adults:
Identifying subgroups by
clustering analysis
An-shu Liu1, Zhi-hong Fan1,2*, Xue-jiao Lu1†, Yi-xue Wu1†,
Wen-qi Zhao1†, Xin-ling Lou1†, Jia-hui Hu1† and
Xi-yi-he Peng1†

1College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China,
2Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China
Agricultural University, Beijing, China

Objectives: Large interpersonal variability in postprandial glycemic response

(PGR) to white rice has been reported, and differences in the PGR patterns

during the oral glucose tolerance test (OGTT) have been documented.

However, there is scant study on the PGR patterns of white rice. We examined

the typical PGR patterns of white rice and glucose and the association

between them.

Materials and methods: We analyzed the data of 3-h PGRs to white rice

(WR) and glucose (G) of 114 normoglycemic female subjects of similar age,

weight status, and same ethnic group. Diverse glycemic parameters, based

on the discrete blood glucose values, were calculated over 120 and 180 min.

K-means clustering based on glycemic parameters calculated over 180 min

was applied to identify subgroups and representative PGR patterns. Principal

factor analysis based on the parameters used in the cluster analysis was

applied to characterize PGR patterns. Simple correspondence analysis was

performed on the clustering categories of WR and G.

Results: More distinct differences were found in glycemic parameters

calculated over 180 min compared with that calculated over 120 min,

especially in the negative area under the curve and Nadir. We identified four

distinct PGR patterns to WR (WR1, WR2, WR3, and WR4) and G (G1, G2, G3,

and G4), respectively. There were significant differences among the patterns

regard to postprandial hyperglycemia, hypoglycemic, and glycemic variability.

The WR1 clusters had significantly lower glycemic index (59 ± 19), while no

difference was found among the glycemic index based on the other three

clusters. Each given G subgroup presented multiple patterns of PGR to WR,
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especially in the largest G subgroup (G1), and in subgroup with the greatest

glycemic variability (G3).

Conclusion: Multiple subgroups could be classified based on the PGR

patterns to white rice and glucose even in seemingly homogeneous subjects.

Extending the monitoring time to 180 min was conducive to more effective

discrimination of PGR patterns. It may not be reliable to extrapolate the

patterns of PGR to rice from that to glucose, suggesting a need of combining

OGTT and meal tolerance test for individualized glycemic management.

KEYWORDS

clustering analysis, glycemic response pattern, white rice, glucose, glycemic index

Introduction

As the risk factors of the cardiovascular disease and some
cancers, diabetes, and dysglycemia are regarded as one of the
most important medical concerns in most parts of the world
(1). Early detection of a tendency toward diabetes, as well as the
effective management of postprandial glycemic excursion, are of
public health significance.

The progression from an apparent health person to a
diabetic consists of multiple stages such as insulin resistance,
hyperglycemia, β-cell dysfunction, β-cell mass reduction, and
impaired glucose tolerance (1, 2). The oral glucose tolerance test
(OGTT), which measures the postprandial glycemic response
(PGR) to glucose in 120 min of an individual, is widely used to
assess the insulin sensitivity, the beta-cell function, and judge an
individual’s metabolic capacity to handle carbohydrate foods (3).
The glycemic compromised individuals were usually classified
into several category of dysglycemia and receive advice based
on their OGTT results based on the fasting and glucose values
within 120 min (4). However, recent studies indicated that
compared with the glucose values at certain time points, the
features of OGTT curve might be better associated with future
end points such as diagnosed T2DM and all-cause mortality risk
(5–7).

Similarly, the glycemic index (GI), which is calculated based
on the incremental area under curve (iAUC) of glucose and
a test food, is an extensively used parameter of the PGR
curve to a certain food. However, there are evidence that the
GI value and the iAUC of a food could not fully illustrate
the multiple attributes of the PGR patterns among difference
groups of responders (8, 9). The connotation of PGR to a

Abbreviations: PGR, postprandial glycemic response; OGTT, oral
glucose tolerance test; WR, white rice; G, glucose; iAUC, incremental
area under the curve; GI, glycemic index; BMI, body mass index;
SD, standard deviation; CONGA, continuous overlapping net glycemic
action; NAUC, negative area under the curve; PFA, principal factor
analysis; SCA, simple correspondence analysis; G-I, glucose-insulin.

food includes postprandial hyperglycemia, hypoglycemic, and
glycemic variability. Compared with glucose concentration of 1
or 2 h and the iAUC, the PGR pattern, which describes the peak
and the peak time, the speed of glucose dropping, the level of
nadir, and the magnitude of glycemic excursion over the time,
may provide more information related to pathophysiological
differences of individuals (10–12). Such a set of glycemic
information can be conducive not only to early identification of
the individuals at risk, but also to successful management of the
prediabetes and the diabetes.

White rice, a major staple food in most Asian diets and
one of the important carbohydrate sources in many other
regions over the world (13, 14), has caused wide concern in
terms of its contribution to the overall glycemic load. However,
the results of epidemiologic literature on rice consumption
and risk of type 2 diabetes mellitus (T2DM) are mixed,
range from positive (15), null (16, 17) to negative (18).
One of the potential contributors to this inconsistency may
be the large interpersonal variability in PGR to white rice,
which have been investigated by previous studies in aspect
of iAUC (19–21). But few of them have inspected the PGR
patterns to rice. In addition, the correspondence between
the individual PGR patterns to rice and glucose has not
been investigated. It is yet to be confirmed that whether the
postprandial glycemic curve of a glucose test can predict the
PGR patterns to a rice meal.

In the present study, the data of PGRs to white rice (WR)
and glucose (G) of 114 subjects in previous studies carried out
in our laboratory were included for comparison with respect
to their PGR characteristics. The aims of this study were:
(1) to identify the subgroups based on their PGR patterns of
WR and G; (2) to examine the association between the PGR
patterns of WR and G; (3) to find whether the glycemic index
(GI) of rice would differ among subgroups. We assumed that
the PGR patterns to white rice and glucose varied even in
seemingly homogenous healthy subjects and could be classified
into distinguish subgroups.
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Materials and methods

Data collection

This study was a post-hoc analysis. We derived the
data from several acute feeding trials conducted in
our laboratory in the past 5 years, and all participants
signed informed consent forms for participation in
these studies (22–27). The subjects of these trials were
recruited through the university bulletin boards and online
advertisements with similar recruitment criteria which
were: (1) normal weight (BMI in the range of 18.5–
25.0 kg/m2) healthy university students aged between 18
and 25 with normal fasting glucose and normal glucose
tolerance; (2) having three meals regularly and not on diet
to gain or to lose weight in the past 3 months; (3) no
habit of smoking/alcohol drinking/dependency on drugs or
medication; (4) not participated in competitive sports or high
intensity training.

These trials used randomized, repeated measures cross-over
design and same procedure. The participants consumed test
meals in a randomized order. The test meals included cooked
white rice (Oryza sativa spp. japonica) and glucose solution,
each containing 50 g available carbohydrates. There was at least
3 days between two test sessions to ensure adequate washout.
The subjects were asked not to take any test 3 days before and
after the start of menstruation. One day before each trial day,
the participants were instructed to refrain from excessive eating,
alcohol, staying up late and strenuous exercise.

On the test day, the subjects came to the laboratory at
morning after a 12 h overnight fast, and their fasting plasma
glucose concentrations were tested after a short rest. Then
the test meal was provided to the subjects and the food was
ingested within 5–15 min. The finger prick blood samples were
collected at 0 (fasting), 15, 30, 45, 60, 90, 120, 150, and 180 min.
The plasma blood glucose concentrations were measured on
an ONETOUCH R© Ultra

R©

(LifeScan Inc., Milpitas, CA, USA)
glucometer using the glucose oxidase method. The fat mass was
assessed by bio-impedance, using an eight-polar tactile electrode
system (HBF-371, OMRON Corp., Kyoto, Japan). All the trials
were approved by the Ethics Committee of China Agricultural
University (ethics number 2016011, 2016012, CAUHR-2019001,
CAUHR-2019002, CAUHR-2019006, CAUHR-2019007). After
the selection and exclusion procedure (as shown in Figure 1),
228 tests from 114 female participants were included in the final
analysis.

Outcome

The primary measurements were glucose concentrations
at 0 (fasting), 15, 30, 45, 60, 90, 120, 150, and 180 min.

FIGURE 1

Flow diagram for data collection.

The PGRs were converted to the values of glucose rises from
the fasting value.

The specific outcomes were the incremental areas under the
curve of PGRs (iAUC), the ratio of iAUC in different periods
to total iAUC (iAUC%), the maximum postprandial glucose
rise (Peak), the minimum postprandial glucose rise (Nadir),
the standard deviation (SD) of glycemic variability, continuous
overlapping net glycemic action (CONGA1), and the negative
area under the curve (NAUC). The iAUCs were calculated using
the trapezoidal method, ignoring the area beneath the fasting
level. The CONGA1 described the SD of the differences between
any individual glucose reading and a reading recorded either 1 h
previously (28). The NAUC was the area beneath the fasting
level. Given that the current recommendations stipulate the
blood glucose should be monitored for 2-h post-ingestion in
GI determinations and OGTT, these parameters were calculated
both over 120 and 180 min, respectively.

Statistical analysis

A power calculation was conducted with the PASS 2021
(NCSS, Kaysville, UT, USA) using one-way analysis of variance
allowing unequal variances, based on the mean and SD of iAUCs
of four distinct glucose patterns during the OGTT observed
by Hulman et al. (7). A sample size of n = 52 was required
to provide 90% power to detect the difference in iAUC at 90%
power and significance of 5% between groups. All statistical
analyses were performed with SPSS version 21.0 (SPSS Inc.
Chicago, IL, USA). The Identify Unusual Cases application
in SPSS was used for the outlier exclusion. The parameters
calculated over 180 min (iAUC60−180%, iAUC180, NAUC180,
SD180, Peak180, Nadir180, and CONGA1180) were selected as
analysis variables. The anomaly detection was performed on
the datasets of white rice (WR) tests and glucose (G) tests
separately. If a subject was identified as an anomalous case
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in any detection, the data of WR and G test would be
excluded both. Comparison of glycemic parameters between
test meals was done by using paired t-test or Wilcoxon signed-
rank test.

Considering the intra-individual variability of the PGR
to different test meals, cluster analysis was performed
on the datasets of white rice (WR) tests and glucose
(G) tests separately. After the pre-analysis, the parameters
calculated over 180 min (iAUC60−180%, iAUC180, NAUC180,
SD180, Peak180, Nadir180, and CONGA1180) were used for
identification and classification of PGR patterns. We applied
K-means clustering based on these glycemic parameters
to identify subgroups, using squared Euclidean distance
as distance measure. To ensure that the classes were in
the same range, Z-score normalization was applied. To
improve the reproducibility, clustering was replicated 50
times, and the outcome with lowest total sum of distances
was chosen. We chose K = 4 because it led to distinct PGR
patterns that represent the variation in the population. Then,
differences of anthropometric characteristics were estimated
by multinomial logistic regression models with class of
PGR pattern as the outcome and values of BMI and fat
mass as factors.

Generalized estimating equation was used to compare the
difference of glucose rises at each time point between clusters.
Postprandial glycemic parameters of clusters were analyzed by
one-way ANOVA test or Kruskal–Wallis test. Then, we applied
principal factor analysis (PFA) to summarize and visualize
the responses to the parameters, and further characterize
subgroups. PFA with varimax rotation was performed on
the “114 × 7” matrix (114 participants × 7 parameters
used in the cluster analysis) of the WR dataset and the G
dataset separately. Retention of items was based on combined
evaluation of the scree plot (number of factors on scree
plot just before elbow) and eigenvalues over 1.0 to model
factor structure (29). The factor scores were calculated by
regression method. Then, the PFA was repeated on the
dataset conducted by glycemic parameters calculated over
120 min (iAUC60−120%, iAUC120, NAUC120, SD120, Peak120,
Nadir120, and CONGA1120). One-way ANOVA test was applied
to compare the factor scores between subgroups. P-values
of < 0.05 were considered statistically significant. Furthermore,
simple correspondence analysis (SCA) was performed on
clustering categories of WR and G.

Results

Baseline characteristics of participants are displayed in
Table 1. The anthropometric measurements of the participants
were within the acceptable normal limits for BMI, fasting blood
glucose.

Inter-individual variation in
postprandial responses

We examined interpersonal variability in the PGRs to WR
and G. When comparing the PGRs of each person to the
same meal, we found high interpersonal variability across all
postprandial time points (Figure 2A). There was also a broad
range of individual response to specific outcomes (Figure 3),
especially in iAUC180 (CV = 32.97 for WR, 30.50 for G),
CONGA1180 (CV = 34.07 for WR, 33.61 for G), CONGA1120

(CV = 38.65 for WR, 33.91 for G), and NAUC180 (interquartile
range for WR, 33.76 for G). There was difference between the
GI180 of white rice based on iAUC180 (86 ± 28) and the GI120

based on iAUC120 (80 ± 25). The large interpersonal differences
in PGRs are also evident in that the type of meal that induced
the highest PGR differs across participants and that different
participants might have opposite PGRs to the pair of meals
(Figure 2B).

Clustering subgroups

When comparing the glycemic parameters of WR and G
test, the difference was more distinct in outcomes calculated
over 180 min (Figure 3). Hence, the cluster analysis was carried
out on parameters over 180 min, which were iAUC60−180%,
iAUC180, NAUC180, SD180, Peak180, Nadir180, and CONGA1180.

Glucose subgroups
The clustering carried out on PGRs to glucose divided the

participants into four subgroups (G1, G2, G3, G4), and the
silhouette coefficient was 0.241. As shown in Figure 4, striking
differences appeared in all postprandial time points (P < 0.05).
Immediately after the meal, the rate of blood glucose rise was
found to be higher in G1, G3, and G4 than G2, particularly in
G4. According to the average PGR curves, the time to peak of
G1, G2, and G3 was 30 min, while G4 was 45 min. In the wake
of a rapid drop of blood glucose level, evident hypoglycemic
troughs appeared in G1 and G3 (0 vs. 150, 180 min, P < 0.005).
Postprandial blood glucose values of G2 were above the fasting
level throughout the test session (0 vs. 180 min, P = 0.843). In
G4, only the glucose value at 180 min was lower than the fasting

TABLE 1 Baseline characteristics of participants (n = 114).

Mean SD

Age, years 22 2

BMI, kg/m2 20.8 2.0

Fat mass, % 25.2 4.5

Height, cm 164.7 7.1

Weight, kg 56.4 8.5

Fasting glucose, mmol/L 5.1 0.4
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FIGURE 2

Variation in postprandial responses. (A) Inter-individual variation in glucose postprandial responses to white rice (WR) and glucose (G) (n = 114).
(B) Example of the postprandial glycemic response (PGR) to meals for four participants exhibiting opposite PGR patterns.

value. No significant difference was found in terms of BMI and
fat mass distribution among the four subgroups.

Postprandial glycemic response pattern characteristics
of glucose clusters
Principal factor analysis of glycemic parameters calculated
over 120 min.

There were differences in all glycemic parameters among
the clusters (Table 2). However, univariate analysis was
inappropriate because of the correlation between the glycemic
parameters. Therefore, PFA was applied to summarize and
visualize the responses to all the observed parameters, and
further characterize subgroups. This multivariate visualization is
complementary to the PGR curve. The examination of the scree
plot and eigenvalues suggested that two factors best fit the data.
The factors extracted (PC1, PC2) accounted for 82.6% of the
variance (Figure 5A). The loadings of iAUC120, SD120, Peak120,
and CONGA1120 in PC1 were greater than PC2, suggesting that
PC1 score was related to the amplitude of PGR and the glycemic
variability. As shown in Figure 5A, the PC1 score was positively
correlated with iAUC120, SD120, Peak120, and CONGA1120. The
loadings of iAUC60−120%, NAUC120, and Nadir120 in PC2 were
greater than PC1, suggesting that PC2 score was related to the
rate of glucose decline and the hypoglycemic excursion, while
the PC2 score was positively associated with iAUC60−120%,

NAUC120, and Nadir120. The G4 and G3 clusters possessed the
high amplitude of PGR to G (highest PC1 score). In contrast,
G2 cluster was able to sustain a small elevation with lowest PC1
score. However, when comparing the PC2 scores related to the
rate of glucose decline and the hypoglycemic fluctuation, no
significant difference was found between G1, G2 and G3 clusters
(P > 0.05).

Principal factor analysis of glycemic parameters calculated
over 180 min.

There was more distinct difference in parameters calculated
over 180 min, especially in the NAUC and SD (Table 3). For
comparing the parameters calculated over 180 min between
G clusters, the PFA was carried on the dataset conducted by
iAUC60−180%, iAUC180, NAUC180, SD180, Peak180, Nadir180,
and CONGA1180. The factors extracted (PC1, PC2) accounted
for 84.4% of the variance (Figure 5B). The PC1 score
was positively correlated with iAUC180, SD180, Peak180, and
CONGA1180, while the PC2 score was positively associated
with iAUC60−180%, NAUC180 and Nadir180. Unlike the PFA
based on glycemic parameters calculated over 120 min, G
clusters can be separated into four parts in the score plot
clearly according to the PFA based on glycemic parameters
calculated over 180 min (Figure 5B). Compared with F-Statistic
of ANOVA performed on PC2 scores derived from the
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FIGURE 3

Boxplot of glycemic parameters calculated over 180 and 120 min. The dots indicate the mean, the line indicate the media, top of the box
indicate the 75th percentile, bottom of the box indicate the 25th percentile and the error bars indicate the mean ± SD. Statistical significance
between white rice (WR) test and glucose (G) test is marked.

parameters calculated over 120 min (12.7), greater F-Statistic
(46.9) indicated larger between-group variance. The highest
glycemic variability observed in G3 clusters was reflected by
the highest PC2 score and lowest PC1 score. The G4 cluster
possessed not only the high amplitude of PGR to G (highest
PC1 score), but also the low rate of blood glucose dropping
(highest PC2 score). On the contrary, G2 clusters were capable
of sustaining a mild increase and a slow post-peak decline of

blood glucose, reflected by the lowest PC1 score and greater
PC2 score. The glucose caused a moderately high rise of blood
glucose but a wild hypoglycemic fluctuation in G1 clusters
indicated by lower PC1 score and PC2 score.

White rice subgroups
The cluster analysis identified four subgroups based on

PGRs to white rice (WR1, WR2, WR3, WR4), and the silhouette
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FIGURE 4

Postprandial glycemic response (PGR) to glucose of G clusters
(G1, G2, G3, G4). a, b, c, d, used for comparison between
subgroups at that time point (P < 0.05). The error bars indicate
the mean ± SE.

TABLE 2 Body mass index (BMI), fat mass, and glycemic parameters
calculated over 120 min of glucose (G) clusters (n = 114).

G1
(n = 37)

G2
(n = 24)

G3
(n = 26)

G4
(n = 27)

BMI 20.4 (1.8) 20.8 (1.7) 21.3 (2.3) 20.7 (2.1)

Difference1 0.99
(0.72–1.36)

1.12
(0.85–1.67)

1.33
(0.96–1.84)

Reference

Fat mass 24.9 (3.9) 24.7 (4.7) 25.3 (4.3) 25.9 (4.9)

Difference1 0.95
(0.82–1.10)

0.90
(0.77–1.05)

0.92
(0.78–1.05)

Reference

CONGA1120 2.3 (0.5)b 1.5 (0.5)c 2.8 (0.8)a 3.0 (0.7)a

iAUC60−120% 34.5 (8.5)b 39.1 (6.3)b 38.9 (10.0)b 45.9 (4.8)a

iAUC120 258.5 (44.9)c 208.0
(36.6)d

323.9
(68.7)b

394.3 (61.1)a

NAUC120 0.0 (0.1)ab 0 (0.0)b 0.0 (1.4)a 0.0 (0.0)b

Peak120 4.1 (0.6)b 3.2 (0.5)c 4.7 (0.7)a 5.1 (0.8)a

Nadir120 0.5 (0.7)b 0.8 (0.4)b 0.4 (1.2)b 1.8 (0.7)a

SD120 1.5 (0.2)b 1.0 (0.2)c 1.7 (0.3)a 1.7 (0.3)a

Values are mean (SD), except that NAUC120 is median (first quartile, third quartile).
1Difference (95% CI) from multinomial logistic regression models. a, b, c, d, used for
comparison of glycemic parameters between groups based on one-way ANOVA test or
Kruskal–Wallis test (P < 0.05).

coefficient was 0.277. As shown in Figure 6, there were
significant differences across all postprandial time points except
at 15 min (P < 0.05). The white rice caused steeper glucose rise
in WR2 and WR4 than WR1 and WR3 in the first 30 min, while
the subsequent fall in glucose after 45 min was more rapid in
WR1 and WR2 than WR3 and WR4. According to the average
PGR curves, the time to peak was 30 min except for WR4,
which was 45 min. Compared with the fasting values, both the
WR3 and WR4 ended with a higher glucose concentration (0
vs. 180 min, P < 0.01), while the WR2 reverted to the fasting
level at 180 min (0 vs. 180 min, P = 0.792). However, the WR1
cluster showed prolonged negative incremental glucose value

after 120 min (0 vs. 150, 180 min, P < 0.05). No significant
difference was found in terms of BMI and fat mass distribution
among the four subgroups.

Postprandial glycemic response pattern characteristics
of white rice clusters
Principal factor analysis of glycemic parameters calculated
over 120 min.

There were differences in all glycemic parameters among
the clusters (Table 4). The factors extracted (PC1, PC2)
accounted for 79.1% of the variance (Figure 7A). The PC1
score was positively correlated with iAUC120, SD120, PEAK120,
and CONGA1120, while the PC2 score was positively associated
with iAUC60−120%, NAUC120, and LOW120. WR2 clusters
displayed the most oscillating glucose levels, characterized by
high PC1 score and relatively low PC2 score. WR4 clusters
showed constant hyperglycemia with higher PC1 and PC2 score.
However, when comparing the rate of glucose decline and the
hypoglycemic fluctuation (PC2 scores), no significant difference
was found between WR3 and WR4 clusters (P > 0.05). What’s
more, there was no significant difference in GI120 between WR2,
WR3, and WR4 (Table 4).

Principal factor analysis of glycemic parameters calculated
over 180 min.

The factors extracted (PC1, PC2) accounted for 80.7% of the
variance (Figure 7B). The PC1 score was positively correlated
with iAUC180, SD180, Peak180, and CONGA1180, while the PC2
score was positively associated with iAUC60−180%, NAUC180,
and Nadir180. As shown in Figure 7B, WR clusters can be
separated into four parts in the score plot distinctly. Moreover,
the F-Statistic of ANOVA performed on PC2 scores was 63.5,
which was greater than the F-Statistic of ANOVA performed
on PC2 scores derived from the parameters calculated over
120 min (19.3), indicating larger between-group variance. The
WR1 clusters experienced more hypoglycemia with the lowest
PC2 score and greatest NAUC180, while the GI180 based on WR1
clusters was the lowest. WR3 clusters had lower PC1 score and
less postprandial glucose dips (higher PC2 score), indicating a
stable PGR to WR. Compared with the GI180 calculated based
on the WR1 and WR3 clusters, the mean value and the SD of
GI180 derived from the WR2 and WR4 were significantly higher
(Table 5).

Simple correspondence analysis
performed on clustering categories of
white rice and glucose

The results of the Pearson’s chi-square test and Monte
Carlo’s exact test revealed the significant dependence between
the clustering categories of WR and G (P < 0.001, Cramer’s
V = 0.304). Thus, SCA is applied to determine the relationships
between categories of specified variables. The most important
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FIGURE 5

Principal factor analysis loading and score plots of glucose (G) clusters. (A) Principal factor analysis (PFA) based on parameters calculated over
120 min. (B) PFA based on parameters calculated over 180 min. The loadings of the parameters are shown with arrows, and the scores of the
participants are shown as dots in the background. a, b, c used for comparison of PC1 scores (P < 0.05). 1–4 used for comparison of PC2 scores
(P < 0.05).

TABLE 3 Glycemic parameters calculated over 180 min of four
glucose (G) clusters (n = 114).

G1 G2 G3 G4

CONGA1180 2.0 (0.4)b 1.3 (0.4)c 2.7 (0.6)a 2.8 (0.5)a

iAUC60−180% 36.6 (9.1)c 47.0 (8.4)ab 39.8 (10.5)bc 51.6 (5.5)a

iAUC180 268.8 (49.4)c 242.5 (51.9)c 330.0 (72.5)b 442.9 (71.7)a

NAUC180 –25.5 (23.4)b –2.2 (10.7)a –57.8 (32.0)c –8.0 (18.3)a

Peak180 4.1 (0.6)b 3.2 (0.5)c 4.7 (0.7)a 5.1 (0.8)a

Nadir180 –1.0 (0.4)a –0.2 (0.7)a –1.6 (0.4)b –0.7 (0.8)a

SD180 1.7 (0.2)c 1.2 (0.2)d 2.2 (0.3)a 2.0 (0.4)b

Values are mean (SD), except that NAUC120 is median (first quartile, third quartile). a, b,
c, d, used for comparison between groups (P < 0.05).

output of the analysis is a correspondence map (Figure 8A),
which clearly shows the categories of analyzed variables, their
mutual similarity and differences, or associations with categories
of other variables. The closer two points located in the
correspondence map, and the farther away the points deviated
from the origin, the stronger the mutual dependence of the
categories were.

As shown in Figure 8A, significant dependence was found
between the clustering categories of WR1 and G2 sustaining
a mild rise of blood glucose after the ingestion. Moderate
dependence was found between the clustering categories of
WR3 and G2, both characterized by less hyperglycemic and
hypoglycemic fluctuation. In contrast, the percentage of WR2
clusters or WR4 clusters to G4 group was much larger than
average either (Figure 8B), while WR2 and WR4 clusters were

FIGURE 6

Postprandial glycemic response (PGR) to white rice of white rice
(WR) clusters (WR1, WR2, WR3, WR4). a, b, c, d, used for
comparison between subgroups at that time point (P < 0.05).
The error bars indicate the mean ± SE.

comparable in terms of large amplitudes of PGR but significantly
different in terms of postprandial glucose dips.

As shown in Figure 8B, the share of WR2 and WR3 clusters
took dominance in the G1 group, while the WR2 and WR3
clusters possessed the opposite PGR patterns to WR. In G3
group, which had the greatest glycemic excursion, the shares
of the four WR subgroups were relatively balanced, while the
proportion of WR1 or WR3 clusters was measurably larger than
average.
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TABLE 4 Body mass index (BMI), fat mass, and glycemic parameters
calculated over 120 min of white rice (WR) clusters (n = 114).

WR1
(n = 16)

WR2
(n = 38)

WR3
(n = 43)

WR4
(n = 17)

BMI 20.4 (1.4) 20.6 (1.9) 21.1 (2.3) 20.4 (1.72)

Difference1 1.09
(0.70–1.69)

1.08
(0.75–1.56)

1.31
(0.92–0.87)

Reference

Fat mass 24.3 (4.1) 25.4 (4.4) 25.3 (4.5) 25.27 (4.5)

Difference1 0.93
(0.77–1.12)

0.99
(0.84–1.16)

0.94
(0.80–1.1)

Reference

CONGA1120 1.1 (0.5)b 2.3 (0.6)a 1.5 (0.3)b 2.4 (0.7)a

iAUC60−120% 34.9 (12.6)c 47.4 (10.5)b 56.9 (8.3)a 60.6 (8.41)a

iAUC120 130.5
(30.6)d

247.3
(46.8)b

203.6 (40.8)c 321.6 (39.4)a

NAUC120 0.0 (0.6)b 0.0 (0.0)a 0.0 (0.0)a 0.0 (0.0)a

Peak120 2.7 (0.7)b 4.1 (0.6)a 3.0 (0.6)b 4.5 (0.7)a

Nadir120 0.2 (0.5)c 0.8 (0.6)b 1.0 (0.6)b 1.8 (0.7)a

SD120 0.9 (0.2)b 1.4 (0.2)a 1.0 (0.2)b 1.5 (0.2)a

GI120* 59 (19)b 86 (27)a 77 (19)ab 93 (24)a

Values are mean (SD), except that NAUC120 is median (interquartile range).
1Difference (95% CI) from multinomial logistic regression models. a, b, c, d, used for
comparison between groups based on one-way ANOVA test or Kruskal–Wallis test
(P < 0.05).
*The GI of white rice based on iAUC120 .

Discussion

The data of the current study showed that PGRs to the same
food were highly variable across individuals even in healthy
subjects of the same gender and ethnic group, similar age.

TABLE 5 Glycemic parameters calculated over 180 min of four white
rice (WR) clusters (n = 114).

WR1 WR2 WR3 WR4

CONGA1180 1.1 (0.4)b 1.9 (0.4)a 1.3 (0.3)b 2.2 (0.4)a

iAUC60−180% 34.9 (12.6)c 47.4 (10.5)b 56.9 (8.3)a 60.6 (8.41)a

iAUC180 135.3 (33.7)c 276.4 (51.0)b 250.3 (56.2)b 396.2 (49.0)a

NAUC180 –12.2 (10.2)c –0.9 (3.4)b 0.0 (0.0)a 0.0 (0.0)a

Peak180 2.7 (0.7)b 4.1 (0.6)a 3.0 (0.6)b 4.5 (0.7)a

Nadir180 –0.4 (0.3)c 0.2 (0.4)c 0.3 (0.4)b 0.8 (0.4)a

SD180 1.0 (0.2)b 1.5 (0.2)a 1.0 (0.1)b 1.5 (0.2)a

GI180* 57 (17)c 90 (30)ab 86 (20)b 107 (29)a

Values are mean (SD), except that NAUC180 is median (interquartile range). a, b, c used
for comparison between groups (P < 0.05).
*The GI of white rice based on iAUC180 .

Cluster analysis revealed that the subjects could be classified
into distinct subgroups according to their PGR patterns to
glucose and white rice. The results indicated that extending the
glucose tolerance test to 180 min would be helpful to detect
the possible hypoglycemic troughs after 120 min characterized
in some subgroups.

In order to capture the information inherent in the PGR
pattern, we used diverse parameters derived from the PGR
curve. Not only those represented the elevation of blood glucose
(Peak and iAUC), but also those related to the rate of post-peak
decline (iAUC60−120% and iAUC60−180%), the hypoglycemia
(NAUC and Nadir) and the glycemic variability (SD and
CONGA) were included.

FIGURE 7

Principal factor analysis loading and score plots of white rice (WR) clusters. (A) Principal factor analysis (PFA) based on parameters calculated
over 120 min. (B) PFA based on parameters calculated over 180 min. The loadings of the parameters are shown with arrows, and the scores of
the participants are shown as dots in the background. a, b, c used for comparison of PC1 scores (P < 0.05). 1–4, used for comparison of PC2
scores (P < 0.05).
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FIGURE 8

The relationships between clustering categories of white rice (WR)and glucose (G). (A) Individual correspondence maps between clustering
categories of WR and G. (B) The proportions of WR1–WR4 clusters in G1–G4 clusters and the entire subjects.

The study demonstrated that the rate of glucose decline
and the NAUC could be regarded as an important aspect when
differentiating the responders’ PGR patterns. The hypoglycemic
variability, characterized by the rapid decline in blood glucose
and a nadir below the baseline, was one of the deleterious
effects of vacillating glucose levels. In the diabetic, frequent
severe hypoglycemia was associated with increased risks of
cardiovascular events (30), brain damage (31), retinopathy (32),
and death (33). In non-diabetic persons, severe hypoglycemia
after OGTT indicates the susceptibility to metabolic disorders
(34). Postprandial glycemic dip in healthy subjects is also found
to be able to predict appetite and energy intake (35). What’ more,
there is evidence that the hyperglycemia after recovery from
hypoglycemia leads to worsened endothelial function, increased
oxidative stress and inflammation in both healthy individuals
and the diabetic (36). Given that the most hypoglycemic values
appeared after 120 min, the classification of blood glucose
patterns based on 180 min blood glucose data is relevant
for the management of individual PGR and contribute to the
precision nutrition.

Oral glucose tolerance test is used to detect the status of
glucose tolerance based on the fasting plasma glucose and 2
or 3-h plasma glucose after meal. Previous study suggested
that the analysis of PGR patterns during OGTT might help
to extract metabolic information and identify risks of diseases.
Using the latent class trajectory analysis, Hulman et al. identified
different glucose response patterns based on the shape of blood
glucose curves and found that it was the PGR patterns, rather
than the fasting plasma glucose and 2-h plasma glucose, that
were remarkably associated with the risk of future diabetes
and all-cause mortality (7, 12, 37). Froslie et al. (11) applied
a functional principal component analysis to OGTT data and
identified the typical temporal morphology that associated with
high risk of gestational diabetes later in pregnancy. Similar to the

previous studies, by cluster analysis and PFA, we observed four
representative PGR patterns to glucose, i.e., the monophasic
type (G1), the smooth type (G2), the biphasic oscillating type
(G3), and the hyperglycemia type (G4).

In normoglycemic insulin sensitive individuals, after
digestion of a bolus dosage of glucose, the blood glucose
concentration increase initiates the pancreatic β-cells to secrete
insulin with a biphasic pattern, results in a quick first-phase peak
and a slowly rising second phase (38). The rise in blood glucose
and insulin concentrations suppress the endogenous glucose
production promptly, and then stimulate the uptake of glucose
from peripheral tissues gradually (39). If the blood glucose level
is too low, the glucagon secretion will induce the endogenous
glucose production to restore the glucose homeostasis.

The equilibrium of the glucose-insulin (G-I) dynamic is
reflected by an early and low peak (12), a steep slope of the
decrease (6), and the nadir around the fasting level of PGR
curve (40), while the G-I-related dysregulations will affect the
PGR patterns in turn. We would speculate that the late and high
glucose peak, a slow post-peak decline of blood glucose in G4
indicated the risk of hepatic and peripheral insulin resistance
(41, 42), a weak first phase insulin secretion (43), and the
lack of compensatory second phase insulin secretion (44). The
coexisted high peak, rapid post-peak decline, and hypoglycemic
trough in G3 implied an exaggerated second phase insulin
secretion (45, 46) compensating for the inadequate first insulin
secretion (47, 48) and impaired hepatic insulin sensitivity (39).

A number of studies demonstrated that genetic risk (49, 50),
demographic and lifestyle factors (12) contribute to the variation
of PGR pattern as deeper reasons. In addition, the rate of gastric
emptying (51) and glucose absorption (52) as well as the release
of incretin hormones (41, 53) may influence G-I control system
and further affect the shape of the PGR curve. Hence, better
understanding of glycemic patterns to glucose might allow more
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comprehensive assessment of the metabolic status and help to
identify high-risk individuals by a simple OGTT test.

In line with the previous studies that examined individual
PGRs (54, 55), we found great individual variability in PGR to
glucose and rice even among the relatively homogenous subjects
with similar baseline glucose value. Some research suggested
that a person’s glycemic response is the result of glucose scaling
to the individual (54). However, we found that the PGR pattern
of glucose did not correspond to the PGR pattern of white rice
exactly. The white rice elicited four distinct PGR patterns, which
were the hypoglycemia type (WR1), the smooth type (WR3),
the oscillating type (WR2), and the hyperglycemia type (WR4).
For those who showed prolonged hyperglycemia in the glucose
test (G4), merely 14.8% of them in fact had a stable glycemic
response to white rice (WR3). Among those who had the best
glycemic stability in glucose test (G2), only 16.7% of them were
characterized by hyperglycemia after rice ingestion (WR2 and
WR4). However, in the largest G subgroup (G1), and the cluster
with the greatest glycemic variability (G3), the heterogeneous
PGR patterns to rice made it almost impossible to predict a
subject’s real PGR pattern to rice meal by OGTT.

Considering the good homogeneity of subjects, we postulate
that the discrepancy between the individual PGR patterns
of G and WR can be explained by the disparate digestive
process of rice and glucose. Factors including salivary α-amylase
activity (56), chewing patterns (57, 58), gastric emptying (51),
pancreatic α-amylase activity and the impact of the food texture
properties (59), and non-carbohydrate nutrients (60) might
make differences to the bioavailability of carbohydrate food, the
rate of gastrointestinal glucose diffusion and absorption, as well
as the secretion of incretin hormones and insulin (61, 62).

In the present study, we found that a moderate proportion
of the subjects, who showed great glycemic variability during G
test, achieved relatively mild PGR in WR test. If they consume
mixed meals consist of rice, green vegetable and protein food,
they will be likely to be able to keep the PGR and the HbA1c
at bay (63). Hence, in regions taking white rice as the major
carbohydrate food, a combination of the OGTT, HbA1c and a
white rice tolerance test may be instrumental for individualized
glycemic management (64). What’s more, growing body of
research have shown that the meal tolerance test could provide
reliable estimation of beta-cell function and insulin resistance
(65–68). Compared with other carbohydrate reference food for
the meal tolerance test, the white rice meal has the advantages of
good availability, high acceptability, and easy standardization.

In our study, the average GI120 of white rice (O. sativa
spp. japonica) was 80 ± 25, close to the values reported by
Atkinson et al. (69) and Yang et al. (70). However, the WR1
clusters marked difference in obviously lower GI120. Given the
high interpersonal variability in PGR, generally grading of the
japonica type white rice as “high GI food” based on the average
GI may not apply to a part of the individuals. No difference
was found between the GI120 based on WR2 and WR3, in spite
of the fact that the two clusters had different PGR patterns. It

is notable that the GI calculated based on the 180 min data
achieved significant differences among the WR1, WR3, and
WR4 subgroups, while the GI based on the 120 min data failed
to differentiate the WR3 from WR4 subgroups.

Though the GI was widely used as an indicator of the
quality of carbohydrate foods, the certainty of evidence for the
relationship between GI and clinical outcomes was graded as
low (71). This contradictory might be explained by the fact that
the GI is calculated only by the iAUC in 120 min, which might
not be enough to represent the PGR patterns in 180 min and
beyond, which were affected by both the characteristics of the
foods and the type of the subjects. Previous studies observed
that the shapes of the PGR curve of foods with comparable GI
could vary considerably, especially when it comes to glycemic
troughs (72). Recently, based on continuous blood glucose
monitoring data, new indicators such as glycemic deviation
index (GDI) was developed to integrate the characteristics
of the glycemic numerical value and variability, and the
possibility of severe hyperglycemia/hypoglycemia (73). As most
hypoglycemic episode occurred after 120 min, it is expected that
some new index of glycemic stability, which includes negative
area under the glycemic curve after 120 min and beyond to fully
describe the glycemic variability elicited by food items.

No significant relationship between anthropometric
characteristics and PGR pattern was found in this study. Since
the subjects consisted of pure young, lean and healthy female
subjects, living in the same environment, this study had a
relatively small inter-individual variability of BMI (CV = 9.54)
and fat mass (CV = 17.87). The uncollected data such as body
visceral fat and lean body mass, physical activity level, lifestyle
factors, genetic backgrounds, gut microbiome, which varied
even in the relatively homogeneous subjects, might affect PGR
pattern and need to be explored in future study.

To our knowledge, the current study is the first to classify
the PGR patterns of white rice in healthy people, which might
be helpful to give insight into the individual PGR to white
rice. We used multiple parameters derived from the glucose
curves and compared the results based on both 120 and 180 min
including those associated with glycemic dips to render a
full picture of the PGR patterns. Since the subjects in this
study are of same ethnic group and gender group, lived in
the dormitories of the same campus, and dined in the same
several dining halls, the lifestyle confounders and inter-person
variability were minimized. However, even if the trials included
are well consistent in terms of study procedure and setting, and
the management of subjects, the inter-day glycemic variation
might still exist. It is suggested to take repeated measures of
individual PGR to the same food. The results may not be applied
to people in the diabetic, male subjects and other ethnic groups.
The number of the subjects in this study is still limited. Besides,
the rice sample used in the study was the japonica type rice
prepared by rice cooker, which prevailed in the northeast Asia.
The PGR pattern to white rice of indica type or prepared with
other procedures is yet to be explored. The insulin and incretin

Frontiers in Nutrition 11 frontiersin.org

https://doi.org/10.3389/fnut.2022.977278
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-977278 October 25, 2022 Time: 13:40 # 12

Liu et al. 10.3389/fnut.2022.977278

responses of different PGR patterns, which are crucial for
understanding the underlying mechanism, were not included
in this analysis.

In conclusion, the present study identified four typical PGR
patterns to glucose and four typical PGR patterns to white
rice by cluster analysis and PFA, indicating high interpersonal
variability in PGR pattern to a certain kind of food. Each
given subgroup of PGR to G presented multiple patterns of
PGR to WR, suggesting a need of combining the glucose
tolerance test and white rice tolerance test in rice culture
regions. Compared with the parameters calculated based on
the postprandial 120 min curve, those based on 180 min curve
might be more effective for discriminating the PGR patterns,
as it better characterized the hypoglycemic part of the curve.
Since it is not accurate to extrapolate the PGR patterns to a
certain food only from an OGTT in many subjects, further
studies are expected to understand the glycemic variability
elicited by major carbohydrate food items for effective daily
glycemic management.
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