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Summary
Background Anti-Müllerian hormone (AMH) is produced by granulosa cells in small growing ovarian follicles. In
adult women, serum concentrations of AMH reflect the ovarian reserve of resting primordial follicles, and low AMH
is associated with risk of early menopause. In contrast, patients with polycystic ovary syndrome (PCOS) have elevated
AMH. The primary aim of this study was to evaluate the individual tracking of serum AMH concentrations, as well as
whether AMH in early childhood reflects ovarian activity in adolescence.

Methods In this large longitudinal study of healthy girls were examined from infancy to adolescence (1997–2019)
including physical examination, assessment of serum concentrations of reproductive hormones (in infancy, median
age 0.3 yrs; mid-childhood, 7.2 yrs; puberty, 11.3 yrs; and adolescence, 15.9 yrs), transabdominal ultrasound (TAUS,
puberty and adolescence) and magnetic resonance imaging (MRI, puberty) of the ovaries.

Findings Each girl maintained her relative AMH concentration (expressed as standard deviation (SD) scores) over
time; mean variation of individual age adjusted AMH concentrations was 0.56 ± 0.31 SD.Serum concentrations of
AMH in adolescence correlated with AMH in infancy and childhood; infancy: r = 0.347; mid-childhood: r = 0.637;
puberty: r = 0.675, all p < 0.001.AMH correlated negatively with FSH concentrations in all age groups (infancy:
r = −0.645, p < 0.001; mid-childhood: r = −0.222, p < 0.001; puberty: r = −0.354, p < 0.001; adolescence: n = 275,
r = −0.175, p = 0.004).Serum AMH concentrations in mid-childhood correlated with the number of follicles in pu-
berty (TAUS and MRI) as well as in adolescence (TAUS); e.g. total number of follicles: TAUS puberty (r = 0.607), MRI
puberty (r = 0.379), TAUS adolescence (r = 0.414), all p < 0.001.AMH concentration in infancy as well as in mid-
childhood predicted low AMH (<10 pmol/L) in adolescence; AMH infancy <7.5 pmol/L as predictor of low AMH
in adolescence: sensitivity 0.71, specificity 0.70, AUC 0.759; AMH mid-childhood < 8.4 pmol/L as predictor of low
AMH in adolescence: sensitivity 0.88, specificity 0.87, AUC 0.949.Girls with high serum AMH concentration in mid-
childhood (AMH >30.0 pmol/L vs. other girls) had higher adolescent LH (median 4.53 vs. 3.29 U/L p = 0.041), LH/
FSH ratio (1.00 vs 0.67, p = 0.019), testosterone (1.05 vs 0.81 nmol/L, p = 0.005), total number of follicles (23 vs. 19,
p = 0.004), and higher prevalence of irregular cycles (10/15 = 67% vs. 28/113 = 25%, p = 0.002).

Interpretation The present findings suggest remarkably stable ovarian activity from small growing follicles in healthy
girls, supporting AMH in early life as a useful clinical tool to predict future ovarian activity.
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Research in context

Evidence before this study
Serum concentration of Anti-Müllerian Hormone (AMH)
reflects the number of small antral ovarian follicles.
Concentrations decline as menopause approaches, and very
low AMH is associated with increased risk of early menopause.
Little is known about the clinical implications of individual
serum AMH concentrations during childhood and
adolescence.
We searched PubMed in January 2022 for English language
publications with the terms “Anti-Müllerian Hormone”, and
“AMH”, and “girls”, and “longitudinal”. We identified two
longitudinal studies reporting serum AMH concentrations in
healthy girls. In one study from our own group, individual
AMH was evaluated during a limited time span covering the
pubertal transition. In the other study, longitudinal data were
used to assess trends over time, however individual
trajectories were not evaluated.

Added value of this study
In this large longitudinal study over two decades, individual
serum concentrations of AMH were stable from infancy to
adolescence. This novel finding of an individual set point of
ovarian activity from small ovarian follicles evident from early
childhood raises several physiological, clinical and scientific
points of interest.

Implication of all the available evidence
The present study supports AMH as a useful clinical tool to
predict future ovarian activity. Thus, evaluation of AMH
concentration in infancy candidates as a useful parameter
when evaluating ovarian function including assessment of the
ovarian reserve of primordial follicles later in life.
Introduction
Anti-Müllerian hormone (AMH) is produced by gran-
ulosa cells in small follicles prior to FSH dependent
growth.1,2 Serum AMH concentrations reflect the
number of small antral follicles throughout life; i.e. in
infancy,3 peripubertal girls,4 adolescents5 and adult
women.6 In adult women, the number of small growing
follicles are in equilibrium with the number of resting
primordial follicles constituting the total number of
germ cells established in fetal life.7 Thus, risk of early
menopause is increased in women with low age-specific
AMH.8

When AMH was first characterized, it was a marker
of testicular tissue in young boys due to high levels
produced by immature Sertoli cells,9 however, after
introduction of highly sensitive AMH assays, serum
concentrations of AMH are now measurable in all
healthy girls.10,11 This is due to recruitment of primordial
follicles to small growing follicles through childhood
even prior to pubertal onset. Minor fluctuations of AMH
around pubertal onset have been observed, but overall,
AMH concentrations are stable through pubertal
development12,13 which indicates an individual set-point
of ovarian activity. To our knowledge, there are
currently no longitudinal data revealing whether this
set-point of activity from small antral follicles tracks all
the way from infancy and mid-childhood over puberty to
adulthood.
AMH reduces follicle growth as well as intrafollicular
aromatase activity and hereby inhibits estradiol pro-
duction from small growing ovarian follicles.14–16 High
AMH is a frequent finding in women with polycystic
ovarian syndrome (PCOS)17: These patients have an
increased number of small AMH producing follicles
due to adversely altered gonadotropin secretion18; AMH
production in granulosa cells from follicles in PCOS
patients is intensified19; and AMH may even adversely
affect hypothalamic GnRH secretion by increasing LH
secretion from the pituitary.20 Daughters of mothers
with PCOS have elevated AMH concentrations,21 and it
has been speculated if high AMH in childhood predicts
PCOS in adult life.

Minipuberty is a transient activation of the
hypothalamic-pituitary-gonadal hormone axis (HPG)
during infancy where gonads are stimulated to hor-
mone production reaching concentrations comparable
with adults.22,23 Gonadotropins stimulate growth of
ovarian follicles, and AMH is detectable in sera from
all infant girls.11 Peak concentrations around 3.5
months of age vary considerably between girls
reflecting the number of antral follicles.3 The transient
activation of the HPG axis is used as an early window
of opportunity to assess gonadal and pituitary function
in children with suspected congenital hypogonado-
tropic hypogonadism as well as in children born
with differences of sexual development (DSD
www.thelancet.com Vol 55 January, 2023
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conditions).24,25 Little is known about the biological
significance and possible long-term consequences of
minipuberty. In mid-childhood, the HPG axis is cen-
trally inhibited until reactivation at time of pubertal
onset. In this quiescent period of ovarian activity,
follicles are continuously recruited from the primor-
dial follicle pool growing to early stages independent
of FSH stimulation. Reactivation of the HPG axis with
increasing concentrations of FSH and LH marks pu-
bertal onset, inducing further follicle growth to large
antral stages producing estradiol. Thelarche precedes
menarche by 2–3 years which can be followed by
years of irregular menstrual bleedings due to juvenile
anovulatoric cycles.26

In this longitudinal study of 695 healthy girls, we
aimed to evaluate whether: 1) Serum concentrations of
AMH in infancy and mid-childhood are associated with
AMH concentrations and ovarian morphology in
puberty and adolescence; 2) High AMH concentrations
in infancy and childhood are associated with altered
profiles of reproductive hormones, ovarian morphology
as well as a risk of irregular menstrual cycles in
adolescence.
Methods
Participants
Participating girls are part of the Copenhagen Mother-
Child Cohort (http://www.edmarc.net/mother-child-
cohort.html), a population-based longitudinal birth
cohort of healthy Danish children born between 1997
and 2002. Healthy pregnant women were recruited
consecutively during the first trimester of pregnancy. A
total of 1210 live born girls were included at birth and
invited to participate in examinations during infancy,
mid-childhood, puberty (three peripubertal examina-
tions) and adolescence.4,5,27,28

Height was measured using a portable calibrated
stadiometer (Holtain Ltd, Crymych, UK) and weight was
measured to the nearest 0.1 kg using the same elec-
tronic scale (Brabantia scale no. 483127, Brabantia,
Hadsten, Denmark) for all participants. For measure-
ments of height and weight, the mean of three mea-
surements was calculated and used for all statistical
analyses. Body mass index (BMI) was calculated
(kg/m2). Pubertal stage was assessed according to Tan-
ner and Marshall.29 In adolescence, 131/317 were
examined at cycle day 2 through 5; 175/317 girls were
examined at cycle day 1 through 7.5

AMH concentrations from this population have
previously been reported for nested cross sectional co-
horts of girls in infancy, mid-childhood, puberty, and
adolescence. The selection of girls for AMH analyses in
previous studies from this cohort are briefly described.
2010: To establish a reliable reference range of AMH
concentrations, approximately 50 girls from each age-
group were randomly selected for AMH analyses due
www.thelancet.com Vol 55 January, 2023
to funding restrictions.11 2014: A nested cohort of 121
girls examined at infancy and mid-childhood were
randomly invited to participate in a substudy of the
concurrent pubertal examinations including trans-
abdominal ultrasound (TAUS), magnetic resonance
imaging (MRI).4 2019: All adolescents previously
participating in the study were invited for examination
including TAUS.5 All girls with at least two available
AMH measurements were included in the present
study. No girls were excluded due to age. Data from
visits at which adolescents were on hormonal contra-
ception were excluded from all analyses (including
hormones as well as ovarian morphology) (n = 61).
AMH from all time points (including three examina-
tions during puberty) were included to evaluate the
intraindividual variation of AMH. To evaluate correla-
tions between AMH at different time points, we
included data from infancy (median age 0.3 yrs), mid-
childhood (7.2 yrs), first examination in puberty
(11.3 yrs) and at adolescence (15.9 yrs). The total num-
ber of AMH samples was 1183; total number of girls,
n = 437; paired AMH samples: infancy –mid-childhood,
n = 183; infancy – puberty, n = 212; infancy – adoles-
cence, n = 115; mid-childhood – puberty, n = 251;
mid-childhood – adolescence, n = 145; puberty –

adolescence, n = 204. None of the included girls suf-
fered from conditions affecting ovarian function or
hormone production of the HPG axis.

We included all available data on transabdominal
ultrasound (TAUS) and magnetic resonance imaging
(MRI) of the ovaries. These scans were performed at
puberty (TAUS and MRI) and adolescence (TAUS). Af-
ter exclusion of girls on hormonal contraception (n = 65)
and with ovarian cysts (n = 10), a total of MRI puberty,
n = 78; TAUS puberty, n = 83 and TAUS adolescence,
n = 137 were included.
Hormone analyses
All blood samples were drawn between 8:00 AM and
2:00 PM from an antecubital vein, clotted, and centri-
fuged; serum was stored at −20 ◦C until hormone
analyses.

During the study period, two AMH assays (Beckman
Coulter, Inc. Brea, CA) have been used. The Access
immunoassay substituted the Immunometric assay
generation I when this was no longer commercially
available. The Beckman Coulter enzyme immunometric
assay generation I (Research Resource Identifier, RRID:
AB_2923005) had a detection limit of 2.0 pmol/L;
interassay coefficients of variation (CV) 11.6%. The Ac-
cess immunoassay (RRID: AB_2892998) has a detection
limit of 0.14 pmol/L and interassay CV < 5%.
Comparative studies between the two assays revealed
negligible differences (1.3%) and no adjustments of
results have therefore been performed.
3

http://www.edmarc.net/mother-child-cohort.html
http://www.edmarc.net/mother-child-cohort.html
nif-antibody:AB_2923005
nif-antibody:AB_2892998
www.thelancet.com/digital-health


Articles

4

Serum FSH (infancy and mid-childhood) were
measured by Delfia (Wallac, Inc, Turku, Finland) with
detection limit of 0.06 IU/L, interassay CV < 5%.

Serum FSH (puberty and adolescence) and LH were
measured by Delfia (PerkinElmer, Boston, MA. RRID:
AB_2783738 and AB_2783737) with detection limits of
0.05 IU/L and interassay CV < 4%.

Serum inhibin B was determined using the Beck-
man Coulter GenII assay (Beckman Coulter, Inc. Brea,
CA. RRID: AB_2827405) with a detection limit of 3 pg/
mL and interassay CV 10.3%.

Serum estradiol was measured by RIA (Pantex Corp,
Immunodiagnostic Systems Ltd, Santa Monica, CA.
RRID: AB_2905658) with a detection limit of 18 pmol/L
and interassay CV 14.9%.

SHBG was measured by Access2 (Beckman Coulter,
Brea, CA. RRID: AB_2893035) with a limit of detection
at 0.33 nmol/L and interassay CV 5.2%.

Androgens were quantified by Turbo Flow-liquid
chromatography-tandem mass spectrometry. Detection
limits were 0.10 nmol/L (testosterone) and 0.18 nmol/L
(androstenedione).30 The relative standard deviations for
low- and high-quality control samples were 16.5% and
7.2% (testosterone); 22.9% and 18.3% (androstenedi-
one), respectively.
Transabdominal ultrasonography and MRI of
internal genitalia
2D and 3D ovarian and uterine TAUS were conducted
through a full urinary bladder. 3D images were obtained
from stored 2D image sequences in 3 planes: sagittal,
transverse, and coronal. All scans in girls were per-
formed by two trained examiners with the Voluson E8
Ultrasound System (GE Healthcare Medical Systems,
Zipf, Austria) including a multifrequency trans-
abdominal probe (RM6C, 3–8 MHz). Manual counting
of follicles as well as measurement of ovarian length,
width and depth were performed by four experienced
operators.

All images were stored, and image analyses were
done with 4-dimensional View software (GE Medical
System, v 9.1. Little Chalfont, England). The number of
follicles was counted in each ovary. Follicle numbers
were evaluated by Tomographic Ultrasound Imaging
(TUI) where a 3D model of the ovary was sliced (4 mm
thickness) and follicles were manually counted in sub-
groups. TAUS Puberty: small follicles (1.0–4.4 mm),
medium (4.5–9.4 mm), large (≥9.5 mm). TAUS
Adolescence: small (2.0–4.9 mm), medium
(5.0–7.9 mm), large (≥8 mm). We report the sum of
follicles from both ovaries. Analyses of images from
TAUS Adolescence of 12 girls (4%) were technically
challenging because of poor image quality; these ultra-
sound data were excluded from all analyses. Interob-
server CV was 16.5% for follicle count of follicles
2–7.9 mm, 15.3% for all follicles.
Menstrual cycles
At examination in adolescence, the girls completed an
electronic questionnaire including age at menarche,
menstrual cycle length within the past 6 months
(grouped as: < 21 days, 21–35 days, > 35 days, “too
irregular to tell”, “on hormonal contraception” or “un-
known”), number of menstrual bleedings in the past 6
months. Participants completed a menstrual calendar
either from time of invitation until examination or
retrospectively, if this information was kept. Informa-
tion was available for a minimum of three cycles.

Menstrual cycles in the 145 girls with AMH data at
mid-childhood and adolescence were categorized as
either: regular menstrual cycles, irregular menstrual
cycles, or other cycle patterns.

Regular menstrual cycles (n = 90): A reported cycle
length of 21–35 days and 5 to 8 menstrual bleedings
within the past 6 months was defined as regular.

Irregular menstrual cycles (n = 38): was defined as
oligomenorrhea or secondary amenorrhea.

Oligomenorrhea: Reported cycle length of “>35 days”
or “too irregular to tell” in combination with menstrual
calendar data of 1–3 bleedings in the past 6 months.
Girls reporting either “don’t know” or “4 bleedings in
the past 6 months” were categorized as irregular only if
their menstrual calendar showed oligomenorrhea.

Secondary amenorrhea: Girls who had experienced
menarche but had no menstrual bleeding within the
past 6 months.

Other cycle patterns (n = 17): Girls who had not
experienced menarche or who had menarche during the
past 6 months were included in this group. If answers
on questionnaire and menstrual calendar were not in
accordance, the girls were also included in this group.
Statistics
Data are presented as median and interquartile range
(IQR).

To assess if absolute AMH concentrations changed
according to age, Wilcoxon signed rank test was used.

To adjust AMH concentrations for age, reference
curves were created using the generalized additive
model for location, scale, and shape (GAMLSS)
including the GAMLSS R package.31 The age-specific
distribution of AMH for age was summarized by 3
curves: L (age-dependent skewness), M (age-dependent
median), and S (age-dependent CV). Age-specific stan-
dard deviation (SD) scores were calculated using the
following equation: SD score = ((X/M)L-1)/(L × S), where
X is the measurement and L ∕= 0.

We calculated the within-girl (intra-individual) vari-
ation of AMH SDS, reported as mean ± 1 SD.

The girls of most clinical interest were girls with the
highest AMH concentrations (potential risk of future
PCOS) and the girls with the lowest AMH (potential risk
of imminent POI). A priori power calculation was not
www.thelancet.com Vol 55 January, 2023
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possible due to lack of similar studies. Based on the
individual mean SD scores, we divided the girls in AMH
quintiles (5 groups). Quintiles were grouped in low
AMH SDS (Q1), medium AMH SDS (Q2-4) and high
AMH SDS (Q5).

The majority of variables evaluated were not nor-
mally distributed. In addition, a number of variables
included cases with undetectable levels of hormone
concentrations, and in some of the analyses, the num-
ber of girls were limited. We therefore decided to apply
non-parametric statistical analyses as a conservative
approach. Univariate correlations, e. g between AMH
concentrations in infancy or mid-childhood and AMH
concentrations or number of follicles in puberty or
adolescence were evaluated with Spearman’s Rho.

To evaluate if high concentrations of AMH in mid-
childhood (AMH ≥30 pmol/L matching the Q5 AMH
SDS cut off) were associated with reproductive hormone
concentrations and ovarian morphology in adolescence,
girls with the highest mid-childhood AMH were
compared with other girls by the Mann Whitney U
(MWU) test (continuous variables) and Pearson chi
square test (categorical variables). The same method was
used to assess if low AMH (AMH ≤10 pmol/L matching
the Q1 AMH SDS cut off) in mid-childhood was asso-
ciated with ovarian activity in adolescence.

We conducted a Receiver Operating Characteristic
(ROC) curve to test the predictive value of low AMH in
infancy and mid-childhood for low AMH (AMH
≤10 pmol/L) in adolescence. The analyses provide AUC,
sensitivity, specificity for the AMH cut-off (in infancy
and mid-childhood, respectively) which most accurately
predicts AMH <10 pmol/L in adolescence.

All statistical analyses were performed using the R
software/environment and IBM SPSS Statistics 25.0
(SPSS, Chicago, IL). P-Values < 0.05 were considered
statistically significant.
Ethics
The longitudinal Copenhagen Mother-Child cohort was
approved by the local ethics committee (KF 01–030/97,
KF 01 276 357, KF 02-125/95, H-1–2009–074) and the
Danish Data Protection Agency (1997–1200–074/
2005–41–5545, 2010–41–4757). All parents and teen-
agers received written and oral information. Informed
consent was obtained before inclusion.
Role of the funding source
Study sponsors have not been involved in any aspect of
decision making concerning the present study.
Results
Age and anthropometrics of the 437 girls at examina-
tions from infancy to adolescence are listed in Table 1.
www.thelancet.com Vol 55 January, 2023
Individual longitudinal measurement of AMH
(pmol/L) during infancy, childhood, puberty and
adolescence are visualized in Fig. 1a. Absolute concen-
trations of AMH increased consecutively with age; AMH
infancy to mid-childhood (n = 115): median (IQR) 14.0
(6.0–22.8) to 17.1 (10.5–25.1) pmol/L, p = 0.015; AMH
mid-childhood to puberty (n = 251): 17.1 (10.5–25.1) to
19.8 (12.6–30.8) pmol/L, p < 0.001; AMH puberty to
adolescence (n = 204): 19.8 (12.6–30.8) to 24.5
(16.8–36.8) pmol/L, p < 0.001.

Age-adjusted AMH concentrations (expressed as
SDS) are shown in Fig. 1b. The girls with the highest
and lowest AMH SD scores maintained their relative
concentrations from infancy to adolescence; girls with
high AMH remained high, and girls with low AMH
remained low. The mean individual variation of AMH
SDS was 0.56 ± 0.31 SD.

Serum concentrations of AMH (pmol/L) in infancy,
mid-childhood, and puberty correlated strongly with
AMH in adolescence; infancy: n = 115, r = 0.347,
p < 0.001; mid-childhood: n = 145, r = 0.637, p < 0.001;
puberty: n = 204, r = 0.675, p < 0.001, respectively
(Fig. 2).

AMH concentrations (pmol/L) in mid-childhood
correlated with the number of ovarian follicles in pu-
berty (TAUS and MRI) as well as in adolescence
(TAUS), with respect to total number of follicles as well
as follicle subgroups, e.g. total number of follicles:
TAUS puberty (n = 78, r = 0.607), MRI puberty (n = 83,
p = 0.379), TAUS adolescence (n = 142, p = 0.414), all
p < 0.001 (Table 2).

AMH (pmol/L) in infancy correlated with the total
number of follicles in puberty (TAUS: n = 77, r = 0.283,
p = 0.013). This was driven primarily by small follicles
(TAUS (<4 mm): n = 77, r = 0.253, p = 0.026 and MRI
(2–3 mm): n = 74, r = 0.229, p = 0.050). AMH in infancy
did not correlate with the number of follicles in
adolescence (Table 2).

The total number of follicles in puberty (MRI)
correlated with the total number of follicles in adoles-
cence (n = 42, r = 0.445, p = 0.003).

AMH correlated negatively with FSH concentrations
in all age groups (infancy: n = 262, r = −0.645, p < 0.001;
mid-childhood: n = 307, r = −0.222, p < 0.001; puberty:
n = 365, r = −0.354, p < 0.001; adolescence: n = 275,
r = −0.175, p = 0.004).

AMH concentrations in adolescence were not asso-
ciated with age of menarche (n = 208, r = −0.016,
p = 0.819).

Girls with low AMH in mid-childhood (AMH
≤10.0 pmol/L, n = 40 vs. other girls, n = 145) had lower
concentrations of inhibin B (61.0 vs. 79.0 pg/mL,
p = 0.007), testosterone (0.72 vs. 0.89 nmol/L, p = 0.002),
androstenedione (2.45 vs. 3.11 nmol/L, p = 0.001), AMH
(15.8 vs. 30.4 pmol/L, p < 0.001) number of follicles, e.g.
total follicles (17 vs. 20, p < 0.001) in adolescence
(Table 3).
5
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Infancy (n = 276) Mid-childhood (n = 307) Puberty (n = 366) Adolescence (n = 237)

Age, years 0.26 (0.24–0.28) 7.2 (6.5–7.8) 11.3 (10.5–11.8) 15.9 (15.5–16.4)

Weight, kg 5.9 (5.5–6.3) 24.2 (21.5–27.9) 38.4 (32.6–44.9) 58.7 (53.1–65.5)

Height, cm 60.7 (59.1–62.0) 125.0 (118.9–131.4) 149.0 (143.0–156.1) 167.8 (162.8–172.9)

BMI, kg/m2 15.9 (15.1–17.1) 15.6 (14.7–16.8) 17.2 (15.9–18.9) 20.7 (19.4–22.9)

Tanner stage 1 77 (21.0%)

Tanner stage 2 146 (39.0%)

Tanner stage 3 100 (27.3%)

Tanner stage 4 37 (10.1%)

Tanner stage 5 6 (1.6%)

Gestational age 40 (39.0–40.9) 40.1 (39.0–41.0) 40.1 (39.0–40.8) 40.0 (39.1–40.8)

SGA 18 (6.5%)

LGA 14 (5.1%)

Median (IQR).

Table 1: Population characteristics of 437 girls included in the study.
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Low AMH in infancy and mid-childhood predicted
low AMH in adolescence (AMH ≤10.0 pmol/L); AMH
infancy <7.5 pmol/L (n = 7 vs. 108): AUC 0.759, sensi-
tivity 0.71, specificity 0.70; AMH mid-childhood
< 8.4 pmol/L (n = 8 vs. 137): AUC 0.949, sensitivity
0.88, specificity 0.87 (Fig. 3). Thus, there is a 94.9%
chance that AMH in mid-childhood will predict if AMH
is below or above 10 pmol/L in adolescence; 88% of girls
with AMH <10 pmol/L in adolescence had AMH
<8.4 pmol/L in mid-childhood, and 87% of girls with
AMH >10 pmol/L in adolescence had AMH >8.4 pmol/
L in mid-childhood.

Girls with high AMH in mid-childhood (AMH
≥30.0 pmol/L, n = 21 vs. other girls, n = 124) had higher
adolescent concentrations of LH (median 4.53 vs. 3.29
U/L p = 0.041), LH/FSH ratio (1.00 vs 0.67, p = 0.019),
inhibin B (87 vs. 71 pg/mL, p = 0.030), testosterone
(1.05 vs 0.81 nmol/L, p = 0.005), androstenedione (3.37
vs. 2.84, p = 0.050), AMH (38.7 vs 22.4 pmol/L,
p < 0.001), number of total follicles (23 vs. 19, p = 0.004)
as well as a higher prevalence of irregular menstrual
cycles vs. regular menstrual cycles: (10/15 = 67% vs.
28/113 = 25%, p = 0.002) (Fig. 4). BMI as well as con-
centrations of SHBG and free testosterone did not differ
between the two groups: BMI 21.2 vs 20.7 kg/m2,
p = 0.755; SHBG 69.25 vs 63.20 nmol/L, p = 0.416; free
testosterone 1.46 vs 1.32 pmol/L, p = 0.168, respectively
Discussion
In this long-term longitudinal study of serum AMH
concentrations in healthy girls through infancy (median
age 0.3 yrs), mid-childhood (7.2 yrs), puberty (11.3 yrs)
and adolescence (15.9 yrs), each girl maintained her
relative AMH level. AMH in adolescence correlated
strongly with AMH concentrations in puberty and mid-
childhood as well as infancy. In mid-childhood, serum
concentrations of AMH predicted the number of
ovarian follicles as the girls reached puberty and
adolescence. From infancy to adolescence, AMH was
negatively associated with FSH. This individual setpoint
of ovarian activity deriving from small growing follicles
which exert negative feedback on the pituitary already
from infancy highlights several physiological, clinical
and scientific points of interest.

The primordial follicle pool is established in fetal life.
Hereafter the number of primordial follicles declines
continuously until time of menopause.32 It has therefore
been argued, that relatively stable concentrations of
AMH during childhood excludes AMH as a clinical
marker of the follicle reserve in girls.33 However, based
on the present data, we speculate that this individual
setpoint of ovarian activity tracking throughout the
entire childhood to some degree may reflect the size of
the primordial follicle pool. From birth to menopause,
primordial follicles are constantly recruited into small
antral stages producing AMH. In adult women, the
number of small antral follicles are in equilibrium with
the number of metabolically inactive primordial folli-
cles.34 If the same dynamics exist in childhood, girls
with continuously low AMH may have less primordial
follicles than girls with high AMH concentrations.

Growth of small AMH producing follicles is not
dependent on FSH stimulation, and therefore mini-
puberty as well as pubertal reactivation of the HPG axis
affects AMH concentrations much less than other
ovarian hormones e.g. inhibin B and estradiol produced
from larger follicles.23,35 In contemporary longitudinal
cohorts of healthy girls, we and other groups have pre-
viously observed minor fluctuations of AMH during
pubertal development with increase of concentrations
prior to pubertal onset (defined by initial breast devel-
opment) followed by a limited decrease in the first years
following pubertal onset.35,36 Compiled data from several
cohorts suggest a further increase of AMH in adoles-
cence.37 The present study supports previous findings of
www.thelancet.com Vol 55 January, 2023
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Fig. 1: Serum AMH concentrations in absolute values (pmol/L) (a) and standard deviation scores (SDS) (b) according to age. Dots indicate
individual values and longitudinal courses are connected by lines. At each age group, i. e infancy, mid-childhood, puberty and adolescence,
median and IQR is marked with black diamants and brackets. All girls were divided into AMH quintiles (5 groups), based on the individual mean
SD scores. Blue: 1st quintile, red: 2nd, 3rd, 4th quintile, green: 5th quintile.
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Fig. 2: Correlation plots between serum AMH concentrations (pmol/L) in infancy, mid-childhood, puberty and adolescence, all p < 0.001.
Numbers refer to Spearman’s Rho, r values.
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relatively limited dynamics of absolute AMH concen-
tration through infancy, childhood and adolescence. The
consistent negative correlation between AMH and FSH
through childhood was also observed in another cohort
of healthy Danish peripubertal girls,35 suggesting that
ovarian activity from smoldering growth of small antral
follicles exerts negative feedback on the pituitary even in
quiescent periods through childhood.
AMH infancy

n Correlatio

Puberty Number of follicles 2–3 mm by MRI 74 0.229

Number of follicles 4–6 mm by MRI 74 0.126

Number of follicles ≥ 7 mm by MRI 74 0.010

Total number of follicles by MRI 74 0.138

Number of follicles < 4 mm by TAUS 77 0.253

Number of follicles 5–9 mm by TAUS 77 0.152

Total number of follicles by TAUS 77 0.283

Adolescence Number of follicles 2–4 mm by TAUS 108 0.174

Number of follicles 5–7 mm by TAUS 106 0.013

Number of follicles ≥ 8 mm by TAUS 108 −0.079

Total number of follicles by TAUS 106 0.168

TAUS = transabdominal ultrasound. MRI = magnetic resonance imaging.

Table 2: Correlations of AMH levels (pmol/L) in infancy and mid-childhood w
adolescence.
Thepubertal reactivationof theHPGaxis is coordinated
by networks of inducers and inhibitors of hypothalamic
GnRH secretion.38 Although AMHmay exert regulation of
GnRH secretion,20 we were not able to find associations
with pubertal onset (initial breast development) in a pre-
vious study of healthy girls followed frequently through
puberty.12 In line with these findings, AMH was not asso-
ciated with age at menarche in the present study.
AMH mid-childhood

n coefficient P-value n Correlation coefficient P-value

0.050 78 0.461 <0.001

0.286 78 0.551 <0.001

0.934 78 0.236 0.038

0.240 78 0.607 <0.001

0.026 83 0.313 0.004

0.188 83 0.315 0.004

0.013 83 0.379 <0.001

0.072 144 0.255 <0.002

0.892 142 0.334 <0.001

0.413 144 0.108 0.197

0.084 142 0.414 <0.001

ith total follicle count as well as follicle subgroups in puberty and
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Adolescence Mid-childhood AMH ≤10 pmol/L Mid-childhood AMH >10 pmol/L p-value

n median IQR n median IQR

AMH, pmol/L 40 15.8 10.3–21.0 105 30.4 21.7–42.3 <0.001

FSH, U/L 39 4.86 3.89–5.77 101 5.79 4.49–6.99 0.009

LH, U/L 39 3.00 1.97–4.43 101 3.47 2.26–5.22 0.305

Inhibin B, pg/mL 39 61.0 39.0–81.0 101 79.0 58.0–97.5 0.007

Testosterone, nmol/L 39 0.72 0.57–0.90 100 0.89 0.71–1.14 0.002

Androstenedione, nmol/L 39 2.45 1.89–3.49 100 3.11 2.50–4.11 0.001

Number of follicles 2–4 mm 40 12 10–15 104 14 11–16 0.037

Number of follicles 5–7 mm 39 4 2–5 103 6 3–8 <0.001

Number of follicles ≥8 mm 40 0 0–1 104 1 1–2 0.157

Total number of follicles 39 17 15–20 103 20 18–23 <0.001

BMI 40 21.28 19.48–23.85 111 20.56 19.29–22.49 0.316

Table 3: Reproductive hormone concentrations and follicle counts in adolescence depending on AMH in mid-childhood (AMH ≤10.0 pmol/L vs. AMH
>10.0 pmol/L).

Articles
It is uncertain, whether AMH concentrations in an
individual healthy girl predicts the length of her repro-
ductive lifespan. Even in adulthood, the predictive value
of AMH for the number of primordial follicles7 as well
as the specific age at menopause8 is limited. Further-
more, time to pregnancy is not affected in young
women with low AMH.39 Low AMH in otherwise
healthy girls therefore probably does not indicate a risk
of future premature ovarian insufficiency (POI) nor
reduced fecundability. Longitudinal studies from early
childhood to adulthood are needed to clarify this further.

The clinical utility of the present findings remains to
be explored in patients with risk of premature loss of
ovarian follicles; e.g. Turner Syndrome, other DSD
conditions, galactosemia, autoimmune disorders, pa-
tients with familiar dispositions, and cancer patients
Fig. 3: Receiver operating characteristic (ROC) curves of low AMH in a) inf
b) mid-childhood (AMH <8.5 pmol/L, sensitivity 0.88, specificity 0.87, AUC

www.thelancet.com Vol 55 January, 2023
after gonadotoxic therapy. In cross sectional studies, low
AMH is a marker of POI in adolescent Turner Syn-
drome patients.11,40 For patients at risk of POI, limited
longitudinal data support that very low or undetectable
AMH in early childhood predicts hypergonadotropic
hypogonadism at time of expected puberty.41 The rela-
tively high accuracy of low AMH in mid-childhood to
predict low AMH in adolescence in the present study
supports an assumption that low AMH in young pa-
tients at risk of POI is of concern. However, large lon-
gitudinal studies of patients in risk of POI are needed to
assess the predictive value AMH concerning age at
menopause. This could have considerable impact on
decisions of whether a patient would benefit from early
fertility preservation, i.e. patients with Turner
syndrome.42
ancy (AMH <7.5 pmol/L, sensitivity 0.71, specificity 0.70, AUC 0.759)
0.949) as predictors of low AMH in adolescence (AMH ≤10 pmol/L).
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Fig. 4: Reproductive hormone concentrations: a) inhibin B, b) LH, c) LH/FSH ratio, d) testosterone, e) androstenedione, as well as (f) follicle
counts in adolescence depending on AMH in mid-childhood (AMH ≥30 pmol/L vs. AMH <30 pmol/L).
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Although we expect a limited predictive value of in-
dividual AMH concentrations concerning the number
of primordial follicles and age at menopause in an in-
dividual healthy girl, the remarkable correlations of
AMH in infancy and mid-childhood with ovarian activity
later in adolescence suggests that AMH is a valuable tool
in scientific population-based studies. AMH in infancy
and mid-childhood may serve as a key outcome when
evaluating risk factors for fetal ovarian development
during which the ovarian reserve of primordial follicles
is established.

PCOS is a major endocrinopathy among women at
reproductive age. The exact prevalence is not clarified,
but it is estimated that 5–20% of apparently healthy girls
will develop PCOS in adulthood.43 The definition of
PCOS is continuously discussed, and the criteria of
PCOS have been revised several times.44 Diagnosing
PCOS in adolescence is particularly challenging as
multifollicular ovarian morphology as well as irregular
juvenil anovulatoric cycles are normal physiological
findings the first years after menarche.26 It has therefore
been suggested to postpone diagnosing PCOS to at least
eight years after menarche.45 Despite these challenges,
we could demonstrate that AMH in early childhood
(highest quintile) was associated with adolescent hor-
mone concentrations, ovarian morphology and men-
strual cycle patterns resembling PCOS in adulthood.
Our study cannot predict whether these girls will fulfil
the criteria for PCOS as young women or, in fact, have a
normal ovarian function. However, the link between
early childhood AMH and a PCOS-resembling pheno-
type in adolescents is intriguing. Although clinical
findings of PCOS are not present before pubertal reac-
tivation of the HPG axis, this indicates that the ovarian
www.thelancet.com Vol 55 January, 2023
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physiology of future PCOS patients may already be
altered in early childhood. This supports previous evi-
dence that the etiology of PCOS is multifactorial,
including genetic predisposition, intergenerational links
as well as environmental factors.46 Thus, long term
longitudinal studies are needed to clarify if AMH in
childhood is predictive of PCOS in adulthood.

This is a unique large and long-term study of healthy
Danish girls. Due to inclusion criteria (e.g. Caucasian,
healthy pregnant women), the limited participation-rate
(approximately 25%), the limited geographical area
included (The Copenhagen area) as well as over-
representation of mothers with an academic degree,
the girls are probably not representative for the entire
Danish background population.47,48 At examinations of
adolescents, participants did not differ from non-
participants concerning gestational age, birth weight,
weight for gestational age, maternal pre-pregnancy BMI
or social class.5 Thus, selection-bias concerning the girls
who kept participating in the study compared to the girls
withdrawing from the longitudinal part of the study
seems limited. A previous study has shown that AMH
levels are comparable between different ethnical groups
implying that findings in the present study may be
applied to girls of other ethnicity.49

AMH measurements cannot be directly compared
between commercially available assays, and reports of
different converting factors suggest that the assays have
been modified continuously.50 Therefore, the absolute
AMH concentrations reported in this study should be
used with caution for other AMH assays. Nevertheless,
the relative concentrations (SDS) based on a well-
defined reference range are clinically useful. It was not
possible to examine all adolescents at cycle day 2
through 5. We do not expect this to affect the primary
outcome of this study, as serum concentrations of AMH
do not vary considerably during the menstrual cycle.51

However, serum concentrations of other reproductive
hormones may be affected by this variation in timing of
sampling. Furthermore, we may have missed adoles-
cents with a phenotype resembling PCOS where
symptoms were disguised by hormonal contraceptive
therapy as these girls were excluded from analyses.
Traditionally, regular cycles are defined as a cycle length
of 21–35 days. However, The American College of Ob-
stetricians and Gynecologists (ACOG) suggests that
regular cycles in adolescents to be defined by cycle
length of 21–45 days.52 This definition could affect an-
alyses of high AMH in mid-childhood associated with
irregular cycles in adolescence, however, our data do not
allow any reclassification.5

We cannot exclude recall – or self-reporting bias
concerning menstrual cycle pattern as well as age at
menarche. However, we do not expect AMH concen-
trations to affect the risk of misclassification. Thus,
www.thelancet.com Vol 55 January, 2023
misclassification is likely equally distributed between
AMH subgroups and therefore not affecting the results.

In this unique long-term longitudinal study of
healthy girls with repeated blood sampling, serum AMH
concentrations in infancy, mid-childhood and puberty
correlate strongly with AMH concentrations measured
in the same girls in adolescence. In mid-childhood,
AMH concentrations even reflect the number of
ovarian follicles in puberty and adolescence. This sug-
gests a remarkably stable ovarian follicular activity,
supporting AMH in early life as a useful clinical tool to
predict future ovarian activity.
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