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A B S T R A C T   

Lung cancer is the leading cause of death and morbidity from malignant neoplasms worldwide, and its poor 
prognosis places a heavy burden on patients. A large percentage of lung cancer cases are associated with 
smoking. A significant number of non-smokers also develop the disease, suggesting an epigenetic and genetic 
mechanism for the development of lung cancer. The current situation with the diagnosis and treatment of lung 
cancer remains grim, and effective therapeutic targets and molecular markers are urgently needed. Circular 
RNAs (circRNAs) are covalently closed non-coding RNAs that have received much attention due to their bio-
logical properties such as conservatism, stability, and tissue specificity. Many studies have shown that circRNAs 
are involved in the regulation of lung cancer through various mechanisms, such as microRNA adsorption, and 
play an important role in the early diagnosis, treatment, and prognosis of lung cancer. In recent years, it has 
become increasingly clear that circRNAs are involved in the proliferation, migration, and invasion of lung cancer 
cells. Differentially expressed circRNAs can be used as non-invasive diagnostic and prognostic markers of lung 
cancer. This article summarizes the current advances of circRNAs in the diagnosis, treatment and prognosis of 
lung cancer.   

1. Introduction 

Lung cancer is the most common malignant tumor disease in the 
world, posing a serious threat to human life and health. According to 
statistics, in 2018, there were about 2.1 million new cases of lung cancer 
and 1.8 million deaths from lung cancer worldwide, with the morbidity 
and mortality ranking first among all cancer types [1]. According to 
histological types, lung cancer can be divided into small cell lung cancer 
and non-small cell lung cancer, among which small cell lung cancer and 
non-small cell lung cancer account for about 15% of the total lung 
cancers, respectively and 85% [2]. Although clinical diagnosis and 
treatment methods have improved, the 5-year survival rate of lung 
cancer is still not optimistic due to untimely diagnosis, limited benefi-
ciary population, and drug resistance of patients. In addition, the lack of 
relatively specific tumor markers adds challenges to the diagnosis, 
treatment and prognosis of lung cancer. Therefore, it is necessary to 

deeply study the molecular mechanism of lung cancer to explore po-
tential biomarkers and therapeutic targets for lung cancer. 

Circular RNA (circRNA) is a special kind of endogenous non-coding 
RNA. As early as the 1970s, circRNA was found to exist in RNA viruses 
[3,4]. However, due to the limitations of the technology at the time, 
circRNAs were considered to be by-products of the splicing process, so 
they did not receive widespread attention [5]. In recent years, with the 
development of high-throughput sequencing technology and bioinfor-
matics, circRNAs have been discovered in large numbers and gradually 
become a research hotspot in the field of RNA. At present, many studies 
have confirmed that circRNA can participate in the regulation of the 
occurrence and development of lung cancer, and is expected to provide 
new ideas for the diagnosis, treatment and prognosis of lung cancer 
[6–9]. 
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2. Biological functions of circular RNAs 

CircRNAs are covalently closed noncoding RNA molecules that are 
ubiquitous in eukaryotic transcriptomes. CircRNAs are usually divided 
into exonic circRNAs (ecRNAs), intronic circRNAs (ciRNAs), and exon- 
intron circRNAs (EIciRNAs) according to their sources [10]. Among 
them, exonic circRNAs are the most common. Unlike linear RNA, 
circRNA does not have a cap structure at the 5′ end and a poly-
adenylation tail at the 3′ end, which can resist the degradation of 
exonuclease RNase R, so circRNA is more stable and has a longer half-life 
than linear RNA [11]. Research also found that circRNAs show good 
species conservation [12]. In addition, the expression of circRNAs is 
tissue specific and developmental stage specific, suggesting that circR-
NAs may be involved in the regulation of various pathophysiological 
processes in the body [13]. The functional studies of circRNAs mostly 
focus on the following aspects: 1) Adsorb miRNAs as molecular sponges. 
Competing endogenous RNA (ceRNA) mechanism points out that RNAs 
with the same miRNA response elements (MREs) can competitively bind 
miRNAs, thereby regulating each other’s expression (Fig. 1) [14]. 

At present, most circRNAs studies focus on the mechanism of miRNA 
molecular sponge; 2) regulate the transcription of parental genes by 
binding to RNA polymerase II [15]; 3) interact with RNA-binding pro-
teins to play biological roles (Table 1) [12]; 4) translate proteins. For 
example, Yang et al. found that Circ-FBXW7 encodes a protein that in-
hibits the occurrence of gliomas [26]. 

3. circRNAs and the diagnosis of lung cancer 

Early and accurate diagnosis is critical to the treatment of lung 
cancer. Although a variety of diagnostic methods have been used in 
clinical practice, the current methods still have room for improvement 
due to reasons such as cost, accuracy, and patient acceptance. Therefore, 
it is still necessary to explore the diagnostic markers of lung cancer. 
CircRNAs have the advantages of conservation, stability, and specificity, 
so they have the potential to become emerging markers of lung cancer 
[27]. A meta-analysis of the Chinese lung cancer population pooled 8 
studies on the diagnostic efficacy of circRNAs in lung cancer tissue and 
blood. The area under curve (AUC) of characteristic curve (ROC) was 
0.78, suggesting that circRNAs have diagnostic potential in the Chinese 
lung cancer population [28]. 

3.1. The diagnostic value of blood circRNAs 

Compared with traditional biopsy, liquid biopsy has the advantages 
of simple operation, less invasiveness, and low cost, so the research 
prospect is broad. At present, some literatures have preliminarily 
confirmed that plasma circRNAs have good diagnostic ability, such as 
circRNA-002178, circMAN1A2 and so on [29,30]. Chen et al. used 
high-throughput sequencing technology to identify differentially 
expressed circRNAs in plasma exosomes from lung adenocarcinoma 
(LUAD) patients [31]. Compared with the control group, the expression 
of 105 circRNAs was increased, and the expression of 78 circRNAs was 
decreased. Further research found that the expressions of hsa_-
circ_0001492 and hsa_circ_0001346 were significantly up-regulated in 
the early stage of LUAD, but were almost undetectable in the plasma of 
the control group, suggesting that hsa_circ_0001492 and hsa_-
circ_0001346 may be candidate markers for early LUAD diagnosis. Liu 
et al. detected and analyzed the differential expression of hsa_-
circ_0005962 and hsa_circ_0086414 in the plasma of LUAD patients 
[32]. The combined diagnosis AUC of the two reached 0.81, suggesting 
that dual circRNAs may be used as non-invasive biomarkers for the 
diagnosis of LUAD. In addition, blood circRNA may be related to tumor 
progression, and the expression of hsa_circ_0005962 in LUAD patients 
was significantly decreased after surgery compared with preoperative 
ones. The expression level of hsa_circ_0086414 was correlated with 
epidermal growth factor receptor (EGFR) mutation. Compared with 
wild-type patients, hsa_circ_0086414 was highly expressed in EFGR 
mutant patients. This study demonstrates the multi-faceted application 
value of blood circRNAs. Of course, in order to realize the clinical 
translation of blood circRNA lung cancer diagnosis, a larger sample size 

Fig. 1. Biological functions of circular RNAs. (A) circRNAs act as miRNA sponges. (B) circRNAs bind to proteins, such as RBP and MBL. (C) circRNAs act as 
translation templates. (D) circRNAs regulate transcription. (E) circRNAs regulate protein expression. 

Table 1 
Functions of circRNAs.  

Function Example Ref. 

miRNA sponge circ-HIPK3 
circ-PRKCI 

[16,17] 

Histone methylation Circ-ANRIL [18] 
Protein sponge circ-Foxo3 [19] 
RNA maturation circ-ANRIL [20] 
RNAP II elongation circ-EIF3J 

circ-PAIP2 
[21] 

Translation regulator circ-PABPN1 [22] 
Alternative splicing circ-Mbl [23] 
Protein translation (including m6A-driven) circ-ZNF609 [24,25]  
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and more in-depth mechanism exploration are still needed. 

3.2. Diagnostic value of circRNAs in lung cancer tissues 

Wang et al. found that in distinguishing non-small cell lung cancer 
from normal tissues, the AUCs of hsa_circ_0077837 and hsa_-
circ_0001821 were 0.921 and 0.863, respectively, showing the diag-
nostic value of these two circRNAs for lung cancer [33]. Liu et al. 
confirmed that the expression of hsa_circ_11780 was significantly 
decreased in non-small cell lung cancer tissues and cell lines, and pa-
tients with low expression of hsa_circ_11780 had a greater risk of 
developing larger tumors (>3 cm), distant metastasis and poor survival 
prognosis [34]. Zhao et al. analyzed 61 pairs of paired lung cancer and 
paracancerous tissues and found that hsa_circ_0037515 and hsa_-
circ_0037516 were lowly expressed in non-small cell lung cancer, and 
their AUCs were 0.81 and 0.82, respectively, which also showed good 
diagnostic ability (Fig. 2) [35]. The combined AUC of hsa_circ_0037515 
and hsa_circ_0037516 increased to 0.90, indicating the importance of 
circRNA joint diagnosis in lung cancer tissue. 

4. circRNAs and the treatment of lung cancer 

Previous studies have found that circRNA can act as a regulatory 
molecule to promote or inhibit the occurrence and development of lung 
cancer, so regulating the expression level of circRNA is of great signifi-
cance to the malignant biological behavior of lung cancer. At present, 
many studies have explored the mechanism of malignant biological 
behavior of lung cancer based on the ceRNA mechanism of circRNAs 
(Table 2). 

For example, Yao et al. found that circGFRA1 was up-regulated in 
lung cancer cells and promoted the malignant proliferation of lung 
cancer through the circGFRA1/miR-188–3p/PI3K/AKT pathway [36]. 
As a serine-threonine protein kinase, LIMK1 participates in 
epithelial-mesenchymal transition (EMT) by affecting the actin cyto-
skeleton and regulates tumor progression [37]. Qin et al. found that 

circ_0012673 was highly expressed in lung cancer tissues and cell lines 
[38]. The adsorption of miR-320a by circ_0012673 sponge resulted in 
increased expression of the downstream target protein LIMK1, thereby 
inhibiting lung cancer cell apoptosis and promoting its proliferation, 
migration and EMT process. 

4.1. circRNAs and lung cancer immunotherapy 

Tumor cells are able to express a variety of mechanisms to evade the 
immune system and create conditions for their own growth. Pro-
grammed death protein 1 (PD-1) is a transmembrane protein, which has 
been found to be expressed on the surface of almost all types of tumor 
cells, and participates in tumor immune escape by interacting with PD- 
L1 mechanism [57]. In recent years, immune checkpoint inhibitors 
(ICIs) targeting PD-1/PD-L1 have provided a powerful weapon for lung 
cancer treatment Wang et al. found that circRNA-002178 was abnor-
mally highly expressed in lung adenocarcinoma tissues, and promoted 
the expression of PD-L1 in lung cancer cells by adsorbing miR-34 [29]. 
At the same time, lung cancer cells can secrete exosomal 
circRNA-002178 and deliver it to T cells, which promotes the expression 
of PD-1 in T cells by inhibiting miR-28–5p. Literature confirmed that 
CXCR4 is involved in the process of cytotoxic T lymphocyte depletion 
and induction of anti-PD-1 drug resistance [58]. Zhang et al. found that 
the circFGFR1/miR-381–3p/CXCR4 pathway plays an immunosup-
pressive effect by promoting the resistance of lung cancer cells to 
anti-PD-1 drugs [59]. It is suggested that circRNAs can participate in 
tumor immune escape mechanism, and the combined use of related 
pathway inhibitors is expected to improve clinical efficacy and provide 
new ideas for tumor immunotherapy. 

4.2. circRNAs and drug resistance in lung cancer 

With the continuous advent of anti-tumor drugs, it has brought more 
hope to lung cancer patients, but the problem of drug resistance is still a 
major problem that plagues clinical treatment. Therefore, it is urgent to 

Fig. 2. The role of circRNAs in the pathogenesis of non-small cell lung cancer.  
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further explore the drug resistance mechanism of lung cancer in order to 
find efficient biomarkers or therapeutic targets. Studies have found that 
some circRNAs can participate in the drug resistance process of lung 
cancer (Table 3). 

Hong et al. found that circCPA4 acts as a molecular sponge of let-7, 
and its down-regulation can affect programmed death-ligand 1 (PD-L1) 
to reduce its expression, thereby inhibiting the growth and development 
of non-small cell lung cancer cells migration and EMT process [60]. In 
addition, non-small cell lung cancer-derived PD-L1-containing exosomes 
can promote their stem cell properties and enhance the tolerance of 
non-small cell lung cancer cells to cisplatin. Li et al. reported that 
circ_0002483 could reduce the expression level of miR-182–5p, relieve 
its inhibition of target molecules GRB2, FOXO1, and FOXO3, thereby 
enhancing the sensitivity of non-small cell lung cancer to paclitaxel 
[55]. CircRNA_103762 is highly expressed in lung cancer and induces 
multidrug resistance in lung cancer by inhibiting the target protein 
CHOP [61]. 

5. circRNAs and prognosis of lung cancer 

Prognostic monitoring of patients with lung cancer is a key link in 
evaluating the effect of clinical diagnosis and treatment, and is of great 
significance for adjusting drug regimens and improving patient survival 
time. Studies have confirmed that a variety of circRNAs can be used as 
independent prognostic indicators of lung cancer patients and are 
closely related to the survival of lung cancer patients, such as circS-
MARCA5, circ_11780, circCRIM1 [30,50,68]. Liu et al. performed 
RT-qPCR detection on tumor tissues of 93 non-small cell lung cancer 
patients and found that hsa_circ_11780 was abnormally low expressed, 
and patients with low expression of hsa_circ_11780 tended to have larger 
tumors with distant metastasis and more severe tumor according to 
tumor-lymph node- Metastasis (TNM) staging [34]. Survival analysis by 
Kaplan-Meier method showed that non-small cell lung cancer patients 
with low expression of hsa_circ_11780 had shorter overall survival (OS). 
circHIPK3 is derived from exon 2 of the oncogene HIPK3 in the chro-
mosome 11p13 region. Chen et al. found that knockdown of circHIPK3 
could inhibit the proliferation, migration, and invasion of non-small cell 
lung cancer cell lines A549, H838, and H1299, and induce the occur-
rence of autophagy, while circHIPK3 and linHIPK3 antagonized the 
regulation of autophagy [9]. CircHIPK3:linHIPK3 (C:L) ratio can reflect 
the autophagy level of tumor cells. For patients with advanced non-small 
cell lung cancer, high C:L ratio (>0.49) is an effective indicator of low 
survival rate. These results suggest that the autophagy regulator circH-
IPK3 has potential clinical application value as a prognostic factor. 
EGFR-tyrosine kinase inhibitors (EGFR-TKIs) are an important treat-
ment option for non-small cell lung cancer patients with sensitive EGFR 
mutations. Liu et al. detected 1377 differentially expressed circRNAs by 
sequencing the plasma circRNAs of non-small cell lung cancer patients 
in the effective and ineffective groups after using EGFR-TKI gefitinib 
[69]. RT-qPCR detection confirmed that hsa_circ_0109320 and hsa_-
circ_0134501 were highly expressed in the gefitinib effective group. 
Further research found that the high expression of hsa_circ_0109320 was 
associated with better progression-free survival (PFS) in patients, sug-
gesting that hsa_circ_0109320 may be a biomarker reflecting the efficacy 
of gefitinib. Fu et al. found that the expression of hsa_circRNA_012515 
was significantly increased in non-small cell lung cancer tissues and 
cells, especially in gefitinib-resistant cell lines [70]. In addition, the 
up-regulation of hsa_circRNA_012515 was closely related to lymph node 
metastasis, tumor stage and prognosis of patients. Non-small cell lung 
cancer patients with high expression of hsa_circRNA_012515 had shorter 
OS and PFS. We also found that hsa_circRNA_012515 was expressed at 
higher levels in stage III/IV patients compared with stage I/II non-small 
cell lung cancer patients. Thus, hsa_circRNA_012515 has good clinical 
correlation and may be a biomarker for predicting poor prognosis of 
non-small cell lung cancer patients. 

Table 2 
Summary of circRNA acting on malignant biological behaviors of lung cancer 
through ceRNA mechanism.  

circRNA Dysregulation Cell 
lines 

Function Sponge 
target 

Ref. 

circ_11780 Down A549, 
H226 

Proliferation 
(− ), migration 
(− ), invasion 
(− ) 

miR- 
544a 

[34] 

circGFRA1 Up A549, 
H838 

Proliferation 
(+) 

miR- 
188–3p 

[36] 

circ_0012673 Up A549, 
H23 

Proliferation 
(+), apoptosis 
(− ), migration 
(+), EMT (+) 

miR- 
320a 

[38] 

circ-0000211 Up A549, 
H1299, 
H1650 

Migration (+), 
invasion (+) 

miR-622 [39] 

circ-ABCB10 Up A549, 
H292 

Proliferation 
(+), migration 
(+) 

miR- 
556–3p 

[40] 

circ_0000326 Up A549, 
H1299 

Proliferation 
(+), apoptosis 
(− ), migration 
(+) 

miR- 
338–3p 

[41] 

circ_0014130 Up PC-9, 
A549 

Proliferation 
(+), apoptosis 
(− ), invasion 
(+) 

miR- 
136–5p 

[42] 

circ-SOX4 Up A549, 
SPC-A1 

Proliferation 
(+), migration 
(+), invasion 
(+) 

miR- 
1270 

[43] 

circCCDC66 Up A549, 
H1299 

Proliferation 
(+), apoptosis 
(− ), migration 
(+), invasion 
(+) 

miR- 
33a-5p 

[44] 

circCDR1as Up A549, 
Calu-3 

Proliferation 
(+), apoptosis 
(− ), migration 
(+), invasion 
(+) 

miR- 
219a-5p 

[45] 

circ_0058124 Up A549, 
H1975 

Proliferation 
(+), apoptosis 
(− ), migration 
(+), invasion 
(+) 

miR- 
1297 

[46] 

circ-MTO1 Down A549, 
SPC-A1 

Proliferation 
(− ) 

miR-17 [47] 

cMras Down A549, 
H1299 

Proliferation 
(− ), migration 
(− ) 

miR-567 [48] 

circ-IGF1R Down PC9, 
A549 

Migration (− ), 
invasion (− ) 

miR- 
1270 

[49] 

circCRIM1 Down A549, 
H1299, 
SPC-A1 

Migration (− ), 
invasion (− ) 

miR-93, 
miR-182 

[50] 

circ_0007059 Down A549, 
H1975 

Proliferation 
(− ), EMT (− ) 

miR-378 [51] 

circ_0006427 Down SPC-A1, 
Calu-3 

Proliferation 
(− ), migration 
(− ), invasion 
(− ) 

miR- 
6783–3p 

[52] 

circPTPRA Down H23, 
H1755, 
H522 

Migration (− ), 
invasion (− ), 
EMT (− ) 

miR- 
96–5p 

[53] 

circSMARCA5 Down A549 Proliferation 
(− ), migration 
(− ), invasion 
(− ) 

miR- 
19b-3p 

[54] 

circ_0002483 Down A549, 
H1299 

Proliferation 
(− ), migration 
(− ), invasion 
(− ) 

miR- 
182–5p 

[55] 

circ_0078767 Down A549, 
H23 

Proliferation 
(− ), apoptosis 
(+), invasion 
(− ) 

miR- 
330–3p 

[56]  
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6. Conclusions 

With the deepening of research, the connection between circRNA 
and lung cancer is becoming increasingly prominent. On the one hand, 
circRNAs act as tumor-promoting or tumor-suppressing factors to 
regulate the biological behaviors of lung cancer, such as proliferation, 
metastasis, apoptosis, and autophagy, regulate the sensitivity of 
chemotherapy or targeted drugs and the efficacy of immunotherapy, and 
provide a preliminary theoretical basis for adjuvant clinical treatment. 
On the other hand, the differential expression of circRNAs in tissue or 
blood shows a certain correlation in the early diagnosis and prognosis 
evaluation of lung cancer, and is expected to become a potential 
biomarker of lung cancer. However, the current circRNA research is still 
in the early stage, most researchers focus on the exploration of the 
adsorption function of miRNA sponges, and many mechanisms have not 
yet been elucidated [71–75]. Its clinical relevance research is also 
limited to a small number of samples, and its translational value remains 
to be questioned. It is believed that there will be more breakthroughs in 
the field of circRNA in the future, providing more ideas for the diagnosis 
and treatment of lung cancer. 
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