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Differential Oral Microbial Input Determines Two
Microbiota Pneumo-Types Associated with Health Status

Jingxiang Zhang, Yiping Wu, Jing Liu, Yongqiang Yang, Hui Li, Xiaorong Wu,
Xiaobin Zheng, Yingjian Liang, Changli Tu, Meizhu Chen, Cuiyan Tan, Bozhen Chang,
Yiying Huang, Zhengguo Wang, Guo-Bao Tian,* and Tao Ding*

The oral and upper respiratory tracts are closely linked anatomically and
physiologically with the lower respiratory tract and lungs, and the influence of
oral and upper respiratory microbes on the lung microbiota is increasingly
being recognized. However, the ecological process and individual
heterogeneity of the oral and upper respiratory tract microbes shaping the
lung microbiota remain unclear owing to the lack of controlled analyses with
sufficient sample sizes. Here, the microbiomes of saliva, nasal cavity,
oropharyngeal area, and bronchoalveolar lavage samples are profiled and the
shaping process of multisource microbes on the lung microbiota is measured.
It is found that oral and nasal microbial inputs jointly shape the lung
microbiota by occupying different ecological niches. It is also observed that
the spread of oral microbes to the lungs is heterogeneous, with more oral
microbes entering the lungs being associated with decreased lung function
and increased lung proinflammatory cytokines. These results depict the
external shaping process of lung microbiota and indicate the great value of
oral samples, such as saliva, in monitoring and assessing lung microbiota
status in clinical settings.
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1. Introduction

The lungs were once believed to be ster-
ile. In recent years, however, metagenomic
studies have confirmed the presence of
commensal bacteria in the lungs of healthy
individuals.[1–3] This may be implicated in
training host immunity, particularly the res-
piratory system,[1,4,5] but their origins are
controversial.[6,7] The lungs and lower res-
piratory tract are linked to the upper respi-
ratory tract and oral cavity, and several stud-
ies have reported that microbes in the nasal
and oral cavities are involved in the forma-
tion of the lung microbiota. However, this
process remains unclear due of the lack of
quantitative data and explanations for indi-
vidual variations.[8–10]

Interactions between the microbiota
across different body sites have been
reported,[11–13] with oral and intestinal mi-
crobiota interactions gaining considerable
traction in recent years.[14–18] Disruption of

the oral microbiome has been reported to be a risk factor for en-
teritis, arthritis, and lupus erythematosus.[14–16] Interestingly, ac-
cumulated oral taxa, such as Fusobacterium nucleatum, have been
identified in the gut of patients with colorectal cancer.[17,18] Ding
et al. reported that oral and intestinal microbiota were not compa-
rable in composition, but microbial community types were mu-
tually predictable between the sites.[19] Based on these studies,
researchers have recently identified clinically significant interac-
tions between oral and lung microbiota. Dickson et al. found that
microbes from the Prevotella, Streptococcus, Veillonella, and Neis-
seria genera, which were previously common in oral spaces, were
also dominant in the lungs of healthy individuals.[8,20,21] In addi-
tion, Segal et al. observed that lung microbiota enrichment with
oral taxa was related to Th17 cell proliferation, the upregulation
of inflammatory pathways in the lungs, and poor prognoses in
patients with lung cancer.[9,22,23] The upper and lower airways are
anatomically close together, and bacteria can travel to the lungs
through the air and nasal secretions.[24] In recent years, accumu-
lating evidence has indicated the role of bacterial communities
in the upper respiratory tract in preventing respiratory pathogens
from infecting mucosal surfaces and spreading to the lower res-
piratory tract. For most respiratory bacterial pathogens, the up-
per respiratory tract must be colonized before causing upper
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respiratory tract, lower respiratory tract, or disseminated respi-
ratory tract infections.[25,26]

The main sampling methods used to study lung microbiota
include sputum samples,[27] bronchial aspirates,[28] bronchoalve-
olar lavage fluid (BALF).[20] and endobronchial biopsies.[29] While
these methods infer or directly measure lung microbiota compo-
sition, they are easily contaminated and contain low biomass.[30]

Therefore, the characterization of lung microbiome communi-
ties remains challenging. Although lung microbiota research has
advanced considerably in recent years, it remains largely lim-
ited by technical difficulties, including the collection of invasive
BAL specimens from patients and the isolation, culturing, and se-
quencing of microbes from low-biomass samples. Given the con-
nection and biomass exchange between the oral cavity and res-
piratory tract, oral specimens such as saliva may provide highly
optimal solutions for lung microbiota analysis. However, to as-
sess the rationality of this approach, the extent to which oral and
upper respiratory tract microbiota variability contributes to lung
microbiota heterogeneity must be evaluated.

To answer this question and to systematically study the role of
upstream sources such as oral and nasal cavities on the forma-
tion of lung microbiota, we enrolled 67 patients with lung can-
cer and 32 volunteers with nonmalignant lung diseases and col-
lected their saliva, nasal swabs, oropharyngeal swabs, and BAL
samples. We integrated metagenomic sequencing and cytokine
profiling with detailed clinical information to analyze the sys-
temic association between oral and lung microbiota. We found
that oral microbes contributed to most of the dominant taxa in the
lungs; however, these contributions were highly heterogeneous.
This individual heterogeneity shaped the unique oral and lung
microbiomes, the characteristics of which are closely associated
with host lung health.

2. Results

2.1. Oral and Nasal Microbes Contribute to the Lung Microbiome
by Occupying Different Ecological Niches

We profiled the microbial compositions of the BAL, nasal, saliva,
and oropharyngeal swab samples from 16s rRNA gene sequenc-
ing data and calculated the similarities among these samples as
the Bray-Curtis distance. These similarities were visualized on
a principal coordinate plot (PCoA), which showed that the mi-
crobiota compositions of the BAL, saliva, and oropharynx were
clearly separated from that of the nasal cavity in the first axis (Fig-
ure 1a, PERMANOVA, p < 0.001). The most abundant genera in
the BAL samples included Streptococcus (mean ± SD, 37.5% ±
15.7%), Neisseria (14.41% ± 6.93), Prevotella 7 (13.85% ± 5.16),
and Haemophilus (12.3% ± 10.8) (Figure 1b), consistent with pre-
vious research.[2,8,9] We used the 16sPIP[31] database to identify
potentially pathogenic amplicon sequence variants (ASVs) and
detected large numbers from the Prevotella 7, Streptococcus, and
Neisseria genera (Figure 1b). The microbiota composition of the
nasal swabs was distinct from that of the other three sample
types; the dominant genera included Corynebacterium (33.5% ±
20.15), Staphylococcus (25.1% ± 22.14), and Anaerococcus (3.84%
± 5.36).

Next, we used a neutral model to gauge the relative contribu-
tion of the upper respiratory tract and oral microbiome to the

lung microbiome assembly (details of the neutral model are pro-
vided in the Supporting Information). The goodness-of-fit (R2)
values of the neutral model were 0.7334 for saliva, 0.714 for
the oropharynx, and −0.0987 for the nasal cavity (R2 ≤ 0, no
fit; R2 = 1, perfect fit) (Figure 1c (saliva), Figure S2a (nasal and
oropharyngeal), Supporting Information). We observed that the
most common bacteria in the BAL (including Prevotella 7, Neis-
seria, Streptococcus, Veillonella, Haemophilus, Fusobacterium, and
Allprevotella) fitted into the saliva-BAL neutral model, suggesting
that the dominant bacteria in the lungs were mostly provided by
the oral cavity (95% Wilson score interval, Figure 1d and Figure
S2b, Supporting Information). Based on neutral model theory,
these results suggest that oral and oropharyngeal microbes are
the main shaping sources of lung microbiota, while the entry of
nasal microbes into the lung may have been impeded by host
and environmental factors (Figure 1d and Figure S2b, Supporting
Information).

Next, we combined saliva, oropharyngeal, and nasal swab mi-
crobiota as a refitted neutral model input and constructed a mul-
tiple source neutral model to assess the contribution of bacteria
from various sources to lung microbiota assembly (Figure 1e).
Similar to the results of the single-source model, the oral cav-
ity and oropharynx still contributed most of the high-frequency
bacteria to the multiple-source neutral model. Although most
of the nasal contributing species were detected less frequently
in the lungs, the number of contributing species was highest
here (128) (Figure 1e). The results of this multiple-source neu-
tral model suggest that the formation of the lung microbiota
is a multisource process. The oral cavity and oropharynx con-
tributed to the major component of the lung microbiota, whereas
the nasal cavity provided less common and less abundant
organisms.

2.2. Oral Bacterial Input into the Lungs Shapes Two Lung
Microbiota Community Types

Saliva samples were selected as representatives of the oral cav-
ity and oropharynx in subsequent analyses because the oral
cavity and oropharynx play a similar role in shaping the lung
microbiota. To quantitatively measure the communication in-
tensity of oral and lung microbiota in individuals, we used
SourceTracker[32] to calculate saliva microbial contributions to
the lung microbiota. Interestingly, the scores of oral microbes
contributing to the lung microbiota followed a bimodal distribu-
tion (Figure 2a), suggesting that communications could be cat-
egorized as high- and low-intensity modes. To further investi-
gate how these modes impacted the lung microbiota, we used the
trough value of this contribution score as the cut-off to define the
two microbiota types and compare their differences (Figure 2a).
The two pneumo-types were defined as the high-oral-input type
(HOIT) and low-oral-input type (LOIT) based on the contribu-
tion of oral bacteria to the lung microbiota. To verify the ratio-
nality and robustness of this categorization, we also applied the
Dirichlet multinomial mixture (DMM)[33] model approach to the
BAL data and identified two lung microbiota community types
(Figure S3a, Supporting Information). Although the algorithms
and required input data were different, our results were highly
consistent between the two methods (Figure 2b and Table S1,
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Figure 1. The taxonomic composition of various type samples and the results of neutral model fitting. a) PCoA based on Bray-Curtis distance demon-
strated that the community structures of the saliva (n = 81), oropharynx (n = 87) and BAL (n = 99) were similar, but the community composition of
the nasal (n = 86) samples was specific. b) The phylogenetic tree of ASVs of which the shape of the tip points indicate the types of microbes (commen-
sal microbes or potential pathogens). The transparency of the heatmap indicates the abundance of microbes, and the colors of the heatmap indicate
different sites of the human body. The bar plot indicates the relative abundance of the most prevalent species at the body sites. c) Results of neutral
model fitting with saliva as source. The solid blue line represents the fitting curve and the dashed blue line represents the 95% confidence interval. The
coefficient of determination (R2) was the goodness of fit of the neutral model. It ranged from ≤0 (no fit) to 1 (perfect fit). d) The relative abundance of
bacteria in the neutral models. e) Results of multiple sources neutral model fitting. The colors of the dots represents the body sites that provided the
bacteria. Bacteria were grouped according to their frequency in lungs (upper and lower quartiles). The numbers in the table represents the numbers of
taxa contributed by each body site in each group. PCoA: principal coordinate analysis; PERMANOVA: permutational multivariate analysis of variation.
Box plot: centerline, median; box limits, upper and lower quartiles; error bars, 95% CI. Differences between groups were assessed using Wilcoxon test,
* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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Figure 2. The definition and microbiome characteristics of the pneumo-types. a) SourceTracker was used to calculate the contribution value of saliva
to BAL and show the kernel density map and frequency distribution histogram of the contribution value. The nuclear density map showed a bimodal
distribution. b) PCoA based on Bray-Curtis demonstrated that BAL samples of HOIT (n = 71) clustered separately from LOIT (n = 28) BAL samples.
The contents of the table showed the distribution of results for the two methods. The four samples with inconsistent classification results are indicated
by red circles in the figure. c) The paired Bray-Curtis distances between the BAL and saliva samples between the pneumo-types. d) ANCOM and LEfSe
demonstrated distinct genera between the pneumo-types. The larger the W value in ANCOM results, the more significant the difference between the
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Fisher’s test p< 0.001, Supporting Information). Finally, we com-
pared the distance between paired saliva and BAL samples and
found that the distance in the HOIT was significantly lower than
that in the LOIT (Figure 2c, Bray-Curtis distance, Wilcoxon test
p < 0.0001).

To verify that pneumo-type was the most important explana-
tory factor for lung microbiome heterogeneity in our cohort, we
assessed all factors for lung microbiome differences using vari-
ance partitioning analysis (VPA). We found that the pneumo-type
had a higher explanatory power for the lung microbiome than
the other factors (Figure S3b, VPA: R2 = 10.2, Supporting In-
formation). We observed a significant difference in composition
between the microbiotas of the two pneumo-types (Figure S3d,
Bray-Curtis distance, PERMANOVA, p < 0.001, Supporting In-
formation). Alpha diversity was significantly higher in the HOIT
group (Figure S3c, Shannon index, Wilcoxon test p= 0.0034, Sup-
porting Information). We also compared the lung microbiome
differences between patients with lung cancer and healthy vol-
unteers. We observed no significant differences in microbiota
alpha diversity (Figure S3e, Wilcoxon test p > 0.05, Support-
ing Information) or microbiota composition between patients
with lung cancer and volunteers (Figure S3f, PERMANOVA p
> 0.05, Supporting Information). In addition, we found no sig-
nificant differences in pneumo-type distribution between lung
cancer patients and volunteers (chi-square test, p > 0.05). Over-
all, the pneumo-type was the most important explanatory fac-
tor for the lung microbiome in our study. Thus, we focused on
the differences between the two pneumo types in subsequent
analyses.

To further demonstrate that pneumo-type universality is preva-
lent across different populations, we chose two public datasets for
validation (PRJNA269493 and PRJNA316098). We constructed a
random forest model classifier based on our own data to classify
the other two datasets (Figure S4a,b, Supporting Information).
The results of the external datasets showed a pneumo-type com-
position similar to that of our data (Figure S4c–f, Supporting In-
formation).

Eighteen genera were differentially enriched in either the
HOIT or LOIT groups (Table S2, Supporting Information). Pre-
votella 7, Fusobacterium, and Veillonella genera were significantly
enriched in the HOIT, and Pseudomonas, Acinetobacter, and Bre-
vumdionas were significantly enriched in the LOIT (Figure 2d).
For the 55 BAL samples that contained sufficient biomass materi-
als for downstream analyses, shotgun metagenomic sequencing
indicated that Prevotella melaninogenica, Neisseria subflava, and
Neisseria mucosa were significantly enriched in the HOIT (Ta-
ble S2, Supporting Information). Some genera enriched in the
HOIT were commonly considered oral space inhabitants (e.g.,
Prevotella 7, Neisseria, and Veillonella), while genera enriched in
the LOIT (e.g., Pseudomonas, Acinetobacter, and Corynebacterium
1) were rarely seen in the oral space but had a high prevalence
rate and abundance in the nasal cavity (Figure 2e).

2.3. Community Assembly Characteristics and Microbial
Function Differences of Pneumo-types

A neutral model was applied to evaluate the community assem-
bly process. In both pneumo-types, the oral and lung microbiota
communication process fit the neutral model (both R2 values >

0), while the coefficient of determination (R2) and diffusion co-
efficient (m) for the LOIT (R2 = 0.6379, m = 0.0126) (Figure 3a)
was less than that of the HOIT (R2

HOIT = 0.8819, m = 0.0418)
(Figure 3b), which indicated that the LOIT population had more
constraints on the spread of microbes from the oral and upper
respiratory tract to the lungs. The number of species contribut-
ing to the nasal cavity in the LOIT group was significantly higher
than that in the HOIT group, suggesting that nasal cavity mi-
crobes also play key roles in shaping the lung microbiota, espe-
cially in the LOIT population. We further used the normalized
stochasticity ratio (NST), which assesses the proportion of ran-
dom processes in community assembly, and observed a higher
proportion of random processes in the HOIT (Figure 3c). The
niche breadth of bacteria,which represents the prevalence and
relative abundance of bacteria in the BAL samples, was signif-
icantly higher in the HOIT than in the LOIT (Figure 3d). The
niche breadth of dominant oral bacteria, such as Veillonella, Pre-
votella 7 and Streptococcus in the lungs was significantly differ-
ent between the pneumo-types (Figure 3e). These results collec-
tively reflect the differences in community assembly between the
pneumo-types.

We further explored the lung microbial phenotypes and func-
tions of each pneumo-type. We used Bugbase[34] to predict or-
ganism levels in the microbiome phenotypes of the lung micro-
biome (Figure 3f). A higher proportion of facultative anaerobes
in the lung microbiome and a stronger potential to synthesize
biofilms in the HOIT were observed when compared with the
LOIT (Figure S5a, Supporting Information). Using the Short-
BRED method, we also observed that a large number of antibiotic
resistance and virulence genes were enriched in the HOIT; most
antibiotic-resistant genes were macrolide-resistant (ErmB, ErmF,
ErmX, and mel) (Figure 3f). These findings are consistent with
those of a previous study that showed that the core respiratory
resistome was composed of macrolide-resistant genes.[35] Viru-
lence genes were also mostly enriched in the HOIT, including
5, 10-ethylenetetrahydrofolate reductase polymorphisms, which
act as potential risk factors for lung cancers, and the UDP-N-
acetylglucosamine acyltransferase enzyme, which catalyzes the
first reaction of lipopolysaccharide (LPS) biosynthesis (Figure 3f
and Figure S5b, Supporting Information).[36,37]

Similarly, we also observed differences in the phenotypes and
functions of the salivary microbiome between the pneumo-types.
The proportion of saliva anaerobes in the HOIT group was sig-
nificantly higher than that in the LOIT group (Wilcoxon test, p
= 0.021). We profiled the genetic potential of the salivary micro-
biome using HUMAnN 2 (Figure S5c, Supporting Information)

pneumo-types. e) Core microbiota heatmaps showing abundance of taxa and prevalence across difference samples from the LOIT and HOIT. Taxa listed
were selected on the basis on the LEfSe and ANCOM results. ANCOM: analysis of composition of microbiomes; LEfSe: Linear discriminant analysis
Effect Size. Box plot: centerline, median; box limits, upper and lower quartiles; error bars, 95% CI. Differences between pneumo-types were assessed
using Wilcoxon test, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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Figure 3. Lung community assembly and microbial functional characteristics. a,b) Results of multiple sources neutral model fitting of HOIT (n = 71) or
LOIT (n = 28). c) NTS were randomized 100 times to compare the proportion of random processes in the lung community assembly process. d) The
top 15 taxa with the highest niche breadth in the HOIT showed significant differences in niche breadth between the pneumo-types. f) Top-to-bottom
modules of the heatmap represent clinical phenotype annotations, microbiota phenotypes, genus characteristics, resistant genes, and virulence genes,
respectively. Box plot: centerline, median; box limits, upper and lower quartiles; error bars, 95% CI; NST: normalized stochasticity ratio. Differences
between pneumo-types were assessed using Wilcoxon test, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

and found that 43 genes were differentially enriched, of which 33
were enriched in the HOIT and were mainly involved in the syn-
thesis of viral proteins and transporters (Figure S5d, Supporting
Information).

2.4. Significant Differences in Microbial Interaction Modes in the
Oral Cavity and Lungs between Pneumo-types

We selected the most abundant genera and used sparse correla-
tions for compositional data algorithm (SparCC)[38] to construct

an ecological interaction network for the BAL and saliva micro-
biota of patients in the HOIT and LOIT groups, respectively (Fig-
ure 4a). The degree numbers and average path lengths of the in-
teraction networks of the LOIT were greater than those of the
HOIT (Figure S6a, Supporting Information). To quantify the in-
fluence of taxon loss on network connectivity, we used Ruiz et al.
to measure the “attack robustness” of the networks by sequen-
tially removing nodes and measuring the size of the remaining
largest connected components relative to its starting size.[39] We
observed that the area under the curve (AUC) in the LOIT was
greater than that in the HOIT (Figure 4b), indicating that the
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Figure 4. The interaction network of the BAL and saliva microbiome. a) A co-occurrence network for genus-level summarized taxa was built with SparCC
as described in the Experimental Section. The four regions represent co-occurrence networks of BAL (HOIT = 71, LOIT = 28) and saliva (HOIT = 59,
LOIT = 22) samples in different pneumo-types, respectively. The node colors represent the phyla to which the nodes belong. The node sizes represent
the average relative abundance of the species. The colors of the lines represent interaction patterns. b) Robustness curves for the four networks. Attack
robustness of a network was measured by sequentially removing nodes based on the nodes’ degrees selected and measuring the percentage of nodes
that remained in the central connected component. Measurement of robustness was performed for each of our four networks and the results were
plotted here with the percentage of nodes removed on the X-axis and the percentage of remaining nodes in the central connected component on the
Y-axis. Each network is represented by a line on this graph. A larger area under the curve indicates a more robust network. The colors of the curves
represent groups; the solid line BAL and the dashed line saliva. c) The nodes with significant differences in the network were screened by Netshift. The
X-axis represents NESH scores. The node sizes represent the degree numbers. The node colors represent the mean relative abundance. d) Co-occurrence
analysis highlighting the Prevotella 7-interaction network in saliva. The taxa circled by the rectangles were common between the pneumo-types. NESH:
neighbor shift scores. Networks were produced by retaining edges (correlation coefficient R ranges between −0.4 and 0.4 and p < 0.05).
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Figure 5. The characteristics of cross-site interaction network between oral and lung microbiota. a,b) Network between oral and lung microbiota. The
shapes of the nodes represent the body sites: triangle (saliva = 81) circle (BAL = 99). The colors of the nodes represent the phyla to which the nodes
belong. The colors of the edges represent positive correlation (red) and negative correlation (gray). c) Key nodes in oral and lung communication network,
and the values of the abscissa represent the sums of the numbers of edges of the nodes in the network. d) ROC curves of different classification levels.
ROC: receiver operating characteristic.

network robustness of BAL and saliva in the HOIT was lower
than that in the LOIT.

To assess the heterogeneous impact of oral microbes on the
lung microbiota, we used Netshift[40] to compare the saliva micro-
biome interaction network differences between pneumo-types.
Prevotella 7, Prevotella 6, Neisseria, Butyrivibrio 2, and another 12
genera were identified as critical nodes with high neighbor shift
(NESH) scores, which meant that these genera contributed to
the major differences between the two interacting networks, and
were hence considered as “drivers” of the variations between the
two pneumo-types (Figure 4c and Table S3, Supporting Informa-
tion). We selected the Prevotella 7 subnetwork, which had the
highest connection degree, to explore variations in interactions
between these “drivers” and other microbes (Figure 4d). We ob-
served that the Prevotella 7 sub-network in each pneumo-type was
significantly different (Fisher test p < 0.001), in which Prevotella

7 was connected to 10 nodes (nine positive and one negative),
whereas in the LOIT group, it was connected to 13 nodes (five
positive and eight negative). We noted that three pairs of nodes
that were positively correlated in the HOIT (Prevotella 7 and Por-
phyromonas; Prevotella 7 and Prevotella; Prevotella 7 and Lach-
noanaerobaculum) were all negatively correlated with the LOIT
(Figure 4d).

Next, to further explore microbial interactions across body
sites, we constructed an interaction network between the oral
space and lungs for pneumo-types and identified unique micro-
bial interaction patterns specific to both. The ratio of positive cor-
relations in the HOIT was greater than that in the LOIT (Fig-
ure 5a,b). Then, we searched for important interaction nodes for
both. In the HOIT, Megasphaera, Atopobium, and Butyrivibrio 2
were important nodes. In the LOIT, Veillonella was vitally impor-
tant (Figure 5c). These interaction network differences between
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Figure 6. The cytokine levels of BALF and clinical data of patients. a) DLCO.SB and DLCO.VA were significantly different between the pneumo-types
(HOIT = 36, LOIT = 16). b) The X-axis represents the length of hospitalization, and the Y-axis represents the proportion of discharged patients at this
time point. c) The boxplot of cytokines with significant differences between the pneumo-types (HOIT = 61, LOIT = 25). d) The squares indicate the
coefficients corresponding, and the horizontal lines indicate the 95% confidence intervals. Box plot: centerline, median; box limits, upper and lower
quartiles; error bars, 95% CI. Differences between pneumo-types were assessed using Wilcoxon test, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p <

0.0001.

the oral and lung microbiota of pneumo-types suggest that the
lung microbiota characteristics could be reflected through the
oral cavity. Therefore, we evaluated the potential of saliva micro-
biota composition to predict pneumo-types using a random forest
approach. We constructed optimal models with input data from
various taxonomic levels and found that the AUC reached 0.732,
0.844, and 0.857 for the genus, ASV, and species data, respectively
(Figure 5d). Notably, in the ASV-level random forest model, mul-
tiple ASVs from the Prevotella 7 genus were included in the model
variables (Table S4, Supporting Information).

2.5. Patients with either Pneumo-Type Are Associated with
Distinct Clinical Profiles

To determine whether penumo types corresponded to host health
conditions, we investigated the clinical profiles of the cohort (Ta-
ble S5, Supporting Information). We observed that the HOIT ex-
hibited significantly lower DLCO.SB and DLCO.VA values (Fig-
ure 6a, Wilcoxon test, p < 0.05) and longer hospital stays (Fig-
ure 6b) than the LOIT. The DLCO test is a noninvasive lung
function test that measures the available surface area for gas
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exchange. The index usually decreases in different respiratory
diseases, including emphysema, alveolar inflammation, and pul-
monary fibrosis.[41] We also observed variations in BAL cytokine
levels between pneumo-types (Figure 6c and Figure S7a, Support-
ing Information). Levels of interleukin (IL)-1𝛼, IL-1𝛽, IL-1RA,
PDGF.AA, and RANTES were significantly higher in the HOIT
group (Figure 6c).

We constructed a linear regression model for each lung func-
tion measurement and cytokine level, using pneumo-type and all
demographic indices as variables. For each model, we calculated
the model predictor and variance inflation factor (VIF). The re-
sults showed that the models had predictive performance (F-test,
p < 0.05), and the VIFs between the predictors were all lower
than 4, indicating that all the calculated predictors were indepen-
dent and not confounded by others (Figure 6d,e, also see Sup-
porting Information, Table S6). As expected, the predictors cal-
culated in each model included the pneumo-type, indicating that
the pneumo-type is an important and irreplaceable determinant
for the differences in lung function and cytokines among our co-
hort.

2.6. Oral Microbial Input Is Correlated with Lung Function and
Cytokine Expression

We constructed a correlation network for the differentially en-
riched microbes, cytokine levels, and lung function measure-
ments. IL-1RA was positively correlated with microbes enriched
in the HOIT, but negatively correlated with those enriched in the
LOIT (Figure 7a). We also observed positive correlations𝛼 and
IL-1𝛽 and microbes enriched in the HOIT, including Prevotella
7, Porphyromonas, Fusobacterium, and Treponema 2 (Figure 7a,b).
Interestingly, the relative abundance of Prevotella 7 was signifi-
cantly and positively correlated with length of hospital stay (Fig-
ure 7c, Spearman R = 0.26, p = 0.041). In terms of lung function,
Neisseria, one of the most abundant microbes in the HOIT, was
negatively correlated with DLCO.SB and DLCO.VA (Figure 7a)
and positively correlated with FRC and FRC/TLC.

We found that the SourceTracker value (ST) of saliva to BAL,
which represents input intensity from oral to lung microbiota,
was significantly and positively correlated with IL-1𝛼, IL-1RA,
VEGF-A, and PDGF-AA levels, all of which were elevated in the
HOIT (Figure 7a,b, Spearman’s p<0.05). Notably, the ST value
was significantly but negatively correlated with DLCO.SB (Spear-
man’s R = −0.32, p = 0.035) and DLCO.VA (Spearman’s R =
−0.35, p = 0.021) (Figure 7a).

3. Discussion

Here, we studied the processes by which oral and upper respira-
tory tract microbes shape the lung microbiota, focusing on how
the heterogeneity of this shaping process is associated with inter-
personal variation in lung microbiota and health. In particular,
DLCO in the HOIT group was worse than that in the LOIT group,
with proinflammatory cytokine (IL-1𝛼, IL-1𝛽) levels in the BAL
also significantly increased. Interestingly, we observed concor-
dance between oral and lung microbiota, characterized by over-
all synergism in the bacterial interaction network and niche dif-
ferences represented by Prevotella 7. We also identified salivary

microbiota features that may be used to predict lung microbiota
status. These findings enabled us to better understand how saliva
microbes impact the lung microbiota and increased the potential
of developing saliva-microbe-based approaches to evaluate and
regulate respiratory health.

The importance of the oral microbiome in human health is
gaining traction.[42,43] The proximity and continuity of the oral
cavity and lower respiratory tract allows the oral microbiome to be
a potential determinant of the lung microbiome. Previous stud-
ies have reported similarities between lung and oral microbiota
composition[6,9] showing that oral microbes enter the lower res-
piratory tract mainly through subclinical microaspiration.[20] The
oral microbiome may be the driving force underlying bacterial
transformation by regulating mucosal immunity either directly
or indirectly, thereby affecting pathogenicity.[44] For instance, pa-
tients experiencing difficulties in swallowing and low awareness
(for example, craniocerebral trauma patients) are more likely to
develop pneumonia, which is usually caused by groups of bac-
teria in the oral cavity that accumulate in the lungs.[45] In res-
piratory virus infections, the oral microbiota is closely related to
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
pulmonary infection, especially in patients with severe COVID-
19 whose lung hypoxia is more severe and conducive to the
growth of anaerobes and facultative anaerobes from the oral mi-
crobiota. Therefore, oral health care is vital.[46] While these find-
ings revealed the comprehensive influence of the oral micro-
biome on the lungs, most studies were qualitative in nature and
lacked evidence in clinical settings or applications. Therefore, we
addressed this knowledge gap by measuring the intensity of oral
microbial input into the lungs. We found that the intensity of
communication between the oral and lung microbiota was closely
related to lung cytokine levels and lung function.

We identified two lung microbiota community types (or
pneumo-types) according to their composition and oral input
intensity. Healthy lung microbiota maintains a dynamic equi-
librium between microbial immigration and elimination.[4,47]

Changes in innate and adaptive immunity and physical lung
anatomy may cause specific oral bacterial group migration into
the lungs.[48] Using the SourceTracker and DMM models, we
identified HOIT and LOIT pneumo-types and noted that the
HOIT lung microbiota exhibited higher diversity with a higher
abundance of resistance and virulence genes. Furthermore, we
observed significant differences in specific cytokine expression
levels between pneumo types. A previous study reported that
PDGF-AA regulates VEGF-A expression during the transition
from a precancerous lesion to advanced lung cancer.[49] In our
cohort, both PDGF-AA and VEGF-A levels were enriched in
the HOIT group. RANTES and MCP-1 constitute the C-C class
of the 𝛽-chemokine supergene family. Both had inflammatory
properties[50] and were enriched in the HOIT.

We also observed differences in the composition and func-
tion of the salivary microbiota between pneumo-types. The pro-
portion of anaerobes in the HOIT saliva microbiota and the
detection rate of synthetic genes related to bacterial virulence
and adhesion were higher than those in the LOIT. Higher lev-
els of human gamma herpes virus-related genes were observed
in the oral cavity of the HOIT. Several studies have reported
that human gamma-herpes virus accumulation in the lungs is
closely related to the occurrence and development of specific lung
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Figure 7. The correlation between the microbiota and cytokines or clinical data. a) We used LEfSe and ANCOM to pick out the genus with the most
significant differences (LDA > 3.5) and calculated their Spearman correlation with cytokines and lung function. The colors of the lines indicate positive
and negative correlations; node shapes represent variable attributes; the colors of the circles represent the pneumo-types in which the genus was
enriched; the sizes of the circles represent the mean relative abundance of the genera. b) Correlation scatter plots of ST values with partial lung function
and cytokines. The lines represent the linear fitting curves and the shadows represent the confidence intervals of the fitting curves. c) Correlation scatter
plots of Prevotella 7 with hospitalization days, partial lung function and cytokines. The p and R values were calculated by Spearman correlation analysis.
ST: SourceTracker value.
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diseases, such as idiopathic pulmonary fibrosis, asthma, and
bronchiectasis.[51,52] Multiple genes related to ATP-binding cas-
sette (ABC) transporter and glycosaminoglycan binding protein
synthesis were enriched in the oral microbiota of the HOIT and
were involved in bacterial adhesion and biofilm synthesis,[53,54]

suggesting saliva microbes in HOIT patients were more likely to
colonize the lungs upon entry.

Our study provides a rationale for future diagnosis and inter-
vention of lung microbiota by regulating or manipulating oral mi-
crobes. The oral cavity is a reservoir of respiratory and intestinal
microbiota resources,[55] and further studies may be necessary to
explore the correspondence between the two microbial pneumo-
types and the highly individualized saliva microbiota seen in our
study, as oral microbiota-based lung diagnostics and lung inter-
ventions could be of considerable clinical importance. While pre-
vious investigators conducted comprehensive studies of the lung
microbiota,[8,9,20–23] they largely overlooked the potential value of
the oral microbiota. We identified evidence of co-variation in oral
and lung microbiota. The robustness of oral and lung bacterial in-
teraction networks in the HOIT was lower than that in the LOIT,
suggesting that the oral and lung microbiota in HOIT patients
were less tolerant to external disturbances (sparse interactive net-
works were more susceptible to external interference).[56,57]

The specific mechanisms underlying the formation of these
pneumo-types require further exploration, but our findings pro-
vide valuable insights. Our data suggest that oral microbes in
the HOIT enter the lower respiratory tract more often and may
be related to the disruption of the upper and lower respiratory
barriers.[58] Such situations are more common in elderly popula-
tions whose mucosal immune barriers are relatively vulnerable
to aging, and oral bacterial enrichment is observed in this pop-
ulation’s lungs.[59] Changes in the host autogenic immune envi-
ronment may also be responsible for pneumo-types, as accumu-
lated inflammatory factors in the respiratory tract are reportedly
associated with microenvironmental changes in the respiratory
tract.[60]

Our study has some limitations. We focused exclusively on the
connections between the oral and lung microbiota. However, the
human microbiome is a highly integrated ecosystem, and the in-
terconnections between microbiota in different parts of the body,
including different respiratory tract sites, should be studied in
depth. We also observed that some rare genera, such as Brevundi-
monas and Bacillus in the nasal cavity, were not present in the
oral cavity, but were involved in lung microbiota formation, sug-
gesting an important role for these bacteria in shaping the lung
microenvironment. This warrants further research. In addition,
we were unable to repeat the BAL procedures on the same sub-
jects and, as a result, no longitudinal analyses were conducted to
monitor the dynamic characteristics of the oral and lung micro-
biota. Given the rhythms and periodicity of the oral microbiota
and the lasting effects of oral input on lung microbiota, time-
series observations in experimental animals or human cohorts
(using improved measurements) could comprehensively identify
the co-dynamics between oral and lung microbiota.

In summary, our data uncovered the microbial communica-
tion between the oral cavity and the lower respiratory tract and
partially identified the association between pneumo-types and
respiratory health. Our work revealed the potential of using oral
microbes as noninvasive sample alternatives to BAL to assess

lung health, and also provides theoretical support for oral micro-
biota interventions to modulate lung microbiota.

4. Experimental Section
Study Recruitment and Sample Collection: This study enrolled 67 pa-

tients with lung cancer and 32 healthy volunteers without lung disease.
All samples were collected between January 23, 2019, and January 17,
2020. The enrolled participants, including lung cancer patients and volun-
teers without lung disease (details of study recruitment and sample col-
lection are provided in the Supporting Information), all underwent BAL
fluid, nasal swab, oropharyngeal swab, and saliva collection. To avoid pos-
sible contamination, samples were collected along with two empty tubes
in parallel with specimen collection as negative controls.

Clinical Information Records: Before bronchoscopy, clinical informa-
tion was collected from each participant. Subsequently, demographic
records were reviewed by two senior respiratory clinicians, with informa-
tion gathered on height, weight, age, medical history, smoking history,
drinking history, exposure history, genetic history, and antibiotic therapy
within 6 months. Two researchers independently recorded and sorted all
specific physiological and biochemical indicators of patients with lung can-
cer. These physiological and biochemical tests included complete blood
counts, cardiac enzyme tests, emergency biochemical tests, lung function
tests, liver function tests, and blood gas analyses.

Lung Function Measurements: Lung function measurements directly
indicated lung status. The MasterScreen/SentrySuite IOS system (Care-
Fusion Co., California, US) was used to examine lung function. All lung
function measurements, including forced vital capacity (FVC), forced expi-
ratory volume in one second (FEV1), peak expiratory flow (PEF), maximal
expiratory flow at 75% of the FVC (MEF75), maximal expiratory flow at 50%
of the FVC (MEF50), maximal expiratory flow at 25% of the FVC (MEF25),
maximal voluntary ventilation (MVV), total lung capacity (TCL), residual
volume (RV), functional residual capacity (FRC), single-breath diffusing
capacity of the lung for CO (DLCO.SB), and DLCO.VA (DLCO divided by
alveolar volume) were performed in accordance with protocols from the
European Respiratory Society (ERS) and American Thoracic Society (ATS).

Nucleic Acid Extraction and Metagenomic Sequencing: A DNA extrac-
tion control (extraction with only nucleic acid extraction reagent) and PCR
control (extraction with only PCR reagents) were collected to further un-
derstand DNA extraction and possible contamination introduced during
sequencing. In the following description and analysis, the sampling con-
trol, DNA extraction control, and PCR control are collectively referred to
as negative controls.

All clinical samples, negative controls, and mock communities were
stored at −80 °C until DNA extraction using a DNA Isolation Kit (Magi-
gene, Guangdong). 16S rRNA sequencing was performed on V4 re-
gion amplicons with optimized primers: 515F, 5’-GTGCCAGCMGCCG-
CGGTAA-3’; 806R, and 5’-GGACTACHVGGGTWTCTAAT-3’ on an Illumina
HiSeq2500 platform. Primers were synthesized by Invitrogen (Carlsbad,
CA). PCR reactions, containing 25 μL 2x Premix Taq (Takara Biotechnol-
ogy, Dalian Co. Ltd., China), 1 μL of each primer (10 × 10−3 m), and 3 μL
DNA (20 ng μL−1) template in a volume of 50 μL, were amplified by ther-
mocycling: 5 min at 94 °C for initialization; 30 cycles of 30 s denaturation
at 94 °C, 30 s annealing at 52 °C, and 30 s extension at 72 °C, followed by
10 min final elongation at 72 °C. Three replicates were done per sample
and each PCR product from the same sample were mixed with the BioRad
S1000 (Bio-Rad Laboratories, CA).

Negative control samples showed low concentrations after 16S rRNA
gene PCR amplication (<10 ng μg−1, Figure S1a, Supporting Information),
and did not meet the concentration criteria for regular sequencing library
preparation. However, to further understand the contamination that might
be introduced during sample collection and sequencing, sequencing li-
brary preparation was conducted for these negative control samples. The
16s rRNA gene of 99 BAL samples, 87 oropharyngeal swabs, 86 nasal
swabs, and 81 saliva samples was sequenced successfully, producing a
total of 45 150 202 reads (mean ± SD per sample: 127 904 ± 60 718). At
the same time, the four negative controls had fewer sequence reads than
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the clinical samples (mean ± SD per sample: 17652 ± 12703) (Table S7,
Supporting Information).

High-quality DNA samples from BAL (n = 55) and saliva (n = 58) sam-
ples were used for metagenomic sequencing. Standard bacterial genomic
DNA mixes (mock communities) were also submitted for sequencing as
positive controls. Sequencing libraries were generated using the NEB Next
Ultra DNA Library Prep Kit (NEB, USA) on the Illumina platform, and index
codes were added to assign sequences to the samples. Sample DNA was
fragmented by sonication to ≈300 base pairs (bp), and fragments were
end-polished and ligated with full-length adaptors for Illumina sequenc-
ing with further PCR amplification. The libraries were analyzed for size
distribution using an Agilent 2100 Bioanalyzer (Agilent, USA) and then
sequenced on the Illumina NovaSeq 6000 platform.

16S rRNA Gene Sequence Analysis: The 16S rRNA gene sequences
were analyzed using the Quantitative Insights into Microbial Ecology (QI-
IME2 2019.6) pipeline for microbiome data.[61] Raw sequence data were
de-multiplexed and quality-filtered using the q2-demux plugin, followed by
denoising with DADA2.[62] All ASVs were aligned with mafft[63] and used to
construct a phylogenetic tree using fasttree2.[64] Taxonomy was assigned
to ASVs using the q2-feature-classifier classify-sklearn naive Bayes taxon-
omy classifier against SILVA-132 at a cut of 99% sequence similarities.
BugBase[34] was used to predict bacterial composition based on the se-
quencing results.

Evaluation of Negative Controls and Mock Community Sequencing Results:
Two sets of mock communities were used in this study. Mock community
1 contained 48 species of bacteria from 20 genera, and mock community
2 contained seven species of bacteria from seven genera. Only 0.80% and
0.83% of sequences were found outside the set of sequences in the se-
quencing results, indicating that the final sequencing results of the mock
communities were highly consistent with the mock standards (Figure S1b,
Supporting Information). The top five ASVs in the sampling negative con-
trols and the top five ASVs in the DNA extraction and PCR controls ac-
counted for a very low proportion (<1%) in the BAL samples (Table S8,
Supporting Information). These data suggest that the sequencing process
did not cause serious pollution in the samples, so no taxa were eliminated
in subsequent analyses.

Shotgun Metagenomic Analysis: The first crucial step in metage-
nomic analysis is quality control and removal of host contamination
from raw reads. The KneadData (v0.7.5) pipeline or a combination of
Trimmomatic[65] (v0.33) and Bowtie2[66] (v2.2.3) was used. Trimmomatic
was run with the following default arguments: “SLIDINGWINDOW:4:20
MINLEN:70.” The minimum length was computed as 70% of the input
read length. GRCH38 was used as the host reference genome. Kraken2[67]

(v2.0.7) was used to align the reads from each sample against the con-
structed database. Reads aligned to multiple database entries were as-
signed to their last common ancestor in the taxonomic tree. Reads
assigned to internal taxonomical nodes were reassigned by Braken[68]

(v2.5.0) using the number of reads from all samples with unique map-
ping to the database. ShortBRED[69] (v0.9.4) was used to quantify the
abundance of antibiotic resistance and virulence genes. ShortBRED mark-
ers were identified from the annotated antibiotic resistance or virulence
proteins using the reference database of PRE-COMPUTED SHORTBRED
MARKERS. Clean reads were mapped against marker sequences with 99%
sequence identity. All analyses were performed on gene abundance nor-
malized to reads per kilobase per million (RPKM). Functional profiling
was performed with HUMAnN2[70] v0.11.2, which involved mapping post-
processed reads against the pangenomes of detected species, allowing
read-count-based quantification of microbial gene families in samples.
The identified gene families were further mapped to the MetaCyc database
to quantify the metabolic pathways. Both the gene families and path-
way profiles were stratified according to the contributing organisms. For
each sample, the gene richness was calculated by counting the number of
unique gene families present.

Neutral Model and NTS Analyses: To determine the relative impor-
tance of neutral processes and selection in the lung microbiome, the ver-
sion of the neutral model was implemented using custom scripts in R
(Supporting Information). The normalized stochasticity ratio was calcu-
lated using the R package NST.[71]

Cytokine Measurements in BAL Fluid: For the cytokine assays, 87 par-
ticipants were analyzed who provided a sufficient number of BALF sam-
ples. A total of 48 cytokines were measured in the concentrated BAL us-
ing the Luminex Human Cytokine/Chemokine/Growth Factor Panel (Mil-
lipore: HCYTA-60K) according to the manufacturer’s instructions in a
MAGPIX system (Luminex). These included soluble CD40 ligand (sCD40
L), epidermal growth factor (EGF), fibroblast growth factor-2 (FGF-2),
Eotaxin, Flt-3 ligand, fractalkine, granulocyte colony-stimulating factor
(G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF),
growth-related oncogene-𝛼 (GRO), interferon alpha-2/𝛾 interleukin (IFN-
𝛼2/IFN-𝛾), (IL)-1 receptor antagonist (IL-1RA), IL-1𝛼, IL-1𝛽, IL-2, IL-3, IL-
4, IL-5, IL-6, IL-7, IL-8 (CXCL8), IL-9, IL-10, IL-12 (p40), IL-12 (p70), IL-
13, IL-15, IL-17A, IL-17E, IL-17F, IL-18, IL-22, IL-27, interferon 𝛾-induced
protein 10 (IP-10), monocyte chemotactic protein 1/3 (MCP-1/MCP-
3), macrophage colony-stimulating factor (M-CSF), macrophage-derived
chemokine (MDC), monokine induced by gamma interferon (MIG),
macrophage inflammatory protein 1𝛼/1𝛽 (MIP-1𝛼/MIP-1𝛽), platelet de-
rived growth factor-AA/-AB (PDGF-AA/PDGF-AB), regulated upon activa-
tion (RANTES), transforming growth factor alpha (TGF-𝛼), tumor necro-
sis factor 𝛼/𝛽 (TNF-𝛼/TNF-𝛽), and vascular endothelial growth factor-A
(VEGF-A). The average results from technical duplicates were used. Cy-
tokines detected in less than one-third of the samples were not included
in the analyses: FLT.3L, GM. CSF, IFN-a2, IFN-𝛾 , IL-2, IL-3, IL-4, IL-12 (p70),
IL-17E, IL-17E, IL-17F, IL-22, MCP-3, PDGF-AB, and TNF-𝛼. Data were an-
alyzed using MILLIPLEX Analyst.V5.1 software.

Statistical Analysis: A nonparametric Spearman’s correlation test was
used to test the associations between continuous variables. The false dis-
covery rate (FDR) was used as a control for multiple tests. Linear discrim-
inant analysis effect size (LEfSe)[72] was used to identify differential bac-
teria between pneumo-types, and ANCOM[73] was used to validate the
results; only the overlapping results were subjected to downstream analy-
sis. Visualization of evolutionary trees was performed using the R package
ggtree.[74] Differences in microbial communities were calculated using the
Bray-Curtis dissimilarity index and visualized using a PCoA ordination plot.
Differences in community composition were statistically assessed using
permutational multivariate analysis of variance (PERMANOVA)[75] with
Bonferroni correction for multiple comparisons. Alpha diversity was cal-
culated as the Shannon index using the vegan package.[76]

Random forest models were constructed with the R package AUCRF
(v.1.1)[77] using the three types of compositional data (genus-level, ASVs,
and species) as input. Optimal predictors were determined based on
the mean decrease in the accuracy of the model in classifying the sub-
jects. SourceTracker[32] (v0.9.8, default parameters) was used to assess
the migration of the donor microbiota. The bacterial community types
were determined using a DMM algorithm-based method.[33] Microbes
with more than 1000 reads were selected as core taxa to construct the
interaction network using SparCC,[38] and 1000 bootstraps were used to
calculate correlations and p values. Networks were produced by retain-
ing edges (correlation coefficient R ranges between −0.4 and 0.4 and p
< 0.05), analyzed in R with the package igraph[78] and visualized with
Cytoscape 3.8.1.[79]

A linear model was constructed to test the associations between pheno-
typic data (dependent variables), such as lung function and cytokines, and
independent variables, such as pneumo-type, native, college, diabetes, hy-
pertension, heart disease, gastroenteropathy, smoking, drinking, gender,
TNM stage, age, height, weight, and BMI. For data pre-processing, Shapiro
tests[80] were performed on the dependent variables to determine whether
they conformed to a normal distribution. Since the cytokine indices did
not conform to a normal distribution, log-transformations of the cytokine
indices were performed. Then, Spearman correlation analysis on these in-
dependent variables and dependent variables was performed to screen
out the independent variables that were significantly correlated with de-
pendent variables and constructed a linear model with lung function and
cytokines as dependent variables.
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