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Abstract

Nonalcoholic liver disease is a component of metabolic syndrome associated with obesity, 

insulin resistance, and hyperlipidemia. Excessive alcohol consumption may accelerate the 

progression of steatosis, steatohepatitis, and fibrosis. While simple steatosis is considered a 

benign condition, nonalcoholic steatohepatitis with inflammation and fibrosis may progress to 

cirrhosis, liver failure, and hepatocellular cancer. Studies in rodent experimental models and 

primary cell cultures have demonstrated several common cellular and molecular mechanisms in 

the pathogenesis and regression of liver fibrosis. Chronic injury and death of hepatocytes cause the 

recruitment of myeloid cells, secretion of inflammatory and fibrogenic cytokines, and activation 

of myofibroblasts, resulting in liver fibrosis. In this review, we discuss the role of metabolically-

injured hepatocytes in the pathogenesis of nonalcoholic steatohepatitis and alcohol-associated 

liver disease. Specifically, the role of chemokine production and de novo lipogenesis in the 

development of steatotic hepatocytes and the pathways of steatosis regulation will be discussed.
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INTRODUCTION

Liver fibrosis results from the excessive deposition of extracellular matrix proteins that form 

a fibrous scar in response to chronic liver injury.1 Toxic liver fibrosis is caused by hepatitis 

B (HBV) or C (HCV) infection, alcohol-associated liver disease (AALD), and nonalcoholic 

steatohepatitis (NASH).2 Inflammation plays a key role in the pathogenesis of liver fibrosis.3 

Myeloid cells are the main source of fibrogenic cytokines, including the critical activator 

of hepatic myofibroblasts TGFβ1, which are not present in normal liver.3 Hepatic stellate 

cells (HSCs) are the major source of collagen type I–producing hepatic myofibroblasts in 

response to toxic liver injury.4,5

Until recently, HBV and HCV were the most common causes of liver fibrosis and cirrhosis. 

With the development of vaccines and highly effective antiviral treatments, the incidence 

of HBV- and HCV-related liver diseases has declined, while NASH-associated fibrosis 

and HCC are increasing.6,7 AALD does not develop in thin or cachectic individuals, 

occurring most often in obese patients.2 Increased alcohol intake in patients with high 

body mass index (BMI> 27) leads to more severe liver disease. Histopathologically, 

both NASH and AALD can be distinguished from nonalcoholic fatty liver (NAFL) by 

the development in the latter of steatohepatitis, centrilobular ballooning degeneration of 

hepatocytes and Mallory–Denk hyaline inclusions,8,9 neutrophilic infiltration, inflammation, 

and activation of hepatic myofibroblasts.10 NASH is driven by ER stress and the associated 

activation of inflammatory responses that further exacerbate metabolic injury and activate 

fibroproliferative responses in the liver.11

NAFL is characterized by hepatic steatosis and is reversible;2 however, approximately 20%–

24% of NAFL patients develop NASH. Whether steatosis is a benign or pre-condition that 

makes obese individuals more susceptible to metabolic syndrome, insulin resistance, and 

inflammation remains controversial.3 This review summarizes the molecular mechanisms 

underlying the development of hepatic steatosis and the role of de novo lipogenesis in the 

pathogenesis of NASH- and AALD-induced liver injury.2

1. The development of NASH and AALD liver fibrosis

1.1 NASH-induced metabolic liver injury

The pathogenesis of NASH is often explained by a “two hit” theory: obesity and insulin 

resistance results in metabolic injury to hepatocytes, activation of de novo lipogenesis, 

lipid accumulation, and lipotoxicity that further exacerbate hepatocyte damage.2 Adipose 

tissue contributes to insulin resistance by secreting adipokines and cytokines (e.g., leptin 

and adiponectin).12 Endoplasmic reticulum (ER) stress constitutes a potential “second hit” 

that causes the secretion of inflammatory and fibrogenic cytokines and chemokines (e.g., 

IL-6, TNFα, IL-1β, TGFβ1).3 ER stress is associated with changes in the gut microbiota 

(prevalence of Firmicutes over Bacteroidetes13), increased gut permeability, the release of 

bacterial products such as LPS into the circulation, activation of Toll-like-receptor (TLR)–

dependent signaling pathways (specifically TLR4), and the recruitment and activation of 

inflammatory cells and myofibroblasts in the injured liver.14
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1.2 AALD-associated liver injury

As with NAFLD, alcohol-induced steatosis can progress to alcohol-induced steatohepatitis 

(ASH) and AALD.3 AALD results from a chronic imbalance in hepatocyte metabolism due 

to direct injury by alcohol and alcohol-derived metabolites. Hepatocyte injury occurs via 

release of acetaldehyde, a toxic ethanol metabolite produced by hepatocytes, or upregulation 

of cytochrome P450 2E1, a critical enzyme involved in alcohol metabolism.15,16 Toxic 

alcohol metabolites, changes in the gut microbiota composition,17,18 increased intestinal 

permeability, and the leak of bacterial products into circulation result in inflammation and 

fibrogenesis.14

Despite the etiological differences between NASH and AALD-induced liver injury,3,14 the 

mechanisms underlying the pathogenesis of metabolic liver injury are similar, especially 

at the onset of metabolic injury.2 The pathogenetic mechanisms in common between these 

conditions are discussed.

2. Pathogenesis of liver fibrosis in NASH and AALD

2.1 Inflammation drives NASH and AALD progression

Both NAFL and alcohol-associated fatty liver are considered to be benign and reversible 

conditions.3 Fatty liver is characterized by the accumulation of fat droplets (mainly 

triglycerides and phospholipids) in hepatocytes, and this process is regulated at the level 

of de novo lipid synthesis, lipid secretion (VLDL), and inhibition of β-oxidation.19,20

Chronic injury to hepatocytes and hepatocyte apoptosis induce ER stress, reactive 

oxygen species (ROS) production, and mitochondrial dysfunction, causing the activation 

of inflammatory responses, including the secretion of the key cytokines/chemokines by 

myeloid cells.15,16 Neutrophils are first responders that enter the liver to phagocytose and 

clear apoptotic cells and cell debris and further facilitate recruitment and activation of 

other myeloid cells into the damaged liver.2 Although the specific roles of liver resident 

Kupffer cells versus bone-marrow–derived macrophages are uncertain, both populations 

are believed to contribute to liver inflammation; the secretion of IL-6, TNFα, IL-1β, and 

TGFβ1; and the activation of inflammatory responses that lead to liver fibrosis.2 ER stress 

caused by misfolded proteins induces the activation of fatty acid and cholesterol synthesis 

in metabolically-injured hepatocytes. IL-6 signaling induces inflammatory responses in 

hepatocytes, including the secretion of IL-6, CXCL1, and CCL2. IL-6, TNFα, and 

TGFβ1 drive HSC activation into collagen type I–producing myofibroblasts. In addition to 

neutrophils and macrophages, T and B lymphocytes recruited to the damaged liver mediate 

the adaptive immune response and contribute to metabolic liver damage, inflammation, and 

the formation of fibrous scar tissue by activated myofibroblasts (Figure 1).

2.2 Contribution of T and B cells to NASH and AALD progression

Macrophage-derived TGFβ1 and IL-6 are critical regulators of naive T-cell differentiation 

into T helper 17 (TH17) cells, while IL-23 regulates Th17 expansion and proliferation.21–23 

Mouse Th17 cells also produce anti-inflammatory IL-22. In contrast to IL-17, IL-22 acts as 

a survival factor for hepatocytes,24 suggesting that the activation of specific T-cell subsets 
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might reduce liver injury by releasing the hepatoprotective IL-22.25 In addition, IL-22 

can signal through the IL-22 or IL-10 receptors on HSCs to induce their senescence.26 

Overexpression of IL-22 in mice is reported to increase HSC senescence and attenuate liver 

fibrosis.26

Alterations in the intestinal microbiota composition strongly affect the production of 

IL-17,27 suggesting a correlation between dysbiosis, the immune response, and liver 

fibrosis.14 IL-17A facilitates the activation of myeloid cells and directly activates HSC 

conversion into fibrogenic myofibroblasts in experimental models of liver fibrosis.2 IL-17A 

increases de novo lipogenesis and TNFα -TNFRI signaling in metabolically-injured 

hepatocytes. Unlike IL-17A-secreting T helper 17 (Th17) CD4+ T cells, which exhibit 

a fibrogenic effect, CD8+ T cells mediate hepatoprotective effects. In support of this 

observation, ablation of CD8+ T cells in mice was found to exacerbate NASH-induced 

liver fibrosis, whereas genetic or pharmacological suppression of IgA+ cells attenuated 

NASH-induced liver fibrosis, perhaps through upregulation of IFN-producing T cells.28

2.3 Do metabolically-injured hepatocytes contribute to inflammation?

Hepatocytes constitute 60% of the total liver cells and mediate the detoxifying, metabolic, 

and secretory functions of the liver. Chronic liver injury causes ER stress in damaged 

hepatocytes, the release of ROS, and hepatocyte apoptosis.2 Apoptotic hepatocytes 

release damage-associated molecular patterns (DAMP), TGFβ1, and exosomes containing 

biologically active factors (such as chemokines/receptors, metabolites, proteases) that can 

rapidly deliver “stress signals” into the intracellular compartment to mediate intercellular 

communications.29–35 Metabolically-injured hepatocytes serve as a source of chemokines, 

including CXCL1, CCL2, CCL5, TGFβ1/3, IL-6, and TNFα.2 Although their contribution 

to inflammation is less than that of inflammatory/myeloid cells, hepatocytes can secrete 

chemokines and growth factors locally (into the space of Disse) that regulate crosstalk 

between HSCs and hepatic myeloid cells (liver resident Kupffer cells and bone-marrow–

derived inflammatory cells) and endothelial cells. Furthermore, damaged hepatocytes release 

DAMPs and extracellular vesicles to communicate between hepatocytes and neighboring 

cells, thereby, promoting liver fibrosis via the activation of HSCs and Kupffer cells.36 

Extracellular vesicles, including microvesicles and exosomes or exosome-like vesicles, 

transport large quantities of bioactive molecules that are released into the microenvironment 

and circulation. Hepatocyte-derived extracellular vesicle miRNA (miR-128–3P) contributes 

to HSC activation and liver fibrosis through downregulation of PPARγ.37–40

Damaged hepatocytes are a major source of systemic angiotensinogen, the precursor of 

angiotensin (Ang) II,41 which facilitates inflammatory responses in the damaged liver and 

potentiates TGFβ signaling and fibrosis. AngII drives the release of the cytokines TGF-β, 

IL-1β, and MCP1 by inflammatory cells and induces the contraction and proliferation of 

HSCs.42,43 The release of chemokines (such as MCP-1, MIP-1a, MIP-1b) by steatotic 

hepatocytes facilitates the recruitment of bone-marrow–derived inflammatory cells into 

the injured liver.2 Recent studies have shown cross talk between steatotic hepatocytes 

and the activation of fibrogenic HSCs/myofibroblasts. Two molecules that are elevated 

in metabolically-injured hepatocytes are cholesterol, for which the mechanistic link 
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to NASH remains incompletely understood, and TAZ, a transcriptional regulator that 

promotes NASH fibrosis.44 Under physiological conditions, internalization of plasma 

membrane cholesterol activates soluble adenylyl cyclase (ADCY10), triggering calcium-

RhoA–mediated proteasome-mediated TAZ degradation.44 In response to chronic metabolic 

injury, elevated hepatocyte cholesterol upregulates TAZ and promotes fibrotic NASH. 

Increased levels of hepatocyte-derived TAZ result in increased TAZ-TEAD–dependent 

hepatocyte Indian hedgehog transcription and secretion, leading to the transcription of 

NASH-specific genes that encode proteins responsible for HSC activation, liver fibrosis, and 

inflammation.44,45 TAZ silencing can suppress liver fibrosis and partially reverse NASH.46

3. The role of de novo lipogenesis in hepatocytes in the pathogenesis of 

NASH- and AALD-associated liver fibrosis

3.1 The mechanism underlying hepatic steatosis development in metabolically-injured 
liver

Many patients with obesity and insulin resistance develop hepatic steatosis. Lipid droplets 

of steatotic hepatocytes consist mainly of triglycerides and cholesterol.47,48 Hepatic 

triglycerides and cholesterol are derived from serum non-esterified fatty acids stored in 

adipose tissue (59%), de novo lipogenesis (26%),49 and the diet (15%).50 De novo lipid 

biosynthesis occurs when excessive carbohydrates are consumed or when circulating insulin 

levels are high51 (Figure 2). Carbohydrates undergo glycolysis to generate acetyl-CoA 

molecules which serve as a substrate to fuel fatty acid and cholesterol synthesis.52 Under 

fasting conditions, wherein insulin levels are low and glucagon levels are high, metabolic 

processes are shifted to fatty acid oxidation or lipolysis that allows fatty acid/cholesterol 

mobilization from adipose tissues into circulation, followed by uptake by the liver.47 The 

degree of hepatic steatosis fluctuates in both lean and healthy obese individuals depending 

on the circadian rhythm, diet and food composition, age, pattern of alcohol consumption 

(binge drinking vs social drinking), and use of specific medications.53 Until recently, chronic 

steatosis (NAFL) was considered to be a benign, reversible condition, and the progression of 

steatohepatitis to NASH was thought to be driven by inflammatory responses.54 The critical 

role of lipotoxicity in the pathogenesis of NASH has been recognized recently. Here we 

summarize evidence implicating de novo lipogenesis in the development of metabolic injury 

and NASH (Figure 2).

3.2 Progression of NAFL to NASH

Approximately 20% of patients with NAFL progress to NASH.55 To distinguish NAFL from 

NASH, a scoring system was developed and published in Hepatology, 2005.56 Now in use 

worldwide, this score includes the degree of steatosis, chronic steatohepatitis, inflammation, 

and fibrosis. The grading of biopsies ≥5 was found to correlate with a diagnosis of NASH 

(see Table 1). Biopsies/tissues with scores <3 are diagnosed as “not NASH.” A brief 

summary of the criteria used to diagnose NAFL versus NASH in the human liver is shown in 

Table 1.
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3.3 Contribution of de novo lipogenesis to the progression of NAFL to NASH and AALD

Obesity and insulin resistance lead to the development of metabolic syndrome. Excessive 

hepatic fatty acid synthesis, inhibition of hepatic lipid β-oxidation, and accumulation of lipid 

droplets (mainly triglycerides and phospholipids) in hepatocytes results. One key metabolic 

process implicated in triggering NASH progression is de novo lipogenesis of cholesterol 

and fatty acids.51,55 The rate of de novo lipogenesis in NASH patients is elevated 3-fold 

over that of NAFL patients,51,57 underscoring the importance of de novo lipogenesis in 

the metabolically-injured liver.11,48 The rapid synthesis and excessive accumulation of fatty 

acids and cholesterol has a lipotoxic effect on hepatocytes.58,59 Most lipid synthesis takes 

place in the ER. De novo lipogenesis is critical for triggering the ER stress responses under 

physiological conditions and in response to chronic liver injury.55

3.4 Lipogenesis is mediated by sterol regulatory element-binding proteins.

De novo lipogenesis is regulated by sterol regulatory element-binding proteins (SREBP) 1 

and 2,60 transcription factors that control production of the key enzymes that regulate fatty 

acid and cholesterol synthesis, respectively. Two conditions that mediate the transcription 

of SREBP1/2-dependent lipogenic genes have been identified: the energy-depleted state and 

energy-abundant state. In the energy-depleted state, the regulation of SREBP1/2 function 

is attributed to activation of an autonomous feedback system that senses the lack of 

sterol products in the microenvironment. In the “energy-abundant state,” the transcriptional 

activity of SREBP1/2 is driven by protein accumulation and protein misfolding in the 

ER, leading to the development of endoplasmic reticulum (ER) stress and subsequent 

induction of the adaptive unfolded protein response (UPR) system.61 The UPR is activated 

to restore homeostasis. If the UPR system fails to repair the underlying problem, prolonged 

UPR activity increases the transcriptional capability of SREBP1/2, increasing de novo 
lipogenesis, thereby driving steatosis, inflammation, and fibrosis (Figure 2).62

4 The pathways of SREBP1/2 activation in hepatocytes

4.1 De novo lipogenesis in metabolically-injured hepatocytes

The progression of steatosis to steatohepatitis is associated with the activation of 

inflammatory responses and ROS production.2 The ER is the major site of lipid synthesis in 

hepatocytes. Cholesterol synthesis and uptake pathways are regulated through transcriptional 

regulation of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the rate-

limiting enzyme for cholesterol biosynthesis, via LDLR. Promoters of these genes 

contain the (5′-ATCACCCCAC-3′) sterol regulatory element (SRE).63 SRE sequences 

are recognized by the ER membrane-localized transcription factors SRE binding protein 

(SREBP)1 and 2. SREBP1 plays a critical role in triglyceride synthesis via transcriptional 

regulation of fatty acid synthase, stearoyl-CoA desaturase, and ATP citrate lyase, while 

SREBP2 is mainly responsible for mediating cholesterol metabolism by regulating genes 

such as HMG-CoA reductase and low-density lipoprotein receptor.64 SREBP2 mediates 

sterol regulation in all tissues.64 Two isoforms, SREBP1a and SREBP1b, are arise from 

transcription of the SREBF1 gene from different promoters. SREBP1c is expressed in most 

tissues and regulates homeostasis of fatty acids and triglycerides in lipogenic organs such 

as the liver.60 Compared to SREBP1a, SREBP1c lacks 24 amino acid residues in the N-
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terminal CREB1-binding transactivation domain and exhibits low transcriptional activity.65 

SREBP1a is highly expressed only in specific tissues and cells66 and stimulates expression 

of lipogenic and cholesterogenic genes needed to construct membrane lipids in growing cells 

(Figure 2).65,67

4.2 Regulation of SREBP1/2-dependent transcription of lipogenic genes

SREBPs are produced as inactive ER membrane-bound proteins that require post-

translational modifications to function as transcription factors that translocate to the 

nucleus and initiate lipogenic gene transcription. Synthesized as intrinsic ER membrane 

proteins, SREBP1/2 are transported from the ER to the Golgi for proteolytic cleavage and 

processing.68 Sterol levels regulate SREBP1/2 activity by controlling SREBP1/2 transport 

from the ER to the Golgi, where they undergo proteolytic cleavage before translocating 

to the nucleus. Several independent mechanisms release SREBP1/2 from the ER. The 

INSIG:SCAP-S1P/S2P pathway is preferentially activated during the energy-depleted state 

(activated when low levels of sterols and other lipid levels are detected by specific 

sensor proteins in the ER), while caspase 2-S1P/S2P are primarily induced during the 

energy-abundant state (associated with ER stress and insulin resistance activated by TNF 

signaling),60 thereby regulating fatty acid and cholesterol synthesis (Figure 4).60

4.3 INSIG:SCAP-mediated regulation of SREBP1/2

Inactive ER-anchored SREBP1/2 proteins remain in the ER and are processed by Golgi 

enzymes by binding to the INSIG (precursor bound by insulin-induced gene 1): SCAP 

(SREBP cleavage-activating protein) complex.69,70 The specific mechanism that controls 

release of SREBP1/2 from the INSIG:SCAP is complex and is regulated by sensor 

proteins responding to the changing levels of insulin, oxysterols, unsaturated FA, and food 

intake composition.71–74 SCAP is an ER-sterol–sensing protein that binds to SREBP1 and 

SREBP2 via a WD40 repeat domain and chaperones both proteins from the ER to the 

Golgi.68 Under sterol-rich conditions, SREBPs are held in the ER through their interaction 

with SCAP, an anchoring molecule, and INSIG, an ER transmembrane protein. Specifically, 

when cholesterol in ER membranes exceeds a threshold, the sterol binds to SCAP, triggering 

several conformational changes75 that prevent the SCAP-SREBP complex from leaving the 

ER. INSIGs bind SCAP, thereby preventing SCAP-SREBP movement from the ER.76

When sterols are depleted, INSIG1 dissociates from SCAP, thereby allowing SCAP to move 

to the Golgi. Activation of the ER membrane-bound INSIG:SCAP chaperone drives SREBP 

maturation and activity. The SCAP protein forms a homotetramer with its membrane region 

to form a stable complex with SREBP1 or SREBP2 through its C-terminal cytoplasmic 

domain.77 The SREBP-SCAP complex is released from INSIG upon depletion of sterol in 

the environment. SCAP assists in the transport of SREBP in coat protein II (COPII ) vesicles 

from the ER to the Golgi.68

Translocation of the SCAP-SREBP complex from the ER to the Golgi leads to sequential 

proteolytic cleavage of SREBPs by active forms of site-1 membrane-bound serine proteases 

S1P and S2P.64 The first cleavage occurs within the 50-amino acid luminal loop, separating 

the SREBP into two halves. The NH2-terminal half remains attached to the membrane by 
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its single transmembrane helix. The second cleavage occurs within this helix, releasing the 

bHLH-Zip domain so that it can enter the nucleus. These sequential proteolytic cleavages 

activate S1P and S2P.78,79 S1P cleaves the ER luminal loop of SREBPs only in cholesterol-

depleted cells, and site-1 cleavage requires previous cleavage at site-2.68 The N-terminal 

region of SREBPs then is cleaved off by S2P. A model has been proposed in which 

cleavage by S1P allows the first transmembrane segment to unwind, thereby pushing the 

S2P cleavage site to the membrane surface, where it becomes accessible.80 Following 

cleavage, SREBP1/2 NH2-terminal fragments are released from the Golgi, dimerize with 

importin β via the SREBP helix–loop–helix leucine zipper domain,81,82 and translocate 

to the nucleus, where they initiate target gene transcription.83 SREBPs are responsible 

for the transcription of more than 30 genes needed for the uptake and synthesis of 

cholesterol, fatty acids, triglycerides, and phospholipids. A cell-penetrating nuclear transport 

modifier cSN50.1 interacts with importin β and reduces nuclear translocation of SREBP1/2 

induced by lipid depletion in cells.84 The nuclear concentration of SREBP1c is regulated 

by circulating insulin via the PI3K–AKT–mTOR– SREBP pathway. Mammalian target of 

rapamycin complex 1 (mTORC1) regulates SREBP by controlling the nuclear entry of lipin 

1, a phosphatidic acid phosphatase. Dephosphorylated, nuclear, catalytically active lipin 1 

promotes nuclear remodeling and mediates the effects of mTORC1 on SREBP target genes, 

SREBP promoter activity, and nuclear SREBP protein abundance. Specifically, the lack of 

mTORC1-mediated lipin 1 phosphorylation promotes nuclear entry of lipin 1 and promotes 

the downregulation of nuclear SREBP protein. Whether lipin 1 can directly interact with 

SERBPs remains unknown.85

Nuclear SREBPs are rapidly degraded by the ubiquitin and proteasome pathways.86 

Proteasome degradation of SCAP precedes SREBP degradation. Increased SCAP 

degradation is linked to downregulation of its chaperon, heat shock protein 90 (Hsp90),87 

which stabilizes SCAP in the ER and Golgi. After dissociating from SCAP, INSIG1 

is ubiquitinated and degraded88. SCAP is either recycled or proteolytically degraded.89 

SREBP2 directly regulates transcription of the INSIG1 gene. INSIG1 protein is rapidly 

degraded unless needed. Feedback regulation of cholesterol synthesis requires a sufficient 

amount of nuclear SREBP2 for INSIG1 transcription and restoration of ER cholesterol, 

a regulatory mechanism known as “convergent feedback inhibition.”88,90 An additional 

ER-retention membrane protein, the INSIG2 isoform, was identified.91 Both isoforms can 

simultaneously interact with SCAP to mediate retention of the SCAP-SREBP complex in 

the ER membrane.92

4.4 Regulation of INSIG:SCAP-dependent SREBP1/2 activation

Chronic hyperinsulinemia produces overactive hepatic SREBP1 and lipogenesis despite 

insulin resistance, often referred to as “selective insulin resistance.”60,93 Proteolytic cleavage 

and activation of SREBP1/2 can be stimulated by insulin94 via signaling through insulin 

receptor substrate-1 (IRS1) and its downstream targets protein kinase B (PKB/Akt) and 

mTORC1. mTORC1 regulates activation of hepatic p70 S6 kinase (S6K), the major 

downstream effector of mTORC1, which in turn can cleave and activate SREBP1/2 and 

stimulate lipogenesis under conditions of insulin resistance,95,96 suggesting that selective 

insulin resistance depends upon mTORC1– S6K1 interaction.60 SREBP1c activity may 
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also be induced through the nuclear hormone receptor peroxisome-proliferator-activated 

receptor-γ (PPARγ)97 as well as liver X receptor (LXR) activity,98 each of which 

plays a critical role in lipogenesis. The LXRs are members of the nuclear hormone 

receptor superfamily that are bound and activated by oxysterols. These receptors serve 

as sterol sensors to regulate the transcription of gene products that control intracellular 

cholesterol homeostasis through catabolism and transport. Ligand-activated nuclear PPARγ 
heterodimerizes with retinoid X receptors (RXRs) resulting in expression of its target genes 

such as CD36, a fatty acid transport protein involved in the transport and metabolism of 

intracellular FA.99 SREBP1c expression was shown to be upregulated in mouse tissues in 

an LXR-dependent manner by dietary cholesterol and synthetic agonists for both LXR and 

its heterodimer partner, the retinoid X receptor (RXR),98 which did not increase expression 

of the related gene products SREBP1a and SREBP2.98 SREBP1a and SREBP2 but not 

SREBP1c bind to and are stabilized by CBP and P300 as co-activators to recruit the 

Mediator complex (Figure 3).100,101

4.5 Non-canonical (SCAP-independent) caspase 2-mediated activation of SREBP1/2

Despite the existence of several negative feedback loops associated with sterol/insulin-

INSIG:SCAP-dependent SREBP1/2 regulation, chronic metabolic injury causes constitutive 

SREBP activation102,103 via (SCAP)-independent SREBP activation.11 NASH progression 

is associated with the lipotoxic effects of excessive accumulation of free fatty acids and 

free cholesterol58 on mitochondrial dysfunction,104 and the induction of TNF signaling 

in metabolically-injured hepatocytes, resulting in ER stress and insulin resistance. ER 

stress, defined as a chronic perturbation affecting ER homeostasis, is characterized by the 

accumulation of aberrant proteins, which disturbs the balance of the protein folding capacity 

of the ER to keep up with cellular demand.105 The hepatic ER plays a critical role in the 

maintenance of lipid membrane composition and regulation of the intrahepatic and plasma 

lipids (Figure 3).

Specifically, binding of macrophage-derived TNFα to the hepatic TNF receptor 1 (TNFR1) 

and ER stress cause persistent activation of SREBP1/2 in metabolically-injured hepatocytes 

via non-apoptotic caspase 2-dependent constitutive activation of S1), which initiates 

SREBP-activating cleavage.11 In turn, the development of ER stress inhibits INSIG 

expression via the PERK-mediated eIF2α signaling pathway,106,107 shifting toward TNF/

TNFR1-caspase 2-S1P/S2P-driven cholesterol synthesis.108 Recent studies suggest that 

IL-17 signaling in fatty hepatocytes also regulates TNF-TNFRI-S1P-caspase 2-SREBP1/2 

activation.48 Consistent with this finding, the inhibition of TNF- or IL-17 signaling 

suppresses caspase 2-dependent SREBP1/2 maturation.11,48 Although caspase activity 

is usually increased in apoptotic cells, caspase 2 does not exhibit apoptotic functions 

in metabolically damaged hepatocytes but instead acts as an enzyme-cleaving protease. 

Despite its ability to cleave S1P/S2P, caspase 2 cannot cleave SREBP1/2.11 These 

observations are consistent with the notion that progression of NAFL to NASH may 

depend on a second hit, such as ER stress.11 caspase 2 activates SREBP1/2 through a 

mechanism that, although not fully understood, is not regulated by feedback inhibition by 

sterols or unsaturated FA, as observed in normal SCAP-dependent SREBP activation.11,63 

Although caspase 2 does not trigger hepatocyte apoptosis, caspaseexcessive caspase 2-
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dependent cholesterol accumulation can increase hepatocyte susceptibility to TNF-induced 

mitochondrial dysfunction and death.104

4.6 Alternative activation of SREBP1/2

Apoptotic responses to TNFα in hepatocytes activate pro-apoptotic caspase-3,109 which 

mediates the release of SREBP from the ER membrane in an S1P-independent manner, 

leading to nuclear translocation of SREBP1/2 and transcriptional activation of multiple 

lipogenic genes. In addition, non-specific SREBP1/2 cleavage by caspases-4 and -12 was 

observed in alcohol-exposed cells.110

5. ER stress critically regulates de novo lipogenesis in hepatocytes.

Although the pathogenesis of NASH and ALD differs, the metabolic injury of hepatocytes 

is quite similar. ER stress and UPR activation play a critical role in the development of 

hepatic steatosis, inflammation, and fibrosis. The role of ER stress in de novo lipogenesis is 

discussed below.

The ER in hepatocytes has a remarkable capacity to adapt to extracellular and 

intracellular changes, ensuring that vital hepatic metabolic functions are preserved. 

However, hyperlipidemia and inflammation (specifically high levels of circulating TNFα) 

can perturb hepatocyte ER homeostasis, contributing to the dysregulation of hepatic lipid 

metabolism via activation of non-canonical TNF/TNFRI-caspase 2-S1P-dependent pathway 

of SERBP1/2 activation. ER stress leads to constitutive activation of SREBP1/2 and 

increased production of toxic lipids, including cholesterol, triglycerides, and fatty acids 

(Figure 4).

5.1 Role of the ER in cellular homeostasis

5.1.1 ER Functions.—The ER is a cellular organelle consisting of a continuous 

membrane system, tubules, sheets, and a nuclear envelope with enclosed sacs. The ER 

mediates many essential cell functions, including protein synthesis and processing, protein 

transport, lipid synthesis, and calcium storage.111 The ER is enriched in hepatocytes due to 

their unique metabolic functions such as lipogenesis and production of secretory proteins 

including albumin, alpha-1 antitrypsin, and lipoproteins.112 ER stress is caused by glucose 

starvation, depletion of calcium in the ER lumen, inhibition of glycosylation, reduction of 

disulfide bonds, or excessive accumulation of unfolded and misfolded proteins.113

5.1.2 Chaperones that regulate ER folding.—Chronic metabolic injury affects 

proper protein folding in the ER, leading to the accumulation of protein aggregates, 

cellular dysfunction, and programmed cell death. Inflammatory mediators, including free 

radicals such as nitric oxide (NO) and ROS, TNFα and other cytokines, and metabolic 

dysregulation can contribute to protein misfolding. In turn, improper protein folding can 

cause improper degradation, mislocalization, dominant-negative mutations, and structural 

alterations that establish novel toxic functions, which can cause disease. The UPR is an 

evolutionary conserved system that coordinates cellular responses to stress or injury to 

limit the accumulation of misfolded proteins in the ER and prevent cell death.113 Proper 
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protein folding in the ER114 is controlled by a high concentration of chaperones.113,115 The 

first chaperone uses the ability of UDPglucose/glycoprotein glucosyltransferase (UGGT) to 

add a single glucose to misfolded proteins, making them accessible for binding to the lectin-

like chaperones CNX and CRT that repair protein folding.116 The second ER chaperone 

system, GRP78/BiP, binds to hydrophobic residues of unfolded proteins and mediates their 

retrograde translocation and proteasomal degradation.113,117–119

5.2 UPR signaling is activated to reduce ER stress

The ER engages the UPR to control hepatic protein and lipid homeostasis.55,120 Although 

the initial UPR activation maintains tissue homeostasis and regulates lipogenesis, chronic 

UPR activation leads to dysregulation of the ER regulatory system, often resulting in 

increased production of misfolded proteins and uncontrolled lipogenesis. Recent studies 

report that chronic exhaustion of the UPR plays a critical role the pathogenesis of NASH.

Activation of the UPR signaling system restores ER homeostasis via: (a) increasing 

ER protein folding capacity through expansion of the ER and increased expression of 

chaperones (such as GRP78/BiP), (b) inhibition of protein translation to limit production 

of misfolded proteins121, and (c) activation of autophagy and/or ER-associated protein 

degradation (ERAD) system that reduces ER stress122 by re-directing misfolded proteins 

from the ER back into the cytosol for degradation by the 26S proteasome.114,123 ER stress 

and UPR activation regulate cellular processes beyond ER protein folding and play crucial 

roles in lipid metabolism.51,106,124,125

6. The UPR signaling pathways

The UPR is adaptive response to ER stress.112,126 UPR activation comprises 3 arms, each 

regulated by one of three transmembrane ER-located stress sensors: a) inositol-requiring 

enzyme 1 alpha (IRE1α), b) double-stranded RNA-activated protein kinase-like (PKR)-like 

ER kinase (PERK), and c) activating transcription factor (ATF6).55 While IRE1α and ATF6 

are transcription factors, PERK is a global suppresser of protein synthesis. The N-terminus 

of these proteins is positioned in the ER lumen and the C-terminus in the cytosol, thus 

connecting the two cellular compartments. Each of these proteins controls their specific 

downstream signaling cascades through the transcription of UPR target genes, including 

SREBP. Under physiological conditions, the UPR is inactive (due to inhibitory binding 

of GRP78/BiP to IRE1α, PERK, and ATF6) to maintain normal proteostasis in healthy 

hepatocytes. Upon GRP78 dissociation, all branches of the UPR are activated.127,128 Protein 

disulfide isomerases (PDIs) regulate UPR stress sensors. In turn, transient UPR activation 

prevents sudden hepatotoxic injury and promotes cell survival.129 Thus, when the threshold 

of misfolded protein accumulation reaches a critical point, GRP78 dissociates from the 

ER stress sensors, leading to activation of UPR-specific sensors. Transient activation of 

UPR stress sensors is also controlled by PDIs,127,128,130 suggesting that multiple factors 

regulate transient stress sensor activation.55In contrast, chronic UPR activation131–133 leads 

to protein misfolding, imbalance of calcium homeostasis, and lipid biogenesis (Figure 5),55
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6.1 The IRE1a-XBP1 arm

IRE1, the most conserved ER stress sensor, has two isoforms: IRE1α and IRE1b.134 IREα 
is the most abundant and biologically important Type I ER transmembrane protein and 

exhibits dual enzymatic activities: serine/threonine kinase activity and endoribonuclease 

(RNase) activity on its cytosolic tail.62 IRE1α activation is triggered by the binding of ER 

chaperone Hsp47 or by the direct binding of unfolded proteins to IRE1α,135,136 triggering 

IRE1α dimerization through its luminal N-terminal domain and oligomerization and trans-

autophosphorylation. Subsequent conformational changes in IRE1αinitiate activation of its 

RNase domain.137

The endoribonuclease (RNase) activity of IRE1α degrades many ER-bound mRNAs, 

including mIRE1a itself via the regulated IRE1α -dependent decay (RIDD) pathway (in 

collaboration with RTCB RNA ligases), and acts as an RNA splicing/repair enzyme.138,139 

Upon activation of the tRNA ligase RTCB pathway, IRE1α RNase mediates unconventional 

splicing of Xbox binding protein 1 (XBP1) messenger RNA (by removing a 26-nucleotide 

sequence from XBP1 unspliced (XBP1u) mRNA, causing a translational frameshift to 

produce transcriptionally active XBP1 spliced (XBP1s). IRE1α phosphorylates and activates 

the XBP1 transcription factor XBP1 via its kinase activity. XBP1 translocates to the nucleus 

and induces transcription of its downstream target genes, including ER chaperones and 

genes involved in ERAD.140

IRE1α recruits TNF receptor associated factor 2 (TRAF2) and apoptosis signal-regulating 

kinase 1 (ASK1) to mediate the phosphorylation of c-jun N-terminal kinase and nuclear 

factor kappa B (NF-kB) pathways that transcriptionally activate inflammatory and apoptotic 

pathways. XBP1 directly regulates transcription of specific genes responsible for the 

regulation of lipid metabolism (such as farnesyl diphosphate synthase, hydroxysteroid 17-

beta dehydrogenase 7,141 and fibroblast growth factor 21) to protect from ER stress-induced 

hepatic steatosis.142 Depletion of XBP1 results in rapid feedback activation of IREα.112 The 

IRE1α -XBP1 arm of the UPR plays a critical role in hepatic lipid metabolism through 

regulation of VLDL secretion and lipogenesis (Figure 5).143–145PERK-eIF2a-ATF4 arm

PERK is a Type I ER-resident transmembrane serine/threonine protein kinase consisting of 

an ER luminal stress-sensing domain and a cytosolic kinase domain. Upon oligomerization, 

PERK phosphorylates the subunit of eukaryotic translation initiation factor 2 (eIF2a) in 

response to ER stress. eIF2α serves as a major substrate of PERK146 and functions 

to relieve the protein overload in the ER by suppressing the formation of translation 

initiation complexes to prevent protein translation. Phospho-eIF2α facilitates translation 

and expression of transcription factor ATF4, which positively regulates transcription of 

UPR target genes involved in protein folding and autophagy. ATF4 also transcriptionally 

activates CCAAT-enhancer binding protein (C/EBP) homologous protein (CHOP), which 

is critical for ER stress mediated apoptosis, DNA damage-inducible protein GADD34, 

and ATF3.147–149 The PERK-eIF2α -ATF4 arm of the UPR regulates lipogenesis and 

steatosis. Phosphorylation of eIF2α is regulated on several levels. In a negative feedback 

mechanism, ATF4 induces expression of GADD34 and constitutive repressor of eIF2α 
phosphorylation (CReP), which interact with protein phosphatase 1 (PP1) to promote 

PP1-mediated de-phosphorylation of eIF2α.150 Consequently, ATF4 translation resumes, 
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and ATF4 transactivates UPR target genes involved in protein folding, autophagy, redox 

homeostasis, amino acid metabolism, and apoptosis (Figure 5).147–149

6.2 ATF6 arm

ATF6, a type II transmembrane protein, contains a cytosolic bZip domain and possesses 

leucine zipper transcription factor activity.112 Full and truncated forms of ATF6 have 

been identified (ATF6a and ATF6b, respectively).151,152 Upon ER stress-induced activation, 

ATF6a (p90) is released from the inhibitory BiP protein and transported from the ER to 

the Golgi where it is cleaved by S1P and S2P proteases. Proteolytic cleavage of the full 

length ATF6 results in release of the N-terminal cytosolic transcription factor ATF6b (p50), 

which translocates to the nucleus and initiates the transcription of genes involved in protein 

folding and ERAD. ATF6 was also shown to activate the transcription of XBP1, CHOP, 
and BiP.153 ATF6 also forms heterodimers with XBP1 to induce transcription of multiple 

genes involved in ERAD.154 The ATF6a arm may provide responses that prevent excessive 

lipogenesis (Figure 5).

6.3 UPR proteins differentially regulate de novo lipogenesis

6.4.1 IRE1a-XBP1 pathway.—The IRE1α -XBP1 pathway directly drives hepatic 

steatosis, metabolic liver damage, and hypercholesterolemia (Table 2). XBP1 is a critical 

pro-lipogenic transcription factor155 that targets Lipin genes (LPIN1 and LPIN3), OSBP, 

LSS, and GPAT4. OSBP encodes a sterol–sensing protein that modulates SREBP activity 

in response to sterol PECR, an enzyme involved in fatty acid elongation.156,157 LSS 

catalyzes the formation of lanosterol from squalene, and GPAT4 adds a fatty acid to glycerol 

during lipogenesis.154,158,159 XBP1 ablation leads to a compensatory upregulation of its 

upstream enzyme IRE1α (but not PERK, ATF6, or other UPR proteins). These findings 

further support the proposed role of IRE1α in lipid metabolism and indicate that IRE1α 
activity is regulated by a feedback mechanism activated by low abundance of XBP1 

(IRE1α substrate).154,160,161 Moreover, the IRE1α-regulated XBP1 and RIDD pathways 

have opposing effects on the expression of lipogenic genes, with the RIDD pathway 

promoting lipid hydrolysis and preventing lipid storage by reducing the expression of 

lipogenic genes.160 The silencing of lipid metabolism genes through the IRE1α -regulated 

mRNA decay RIDD system lowers plasma lipid concentrations.155,160 In addition, IRE1α 
RNase activity (but not kinase activity) increases the decay of select microRNAs (miR-17, 

-34a, -96, -125b) that repress translation of caspase 2 mRNA, thereby promoting caspase 

2 expression. Targeting of either IRE1α or XBP1 might become a strategy for blocking de 
novo lipogenesis.162

6. 4.2 PERK-eIF2a-ATF4 pathway.—PERK positively regulates lipid synthesis via 

its downstream targets eIF2α, ATF4, and CHOP. The absence of PERK is associated 

with the downregulation of triglyceride and fatty acid production. In response to ER 

stress, PERK phosphorylates eIF2α, causing subsequent caspase 2-dependent SREBP1/2 

cleavage/maturation in immune cells.163 Phosphorylated eIF2α facilitates translation of the 

transcription factor ATF4, which also increases de novo lipogenesis. The genes encoding 

the lipogenic enzymes Acac, Scd1, Fas, and Gpat are ATF4 targets.164,165 These findings 
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indicate that the IREα -XBP1 and PERK-eIF2α -ATF4 pathways can be targeted to suppress 

caspase for NASH therapy.

2-SREBP1/2-dependent cholesterol and fatty acid synthesis

6.4.3 ATF6 pathway.—The role of ATF6 in de novo lipogenesis is poorly understood. 

The ATF6 pathway was originally implicated in the suppression of lipid metabolism because 

of its ability to induce ER expansion in an XBP1-independent manner.154,166,167 Further, 

ATF6 was reported to inhibit cholesterol synthesis via interaction with cleaved/activated 

SREBP2 and transcription inhibitor HDAC1, leading to the downregulation of HMGCR, 

HMGCS, FDFT1 (squalene synthase), and LDLR expression.168 ATF6 can also suppress 

hepatic triglyceride accumulation via regulation of transcriptional activity of PPARα/RXRα 
(retinoid X receptor alpha) heterodimers and activation of fatty acid oxidation (Cpt1, Cpt2, 

Acox1 and Ppara) and VLDL formation (Mttp, PDI and Apob).154,155 In another study, 

ATF6 activation was shown to upregulate the transcription and expression of XBP1 as 

well as genes involved in protein folding that support ERAD machinery, mediate ER 

homeostasis, and stabilize ER and Golgi biogenesis.153,169 ATF6 and XBP1s can form 

heterodimers that promote the expression of select genes involved in ERAD biologic 

functions.154,170,171

7. De novo lipogenesis in inflammatory cells and fibrogenic 

myofibroblasts facilitates NASH progression

7.1 Lipogenesis contributes to activation of inflammatory cells and hepatic 
myofibroblasts

De novo lipogenesis plays a similar role in other cells, including immune, inflammatory, 

and mesenchymal cells.2 Steatosis–inflammation–fibrosis mediated by lipid accumulation 

in different cell types and lipotoxicity is a final common pathway to the organ pathologies 

of immunometabolic disorders such as obesity, atherosclerosis, diabetes mellitus, NASH, 

chronic kidney disease, and neurological disorders. Severe cell stressors induce apoptosis 

through a terminal UPR. In energy-depleted states, lipids in lipid droplets are degraded via 

lipophagy to restore energy levels.

7.2 Lipogenesis promotes myeloid cell activation

Lipid metabolism is critical for the activation of myeloid cells, induction of inflammatory 

responses, the host defense mechanism, phagocytosis, and autophagy.2 Thus, macrophages 

internalize oxidized low-density lipoproteins and lipids from the environment, leading to the 

formation of foam cells with an inflammatory phenotype.172 Metabolic-sensing pathways 

coordinate shifts in lipid metabolism and regulate macrophage activation.173 LDLR 

expression is regulated by LXR, which acts as a cellular free-cholesterol–concentration 

sensor and mediates the expression of SREBP1c in myeloid cells174. SREBP1c was also 

shown to activate genes encoding inflammasome subunits in macrophages.66 SREBP2 is an 

important regulator of LDLR and SREBP1c expression. In addition, SREBP2 is necessary to 

produce an LXR ligand required for normal SREBP1c expression.175 174
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7.3 Hepatic stellate cells

Lipid metabolism in myofibroblasts and HSCs is not fully understood.2 Activation 

of the vitamin A– retinoic acid signaling pathway, the presence of lipid droplets, 

and downregulation of PPARγ are involved in maintenance of the quiescent HSC 

phenotype.176,177. Quiescence-associated transcription factor ETS1 regulates PPARγ 
expression levels in qHSCs.178 In contrast, binding of methyl-CpG binding protein 2 

(MeCP2) represses PPARγ transcription, leading to HSC activation into myofibroblasts.177 

Emerging evidence indicates that excessive lipid accumulation facilitates fibrogenic 

activation of hepatic myofibroblasts. HSCs are sensitive to intracellular cholesterol levels, 

which causes their activation. Increased SREBP2 and microRNA-33a signaling was 

observed in activated HSCs and was linked to PPARγ suppression in activated HSCs. In 

turn, cholesterol accumulation in HSCs increases Toll-like receptor 4 protein (TLR4) levels 

through suppression of TLR4 endosomal-lysosomal degradation, thereby facilitating LPS 

and TGFβ signaling in HSCs.179 Curcumin suppresses LDLR and SREBP expression in 

activated HSCs by activating PPARγ, reducing cellular cholesterol, and attenuating HSC 

activation.180 In addition, curcumin directly regulates SREBP2 expression by suppressing 

specificity protein 1 (SP-1) transcription factor. The SREBP2 promoter contains an SP-1 

binding GC-box, and SP-1 is implicated in elevated SREBP gene transcription.181 PPARγ 
and LXR play critical roles in the regulation of de novo lipogenesis and cholesterol 

homeostasis in HSCs. Crosstalk between PPARγ and LXR is modulated by expression of 

a mutant PNPLA3 allele (linked to accelerated NASH progression). HSCs carrying I148M 

PNPLA3 show impaired LXR signaling, leading to cholesterol accumulation and HSC 

activation182.

8. Concluding remarks

Lipids play a critical role in the maintenance of body homeostasis, as they serve as a source 

of energy and provide building blocks for cell membranes.2 The production of cholesterol 

and fatty acids also plays a role in the development of hepatic steatosis in response to 

metabolic injury. De novo lipogenesis contributes to the NASH pathogenesis and is triggered 

by obesity, insulin resistance, ROS production, ER stress, and TNFα -induced signaling. 

The synthesis of cholesterol and fatty acids is controlled on multiple levels, including the 

activation of non-canonical caspase 2-dependent S1P/S2P-induced processing and activation 

of SREBP1/2, the transcription factors that play a key role in triggering expression of 

the major lipogenic genes. Therefore, caspase 2 and S1P/S2P proteins are targets for the 

therapeutic suppression of de novo lipogenesis.2 Blocking of the upstream activators TNFα 
and IL-17 effectively suppresses the caspase 2-S1P/S2P-DHCR7 pathways, preventing 

cholesterol and fatty acid production.2 Other components of the UPR system directly or 

indirectly affect cholesterol synthesis. Blocking of the IRE1α -XBP1 and PERK-eIF2α 
-ATF4 pathways may suppress steatosis, while stimulation of ATF6 and the ERAD system 

can reduce steatosis by decreasing ER stress.
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Figure 1. Pathogenesis of toxic liver fibrosis and therapeutic implications.
Hepatocyte damage triggers the inflammatory response, leading to activation of 

macrophages, release of ROS and TGFβ1, and activation of quiescent HSCs into activated 

HSCs/myofibroblasts that produce collagen type I resulting in liver fibrosis.

Carvalho-Gontijo et al. Page 25

Semin Liver Dis. Author manuscript; available in PMC 2022 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. The caspase-2–dependent activation of de novo lipogenesis.
ER and IL-17A facilitate TNFα/TNFR-mediated lipogenesis in alcohol-damaged 

hepatocytes via activation of the caspase 2-SP1-SREBP1/2-DHCR7 pathway. Schematic 

representation of cholesterol and fatty acid synthesis pathways.
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Figure 3. Canonical and non-canonical activation of SREBP1/2 transcription factors that drive 
de novo lipogenesis in steatotic hepatocytes.
SCAP-dependent lipogenesis is subject to negative feedback. Cholesterol buildup in ER 

membranes causes sterol binding to SCAP, which triggers a conformational change that 

causes SCAP to bind to insulin-induced gene, prohibiting SCAP binding to SREBPs. 

Conversely, when cells are sterol-deprived, SCAP escorts SREBPs from the ER to the Golgi, 

where S1P and S2P proteases cleave SREBPs, allowing their translocation to the nucleus 

to activate de novo lipogenesis and cholesterol target gene transcription. During ER stress, 

lipogenesis is driven in a SCAP-independent manner. The simultaneous activation of TNFα 
and IL-17 pathways increases caspase 2 gene expression, and its activation is dependent 

on IRE1α. Caspase 2 cleaves S1P into a soluble form that reaches the ER to cleave 

SREBPs, allowing their translocation to the Golgi, where they are further cleaved by S2P 

and translocate to the nucleus to activate the lipogenic gene transcription. SCAP-dependent 

lipogenesis is prevented by cholesterol increase, while SCAP-independent lipogenesis is a 

non-homeostatic mechanism subject to a positive regulatory loop. The activation of SREBP2 

also increases caspase 2 levels, serving as an additional input.
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Figure 4. ER stress drives NAFLD progression.
Progression of steatosis (NAFL) to steatohepatitis and fibrosis (NASH) is associated with 

the development of ER stress, lipid accumulation, inflammation, and activation of hepatic 

myofibroblasts.
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Figure 5. ER stress activates three UPR arms.
Progression of steatosis (NAFLD) to steatohepatitis and fibrosis (NASH) is associated with 

development of ER stress and activation of the unfolded protein response (UPR) to control 

hepatic protein and lipid homeostasis. Under physiological conditions, UPR is inactive 

(due to inhibitory binding of GRP78/BiP to IRE1, PERK, and ATF6) to maintain normal 

proteostasis in healthy hepatocytes. Upon GRP78 dissociation, all 3 arms of the UPR are 

activated. In response to chronic injury, all arms of the UPR contribute to NASH and, to 

different extents, support de novo lipogenesis.
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Table 1.
NASC/CRN grading criteria.

NASH diagnosis correlates with steatosis, related chronic steatohepatitis, and fibrosis. Biopsies of grade ≥5 

were diagnosed as NASH; those of grade <3 were diagnosed as “not NASH.”

Grade: Criteria:

Steatosis grade:

0 <5%;

1 - 5–33%;

2 - 34–66%;

3 >66%

Steatosis distribution: centrilobular vs diffuse

Lobular inflammation:

0 - none;

1 < 2 foci/20x field;

2 - 2–4 foci/20x field;

3 > 4 foci/20x field

Hepatocellular ballooning:

0 - none;

1 - mild, few;

2 - moderate-marked, many

Portal inflammation:

0 - none;

1 - mild,

2 > mild,

3 - severe

Fibrosis (Trichrome stain):

0 - none

1a - mild zone 3 perisinusoidal fibrosis, requires trichrome stain to identify

1b - moderate zone 3 perisinusoidal fibrosis, also noticeable by H&E

1c - portal fibrosis only;

2 - zone 3 perisinusoidal fibrosis and periportal fibrosis

3 - bridging fibrosis

4 - cirrhosis

Semin Liver Dis. Author manuscript; available in PMC 2022 November 14.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Carvalho-Gontijo et al. Page 31

Table 2:
ER stress pathways are activated in response to metabolic injury induced by NASH or 
AALD.

The role of UPR-activated proteins in NASH and AALD is demonstrated.

Liver Disease UPR Component Functions

NAFL/NASH IRE1α Regulates Hepatic lipogenesis through RIDD

Facilitates diet induced steatosis

Promotes the progression of NAFL to NASH

XBP1 Promotes steatosis in metabolically injured hepatocytes

Promotes diet-induced liver injury

Regulates Hepatic lipogenesis

Contributes to diet induced liver injury

ATF4 Contributes to diet-induced steatosis

GADD34 Protects from diet-induced steatosis

ATF6 Protects from diet-induced steatosis

AALD BiP Protects from alcohol-induced liver injury

ATF4 Responsible for alcohol-induced steatosis

CHOP Promotes alcohol-induced liver injury

ATF6 Promotes alcohol-induced steatosis

Abbreviations: NAFLD, nonalcoholic fatty liver; NASH, nonalcoholic steatohepatitis; IRE1α, inositol-requiring enzyme 1α; XBP1, Xbox binding 
protein 1; PERK, double-stranded RNA-dependent protein kinase (PKR)-like ER kinase; ATF4, activating transcription factor 4; eIF2α, eukaryotic 
initiation factor 2a; GADD34, growth arrest and DNA damage-inducible protein 34; ATF6, activating transcription factor 6; RIDD, regulated 
IRE1a-dependent decay of mRNA; ALD, alcoholic liver disease; BiP, binding immunoglobulin protein; CHOP, CCAAT-enhancer-binding protein 
(C/EBP) homologous protein
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