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ABSTRACT
Background: Screening for colorectal cancer (CRC) reduces its mortality but has limited sensitivity 
and specificity. Aims We aimed to explore potential biomarker panels for CRC and adenoma 
detection and to gain insight into the interaction between gut microbiota and human metabolism 
in the presence of these lesions.
Methods: This multicenter case-control cohort was performed between February 2016 and 
November 2019. Consecutive patients ≥18 years with a scheduled colonoscopy were asked to 
participate and divided into three age, gender, body-mass index and smoking status-matched 
subgroups: CRC (n = 12), adenomas (n = 21) and controls (n = 20). Participants collected fecal 
samples prior to bowel preparation on which proteome (LC-MS/MS), microbiota (16S rRNA profil-
ing) and amino acid (HPLC) composition were assessed. Best predictive markers were combined to 
create diagnostic biomarker panels. Pearson correlation-based analysis on selected markers was 
performed to create networks of all platforms.
Results: Combining omics platforms provided new panels which outperformed hemoglobin in this 
cohort, currently used for screening (AUC 0.98, 0.95 and 0.87 for CRC vs controls, adenoma vs 
controls and CRC vs adenoma, respectively). Integration of data sets revealed markers associated 
with increased blood excretion, stress- and inflammatory responses and pointed toward down-
regulation of epithelial integrity.
Conclusions: Integrating fecal microbiota, proteome and amino acids platforms provides for new 
biomarker panels that may improve noninvasive screening for adenomas and CRC, and may 
subsequently lead to lower incidence and mortality of colon cancer.
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Introduction

Colorectal cancer (CRC) is diagnosed in over 
1.8 million people each year world-wide and 
ranks second in terms of cancer mortality.1,2 Its 
overall 5-year survival rate is 64.4% for colon cancer 

and 66.6% for rectal cancer, depending on the cancer 
stage at diagnosis. For some adenomas, a sequence of 
mutations occur over a period of decades, eventually 
evolving into advanced adenomas.3 In 80% of the 
reported cases, colorectal carcinomas develop from 
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initially benign colonic adenomas. As survival rate of 
CRC decreases gradually with increasing cancer 
stage at diagnosis, early detection and removal of 
these premalignant adenomas is crucial.4

Current population-based CRC screening programs 
aiming at selection of high-risk individuals mostly 
apply fecal immunochemical testing (FIT), which has 
been proven to reduce CRC mortality.5 This biomarker 
is, however, characterized by a limited sensitivity for 
both CRC (79%) and particularly for advanced adeno-
mas (31%), leading to the performance of (unneces-
sary) colonoscopies which are invasive and costly.6,7 In 
addition, for a selection of CRC cases, patients are 
incorrectly reassured by a false-negative test.

Composition of proteins, amino acids (AA) and 
microbiota in stool have separately been demon-
strated to hold potential as CRC biomarkers and 
offer the potential to be translated into easy-to-use 
and low-cost screening tests.8–12 In this study, we 
aimed to develop a diagnostic panel based on these 
omics data platforms. Second, we sought to inte-
grate these biomarkers to obtain better insight into 
the interplay between the gut microbiota and meta-
bolism in colorectal cancer and adenomas.

Results

Patient demographics

In total, 1093 participants collected a fecal sample of 
which 14 were diagnosed with CRC during endoscopy 
and subsequent histological examination. Two were 
excluded as the final histological diagnosis was a neu-
roendocrine tumor (NET). The 12 CRC patients (ade-
nocarcinoma) were randomly matched on age, gender, 
body-mass index (BMI), and smoking status (smoker, 
stopped smoking or never smoked) to 21 adenoma 
patients (10 advanced adenomas, 11 small adenomas) 
and 21 controls of which one control was excluded 
from statistical analysis due to insufficient sample 
mass during the process of measurements. Detailed 
patients characteristics are presented in Table 1.

Multi omics data analysis

Microbial profiles

In the present study, 2.246.463 high-quality RNA 
reads were obtained with a median count of 23.041 

reads per sample. After taxonomic assignment, 225 
operational taxonomic units (OTUs) were obtained 
(Supplementary Table 4). No significant differences 
were seen in alpha and beta diversity between the 
groups. The proportions of the dominant taxa were 
assessed at the phylum level and are depicted in bar 
plots in Supplementary Figure 9A-B.

When comparing CRC samples to controls, five 
taxa were selected from the machine learning pipe-
line (Supplementary Table 1). These were 
Methanobrevibacter (AUC 0.5),Bifidobacterium 
(AUC 0.78),Eubacterium hallii (AUC 0.64), 
Ruminococcaceae UCG-003 (AUC 0.62), and 
Desulfovibrio (AUC 0.69), respectively. Combining 
these taxa, an AUC value of 0.78 was found 
(Figure 2d). Eight taxa were selected from EN and 
LASSO when comparing adenoma samples to con-
trols (Supplementary Table 2). These were 
Butyricimonas (AUC 0.78), Cyanobacteria within 
the order of Gastranaerophilales with uncultured 
genus (AUC 0.68), Streptococcus (AUC 0.51), 
Anaerostipes (AUC 0.71),Lachnospiraceae from the 
FCS020 group (AUC 0.65), and ND3007 group 
(AUC 0.57), Erysipelotrichaeceae (AUC 0.62), and 
Parasutterella (AUC 0.69), respectively. 
A combination of these taxa resulted in an AUC 
value of 0.8 for the differentiation between adenomas 
and controls (Supplementary Figure 1D). Last, when 
comparing CRC samples to adenoma samples, six 
taxa were selected (Supplementary Table 3). These 
were Butyricimonas (AUC 0.71), Cyanobacteria 
within the order of Gastranaerophilales with uncul-
tured genus (AUC 0.73), Clostridialis from the vadin 
BB60 group (AUC 0.73), Tyzzerella 3 (AUC 0.62), 
Firmicutes within the Peptococcaceae family with 
uncultured genus (AUC 0.68) and Parasutterella 
(AUC 0.69). Combining these six taxa, an AUC 
value of 0.8 was found for the discrimination 
between CRC and adenoma samples 
(Supplementary Figure 2D). Behavior of the selected 
taxa is visualized for each comparison in Figure 3a-c.

Proteomic profiles

In total, 521 human proteins were identified from 
the LC-MS/MS proteomics analysis with a total 
median number of 169 per sample (min-max [90– 
281]). Based on the beta-binomial test, a total of 73 
proteins differed significantly between CRC and 
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controls, whereas 33 differed significantly between 
adenomas and controls and 69 proteins were sig-
nificantly different between CRC and adenomas.17 

The fold change across different samples was calcu-
lated (threshold ≥2). A list of the fold change values 
and corresponding proteins per comparison is 
given in Supplementary Tables 6–8 and the 
p-values of the beta-binomial test are given in the 
online data.

For the comparison between colorectal cancer 
and controls, eight proteins were selected based on 
the machine learning pipeline (Supplementary 
Table 1, Supplementary Figure 3AB). Those were 
SIAE (AUC 0.89), HP (AUC 0.86), CDHR5 (AUC 
0.87), HBB (AUC 0.88), C3 (AUC 0.75), CP (AUC 
0.84), SERPINA3 (AUC 0.76), HBA1 (AUC 0.95). 

Combining these eight proteins, an AUC of 0.69 was 
found for the discrimination between CRC and con-
trols (Supplementary Figure 3D). When comparing 
adenomas to controls, the proteins GUSB (AUC 
0.87), HBB (AUC 0.79), A2M (AUC 0.67) and 
HBA1 (AUC 0.76) were selected and had 
a combined AUC value of 0.87 (Supplementary 
Table 2, Supplementary Figure 4AB). The proteins 
HP (AUC 0.79), CEACAM8 (AUC 0.68), PRSS8 
(AUC 0.71), MUC2 (AUC 0.75), CP (AUC 0.75), 
SERPINA3 (AUC 0.75), SGSH (AUC 0.75) and 
FCGBP (AUC 0.77) were selected for the differentia-
tion between CRC and adenomas and a combined 
AUC value of 0.77 was obtained (Supplementary 
Table 3). Regulation of the proteomic data for all 
three comparisons is displayed in Figure 3a-c.

Table 1. Demographics.
CRC (12) AA (10) Polyps (11) Control (20)

Age (median [IQR]) 67 [60–71] 71 [70–73] 73 [60–75] 67 [62–75]
Gender (male No [%]) 6 [50] 9 [90.0] 9 [81.2] 14 [70]
BMI (median [IQR]) 25.1 [23.7–31.1] 26.9 [23.5–28.4] 26.8 [23.7–29.1] 25.5  

[22.9 − 28.7]
Smoking status (No[%])
Never smoked 2 [16.7] 1 [10] 3 [27.3] 6 [13]
Stopped smoking 9 [75.0] 8 [80] 6 [44.6] 12 [60]
Actively smoking 1 [8.33] 1 [10] 2 [18.2] 2 [10]
Endoscopy indication (No [%])
Positive FIT 6 [50] 3 [13] 3 [27.3] 3 [14]
Rectal blood loss 4 [33.3] 4 [15] 0 [0] 1 [5.0]
Abdominal pain 1 [8.33] 1 [10] 1 [9.1] 6 [13]
Diarrhea 0 [0] 0 [0] 1 [9.1] 0 [0]
Change in bowel habits 1 [8.33] 1 [10] 1 [9.1] 3 [14]
Polyp surveillance 0 [0] 1 [10] 2 [18.2] 2 [10]
Surveillance on family history 0 [0] 1 [10] 0 [0] 1 [5.0]
Incontinence 0 [0] 0 [0] 1 [9.1] 0 [0]
Coincidental radiologic finding 0 [0] 0 [0] 0 [0] 0 [0]
Surveillance after CRC 0 [0] 0 [0] 2 [18.2] 1 [5.0]
Anemia 1 [8.33] 0 [0] 0 [0] 1 [5.0]
Localization largest abnormality (No [%])*
Cecum 0 [0] 1 [10] 2 [18.2] NA
Ascending colon 1 [8.33] 1 [10] 3 [27.3] NA
Flexura Hepatica 1 [8.33] 0 [0] 0 [0] NA
Transversal colon 0 [0] 0 [0] 1 [9.1] NA
Flexura lienalis 0 [0] 1 [10] 0 [0] NA
Descending colon 0 [0] 0 [0] 0 [0] NA
Sigmoid 6 [50] 4 [15] 4 [36.4] NA
Rectosigmoid 2 [16.7] 0 [0] 0 [0] NA
Rectum 1 [8.33] 2 [16] 1 [9.1] NA
AA Characteristics (No [%])
High grade dysplasia NA 0 [0] NA NA
Villous histology NA 4 [15] NA NA
>1 cm NA 9 [90] NA NA
Polyp characteristics (No [%])
No dysplasia NA NA 0 [0] NA
Hyperplastic NA NA 0 [0] NA
Low grade dysplasia NA NA 11 [100] NA
Number of adenomas removed (median [IQR]) 2 [1–4] 3 [2–4] 2 [1–3] NA

Demographics of study participants. Abbreviations: CRC = colorectal cancer, AA = advanced adenoma, IQR = interquartile range, NA = not applicable. In this 
study, AA and polyps were combined into one adenoma group. All CRC were adenocarcinomas *Information on localization of lesion missing for one 
participants of the CRC and AA group.
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Protein interactions and biological processes
The selected proteins were run through the DAVID 
Bioinformatics and STRING consortium© 
databases.14,18,19 An overview of the selected pro-
teins, corresponding protein interactions and bio-
logical processes is given in (Supplementary 
Table 5). Main associations were oxygen transport, 
regulation of cell death, maintenance of gastroin-
testinal epithelium, endocytosis, hydrogen peroxide 
catabolism, production of endothelial growth fac-
tor, acute phase response and inflammatory 
processes.

Validation of proteomic biomarker panels
We retrieved an online available dataset containing 
fecal proteomic profiles of patients with CRC 
(n = 79), adenomas (n = 83) and controls 
(n = 129).8 The proteomics assessment resulted in 
a total number of 733 features (proteins) with large 
overlap to our current dataset. Statistical procedure 
was repeated in the same manner as with our data. 
Results of the LASSO and EN selection methods are 
given in Supplementary Figure 13A-F. For the 
comparison between CRC and controls, five out 
of seven proteins from our biomarker panel were 
again reported as ‘most discriminative’ in either EN 
or LASSO analysis. Those were HP, A2M, C3, 
HBA, and CP. The features SIAE and HBB were 
selected in the validation data as important fea-
tures, but not as ‘most discriminative’. For the 
comparison between CRC and adenomas, two out 
of four proteins (HBB and CEACAM8) were 
repeatedly selected as ‘most discriminative features’ 
in LASSO and EN analysis. For the comparison 
between adenoma and controls, different proteins 
were selected as most discriminative in the new 
validation set. Though, some of the features that 
appeared in our previous EN and LASSO analysis 
(not selected as most discriminative), did come up 
in the selection of EN and LASSO in the current 
validation data. Next, we sought for validation of 
our previously established test characteristics. 
Receiver operator characteristic curves and corre-
sponding area under the curves for the biomarker 
panels as tested on the online available data are 
given in Figure 13 G. We were able to extract 
information on all proteins within the panel for 
the comparison between CRC and controls (C3, 
two forms of CP, two forms of SERPINA3, SIAE, 

HP, CDHR5, HBB, and HBA1), and found higher 
AUC value outcome compared to our study 0.842. 
For the comparison between adenoma and con-
trols, we were able to select data from all proteins 
(HP, CEACAM8, PRSS8, MUC2, CP, SERPINA3, 
SGSH, and FCGBP) within the biomarker panel for 
the comparison between adenoma and controls. 
Combining these proteins gave an area under the 
curve for selection of adenoma patients of 0.841. 
For the comparison between adenomas and con-
trols, the selected proteins A2M, HBB, HBA, and 
GUSB had a combined AUC of 0.51, which was 
lower compared to our study outcome.

Amino acid profiles

A total number of 44 unique AA were obtained 
from the HPLC analysis with a median count of 
26 (Interquartile range20–25) different AA per fecal 
sample. When comparing CRC samples to controls, 
sulfo-l-cystine (AUC 0.56), proline (AUC 0.72), 
and ethanolamine (AUC 0.66) were selected from 
the machine learning pipeline (Supplementary 
Table 1). Combining these AA, an AUC of 0.6 
was found (Supplementary Figure 6D). For the 
comparison between adenomas and controls, four 
amino acids were selected. These were, sulfo- 
l-cystine (AUC 0.87), ethanolamine (AUC 0.89), 
proline (AUC 0.78), and histidine (AUC 0.63) 
(Supplementary Table 2, Supplementary 
Figure 7AB). An AUC of 0.89 was found when 
combining these AA (Supplementary Figure 7D). 
Sulfo-l-cystine (AUC 0.86), ethanolamine (AUC 
0.80), and histidine (AUC 0.67) were selected 
when comparing CRC to adenoma samples and 
an AUC value of 0.89 was obtained when combin-
ing these proteins (Supplementary Figure 8D). 
Behavior of these AA is depicted for each compar-
ison in Figure 3a-c.

Sub-analysis advanced adenomas versus 
non-advanced adenoma

Four AA were selected, being ethanolamine, proline, 
glycine, and glutamine. Individual t-tests were not 
significant (p < .05) and logistic regression analysis 
resulted in an AUC value of 0.64. Four proteins, 
A2M, CEACAM1, ATIC, and C3, were selected 
from the machine learning pipeline and all of them 
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significantly differed between groups when perform-
ing t-test individually (p < .05). Combining these 
proteins resulted in an AUC value of 0.76. Thirteen 
microbial taxa were selected of which nine were 
greatly skewed and due to sparse data were not 
considered further. Three taxa, Christensenellaceae, 
Lachnospiraceae, and Ruminococcaceae were found 
significant after individual t-test (p < .05). 
Combining these three taxa the AUC value for dis-
criminating advanced adenomas from non- 
advanced adenomas was 0.65.

Data integration for mapping of biological 
interactions and pathways

As shown in Figure 4 and Supplementary Figures 10– 
11, using multi-omics integration models, we 
observed network clusters for all three comparisons. 
Correlation coefficient was calculated using both 
Pearson, Kendall, and Spearman coefficients. Similar 
levels of significance were found for the selected mar-
kers and outcomes are presented in Supplementary 
Table 9A-C. Based on Pearson correlation analysis, 
significant correlations with a coefficient above 0.3 are 
displayed in the figures of this manuscript. We found 
associations between pro- and anti-carcinogenic bac-
teria, blood degradation products, and metabolites 
released in stress- and inflammatory processes, 
which will be further mentioned in the discussion 
section. All correlations per comparison are given in 
Supplementary Figure 12A-C.

Selection of biomarkers for best predictive analytics

For CRC samples versus controls, three proteins 
stood out: SIAE, HBB, and CDHR5. Their com-
bined AUC value was 0.98 (sensitivity 1, specificity 
0.98). Comparing adenoma samples to controls, 
three features were selected: GUSB, Sulfo-l-cystine 
and ethanolamine. The combined AUC resulted in 
0.95 (sensitivity 1.0, specificity 0.95). Similarly, for 
the comparison between CRC and adenoma sam-
ples, one AA, Sulfo-l-cystine, and one protein, HP, 
were selected and their combined AUC value was 
0.87 (sensitivity 0.92, specificity 0.80).

Comparison between selected biomarker panel and 
FIT test

As formal FIT values were not available for this 
dataset, the performance of the currently selected 
biomarker panel was compared with levels of 
hemoglobin as substitute, since this is the currently 
used protein in national population-based CRC 
screening programs. For this, we used all sub- 
units of hemoglobin available in this dataset 
(HBA1, HBB, HBD.HBE1, and HBG2.HBG1) and 
observed AUC values of 0.86, 0.81, 0.76, respec-
tively, for CRC versus controls, adenoma versus 
controls and CRC versus adenomas. As described 
above, the newly obtained biomarker panels out-
performed in accuracy compared to these hemo-
globin levels in discriminating both CRC and 
adenomas from controls, and in discriminating 
CRC from adenomas.

Discussion

In the present study, we comprehensively assessed 
the CRC- and adenoma-associated gut microbiota, 
proteome and AA composition in a case–control 
setting using an integrative systems biology 
approach. We demonstrated the complexity of 
their interplay in the development of CRC. In addi-
tion, we demonstrated that patients with CRC, ade-
nomas and controls can be discriminated with high 
accuracy, based on a selection of features extracted 
from these three omics platforms.

Specific taxa, such as Eubacterium hallii, 
Desulfovibrio, and Methanobrevibacter displayed 
positive correlations with degradation products of 
blood particles (HBB, HBA1, and C3) and with the 
AA proline, leucine, and ethanolamine when com-
paring CRC to controls. Both microbiota and pro-
tein outcomes are in line with the previous 
literature.8,9,11,26,27 Ethanolamine metabolism has 
been described to play a role in carcinogenesis 
and tumor progression and may serve as a useful 
biomarker for cancer screening.16,28 Interestingly, 
we found a positive correlation between ethanola-
mine and the upregulated Desulfovibrio, which is 
known to ferment choline into end-products 
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amongst which is ethanol.29 It may be hypothesized 
that upregulation of ethanolamine is due to the 
increased availability of ethanol in the presence of 
Desulfovibrio. Furthermore, ethanolamine is a main 
core membrane lipid of Methanobrevibacter taxa.30 

Upregulation of ethanolamine may possibly be due 
to the degradation of the upregulated 
Methanobrevibacter species, or, these species may 
be attracted to the colon in the presence of CRC as 
more ethanolamine is available in this environ-
ment. Desulfovibrio and Methanobrevibacter may 
both contribute to the CRC progression or presence 
as they are described to maintain colonic 
inflammation.20,21 Proline, an AA released during 
cell stress, is known to consistently contribute to 
tumor cell survival.22–25 Growth of Eubacteria 
abundance has been established on proline betaine, 
and attraction of Eubacteria to the intestines during 
the use of dietary proline supplements has been 
presented.13 Eubacterium hallii is a butyrate- 
producing Eubacteria thought to hold an anti- 
carcinogenic function as it detoxifies some of the 
most abundant dietary carcinogens into glycerol in 
the colon.31 It may be hypothesized that CRC- 
associated upregulation of proline contributes to 
the attraction of the anti-carcinogenic 
Eubacterium hallii. Comparing CRC to adenoma 
samples, some blood particles were still upregulated 
in CRC patients with CP, HP, and SERPINA3 dis-
playing the largest difference. Positive correlation 
with Tyzerrella was found, which belongs to the 
class of Clostridia. Specific bacteria in this class 
have previously been associated with bloody stool 
itself, with and without the presence of CRC.32,33 

Negative correlation of these blood degradation 
proteins with the AA histidine was found. 
Upregulated biosynthesis of histidine has pre-
viously been demonstrated in tissue of patients 
with colorectal neoplasia.34 Histidine metabolites 
have been presented to influence histamine levels, 
which play an important role in suppressing 
chronic intestinal inflammation and inflammation- 
associated colonic neoplasia. As a downregulation 
of histidine was observed in patients with adeno-
mas, it may be hypothesized that a shortage of this 
AA contributes to the adenoma-carcinoma 
sequence at an early stage of progression. 
Upregulated in adenoma samples was a cluster of 
the proteins FCGBP, SGSH, MUC2, and PRSS8 

when compared to adenomas, of which the latter 
two are known to play an important role in main-
taining a healthy colonic epithelium. Furthermore, 
FCGBP has previously displayed down-regulation 
especially in the normal-adenoma-carcinoma 
sequence.35

The protein, GUSB, was positively correlated to 
upregulated blood degradation proteins in ade-
noma patients. GUSB degrades sulfates and upre-
gulation in CRC tissues has previously been 
observed.36 This protein was positively correlated 
to sulfo-l-cysteine. The exact physiological pathway 
of sulfo-l-cysteine is still unknown. However, 
expression results in an overstimulation of gluta-
matergic receptors leading to calcium influx in 
cells.37 Excessive calcium influx has several conse-
quences, among which are cytotoxicity and tissue 
damage. As this protein was selected in the ade-
noma group and not in the colorectal cancer group 
when compared to controls, it may be hypothesized 
that this cytotoxicity plays an important role in the 
early adenoma-carcinoma sequence.

Selecting new biomarker panels in the current 
study led to a high accuracy for the detection of 
CRC and outperformed accuracy of hemoglobin in 
this study, which are currently used for FIT test (0.98 
versus 0.86, respectively). The selected SIAE and 
CDHR5 proteins are thought to play a role in main-
taining colonic epithelial function and, based on our 
study findings, adding these proteins to the panel 
may improve accuracy for CRC detection in the 
current CRC screening program. Differentiation 
between adenoma and control samples, as well as 
between adenoma and CRC samples, was based on 
a combination of proteins and AA which both out-
performed accuracy of hemoglobin levels in the cur-
rent study (0.95 versus 0.81 for adenoma vs controls, 
0.87 versus 0.76 for CRC vs adenoma). This under-
lines the potential to develop a noninvasive ade-
noma-specific screening test.

This study consisted of a prospective cohort 
in which cases and controls were matched on 
a variety of characteristics possibly influencing 
microbial composition and metabolomics, to 
prevent bias. In addition, all patients were clas-
sified according to endoscopic findings, which 
ensured the inclusion of control patients without 
any colonic abnormalities. This was the first 
study in which fecal protein, microbiota and 
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AA composition were combined and simulta-
neously integrated to select a biomarker panel 
for the best prediction of CRC and adenomas. 
This study had several limitations which need to 
be addressed. The first limitation is the relatively 
small number of inclusions, even though mea-
sures were taken to avoid type I errors (the use 
of 75% training and 25% test set, 10-fold cross 
validation, use of machine learning methods for 
feature selection as well as external validation of 
the largest dataset), false-negative results may 
have occurred. Though, by providing deep phe-
notyping of the samples we were still able to 
select accurate markers and to integrate them 
into one highly predictive biomarker panel. 
Second, we validated our currently established 
protein panel on an existing dataset and 
obtained similar outcomes. However, validation 
of the combined omics biomarker panels was 
not performed, as there was no data available 
from previous studies covering all three omics 
platforms. Therefore, our current findings may 
be an overestimation of the accuracy in the 
screening population. Still, the newly established 
panels performed better for the detection of 
CRC and adenomas than the HBA1 protein in 
this study, which is currently used for FIT test.

In this study, we have integrated three omics 
platforms covering the fecal proteome, microbiota, 
and AA composition in patients with CRC, adeno-
mas, and controls. Integration of data sets revealed 
markers associated with increased blood excretion, 
stress-, and inflammatory responses and pointed 
toward downregulation of epithelial integrity. We 
composed highly predictive biomarker panels con-
sisting of proteins and AA for both CRC and ade-
nomas detection, which outperformed accuracy of 
hemoglobin chains, currently used in population- 
based CRC screening. We were able to validate our 
findings on the fecal proteome in an online avail-
able cohort, in which participant selection, fecal 
measurements, and data processing was performed 
in a similar manner to our study. As most of our 
newly obtained biomarker panels were validated, 
we believe that they may improve screening for 
adenomas and CRC, subsequently leading to 
lower incidence and mortality of bowel cancer.

Patients and methods

Study design

Between February 2016 and November 2019, this 
multi-center prospective case–control study was per-
formed at the outpatient clinics of Gastroenterology 
and Hepatology departments in one tertiary referral 
hospital (Amsterdam UMC, location VUmc, 
Amsterdam) and two district hospitals (OLVG West, 
Amsterdam and Spaarne Gasthuis, Hoofddorp and 
Haarlem), all located in The Netherlands. Figure 1 
depicts the entire pipeline from participant inclusion 
to data analysis.

Study participants and sample collection

Detection of colorectal adenomas and cancer 
Consecutive patients aged ≥18 years with a sched-
uled colonoscopy at one of the three hospitals were 
asked to participate in this study, regardless of their 
endoscopy indication. Based on observations dur-
ing endoscopy, combined with histology reports for 
the cases where biopsies or polypectomies were 
performed, patients were divided into three sub-
groups: (a) CRC, histologically confirmed adeno-
carcinoma of the colon or rectum; (b) adenomas, 
including advanced adenoma, according to the 
European Society of Gastrointestinal Endoscopy 
(ESGE) guidelines (adenomas ≥1 cm in diameter, 
or with villous histology, or high-grade dysplasia), 
and including other benign adenomas defined as 
<1 cm, without villous histology or any grade of 
dysplasia lower than high-grade dysplasia;38 (c) 
controls characterized by no abnormalities 
observed during endoscopy (excluding hemor-
rhoids and/or diverticula), and where available, by 
no histopathological abnormalities identified in 
mucosal biopsies (7). Exclusion criteria were the 
presence of a known underlying gastrointestinal 
disease (e.g. inflammatory bowel disease, celiac dis-
ease), incomplete endoscopic assessment due to 
various reasons (e.g. hampered vision due to inade-
quate bowel cleansing, incomplete colonoscopy due 
to pain) and/or inability to collect or store sufficient 
fecal sample mass to perform analysis.
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Sample and data collection
All participants collected a fecal sample (Stuhlgefäß 
10 ml, Frickenhausen, Germany) prior to bowel 
preparation and subsequently stored the sample in 
their own freezer at home within one hour follow-
ing bowel movement. This sample was brought to 
the hospital, under cooled condition, on the day of 
their endoscopic assessment. Samples were stored 
at −24°C directly upon reception. Participants com-
pleted a questionnaire which included patients 
demographics.

Endoscopic and histologic evaluation
Endoscopies were either performed or supervised 
by trained gastroenterologists. Endoscopy reports 
and histologic outcome of mucosal biopsies and/or 
polypectomy were assessed using the electronic 
patient files. The reported localization of polyps 
and total number of removed adenomas in this 
study were obtained from the endoscopy reports. 
Histopathological reports were used as the standard 
reference for size, differentiation grade of the ade-
nomas (e.g. hyperplasia, dysplasia), villous histol-
ogy and type of CRC. In the case of mucosal 
biopsies, size was noted as 0.2 cm. In the case 
multiple adenomas were present, classification was 
based on the most advanced or largest lesion.

Multi-omics analysis

Sample preparation
For all the multi-omics analysis, frozen subsamples 
of 500 mg per participant were weighted and trans-
ferred into glass vials (20 ml headspace vial, 
Thames Restek, Saunderton, UK). Samples for 
amino acid analysis were transported on dry ice to 
the metabolic laboratory of the clinical chemistry 
department at the Amsterdam UMC, location 
VUmc. Samples for microbiota analysis were trans-
ported on dry ice to the Institute of Cancer and 
Genomic Sciences of the University of Birmingham 
(UK). For the proteomics analysis, samples were 
transported on dry ice to the OncoProteomics 
Laboratory of the department of medical oncology 
at Amsterdam UMC, location VUmc).

Amino acid analysis
By means of standard operating procedure, tar-
geted amino acid analysis was performed on fecal 
samples using a targeted High Performance Liquid 
Chromatography (HPLC) technique, specifically 
amino acid analysis (AAA).39 The 500 mg fecal 
subsample and 1000 µL distilled water were mixed 
by vortex for one minute to homogenize the sam-
ples. The samples were then recoded and investi-
gated by an independent laboratory researcher, 

Figure 1. Study pipelineWorkflow of the entire study. Patients were asked to participate prior to their scheduled colonoscopy and were 
divided into groups: (a) colorectal cancer (CRC), (b) adenomas, (c) controls. A total of 1039 participants collected a fecal sample of 
which 12 were CRC. In addition, 21 adenoma and 21 controls were matched on age, body-mass index and smoking habits of which one 
control was excluded due to insufficient sample mass. The proteome, microbial and amino acid profiles were measured on each fecal 
sample. Databases were normalized. Principal component analysis was used to investigate distribution. The least absolute shrinkage 
selection operator and elastic net models were used to select most important markers. These markers were then combined to obtain 
novel accurate panels for CRC and adenoma detection. Pearson correlation was used to integrate features into a network model.
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blinded for the diagnosis. To prevent potential bias 
by differences in fecal water content, samples were 
frozen at minus 30 degrees and subsequently 
freeze-dried for 24 hours (Christ Alpha 2–4). 
Depending on the fecal consistency of the sample, 

the residual after freeze drying was approximately 
30–70 mg. Consistently maintaining a feces-water 
ratio of 20 mg:1 mL this residual was mixed with 
distilled water. This mixture was again vigorously 
homogenized using vortex. For the analysis of the 

Figure 2. Machine learning pipeline for colorectal cancer and controls using microbial taxa The entire machine learning pipeline for the 
comparison between fecal samples of colorectal cancer and controls based on microbial taxa. part a and b depict the outcomes of the 
elastic net (EN) and least absolute shrinkage and selection operator (LASSO) feature selection methods, respectively. The light blue color in 
both methods indicates the first quartile of the ranked features across 100 iterations. The 5 selected markers are Methanobrevibacter, 
Bifidobacterium, Eubacterium hallii, Ruminococcaceae UCG-003 and Desulfovibrio. In part c, the relatedness of the selected markers is 
depicted using principal component analysis (PCA). Part d depicts the stability plot obtained with logistic regression models for the 
combined marker panel that has been selected. Corresponding area under the curve (AUC) is presented in blue.
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amino acid profile, 400 µL of the mixture was 
pipetted into a filter and centrifuged for 20 minutes 
at 14.000 g (Hettig Zentrifugen Mikro 2 R). 
Subsequently, the supernatant was mixed with an 
internal standard solution with a one-to-one ratio. 
This final mixture was centrifuged for 10 minutes 
and filtered (Whatman) into compatible containers 
for the final amino acid analyses (Biochrome 30). 
Amino acids were separated by ion-exchange chro-
matography and detected by UV-absorbance after 
post-column derivatization with ninhydrin.

Microbial 16S rRNA profiling
As part of the Qiagen AllPrep DNA/RNA Mini Kit, 
extracted paired DNA was used for 16S rRNA gene 
amplification and sequencing using the Earth 
Microbiome Project protocol.15 Using primers tar-
geting the 16s rRNA V4 region (515 F-806 R) in 
a one-step, single-indexed PCR approach, the 16s 
rRNA genes were amplified in technical duplicates. 
This was done in a batch, using the appropriate 
negative controls. Subsequently, paired-end 
sequencing (2x250bp) was performed on an 
Illumina MiSeq platform (Illumina, San Diego, 
USA) and processed via the pipeline Quantitative 
Insights Into Microbial Ecology 2 (QIIME2).40 

Taxonomy was assigned against the Silva-132-99% 
OTUs database.41 Relative abundances per study 
group were analyzed using linear discriminant 

analysis (LDA) effect size (LEfSe).42 Taxa with 
LDA>2 and a p-value below 0.05 were considered 
significant.

Human proteome
About 1 g of feces was weighed in at tube and was 
dissolved in PBS. The feces was subsequently cen-
trifuged at 16,000 x g for 15 min at 4°C. The super-
natant was collected, and centrifuged at 16,000 x g 
for 15 min at 4°C. The supernatant was concen-
trated to ~100 µl using a 3 kDa cutoff filter 
(Amicon, city, country). 50 µl was taken, and dis-
solved in LDS-sample buffer. LC-MS/MS-based 
proteomics analysis was performed as described 
previously.8 In brief, samples were loaded on gels 
(1.5mm × 10 wells). The gels were stained with 
Coomassie brilliant blue G-250 (Pierce, Rockford, 
IL) and washed and dehydrated once in 50 mM 
ammonium bicarbonate (ABC) and twice in 
50 mM ABC/50% acetonitrile (ACN). Cysteine 
bonds were reduced by incubation with 10 mM 
DTT/50 mM ABC at 56°C for 1 h and alkylated 
with 50 mM iodoacetamide/50 mM ABC at RT for 
45 minutes. Each sample was sliced in 1 band and 
further sliced up into approximately 1-mm cubes 
and incubated overnight at 22°C with 6.25 ng/mL 
trypsin (Promega, sequence grade V5111). Peptides 
were extracted once in 1% formic acid and twice in 
5% formic acid/50% ACN. Extracted peptides were 

Figure 3. Regulation of selected markers visualized in heatmaps per comparison The heatmaps for the comparisons of fecal samples 
from a: Colorectal cancer and controls; b: Adenomas and controls; c: Colorectal cancer and adenomas. The blue-red color scale of the 
heatmaps depicts the level of the selected protein, microbiota and amino acid markers, in which a blue color represents 
a downregulation and a red color represents an upregulation. Abbreviations: CRC, colorectal cancer.
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concentrated in a vacuum centrifuge (Eppendorf) 
to 50 µl. Peptides (5 µl) were separated on a 75 µm 
x 42 cm custom packed Reprosil C18 aqua column 
(1.9 µm, 120 Å) in a 90 min. gradient (2–32% 
Acetonitrile + 0.5% Acetic acid at 300 nl/min) 
using a U3000 RSLC high-pressure nanoLC 
(Dionex). Eluting peptides were measured on-line 
by a Q Exactive mass spectrometer (Thermo 
Fisher) operating in data-dependent acquisition 
mode. Peptides were ionized using a fused silica 
emitter (New Objective, Woburn MA) with 
a distal high voltage of +2 kV. Intact peptide ions 
were detected at a resolution of 35,000 (at m/z 200) 
and fragment ions at a resolution of 17,500 (at m/z 
200); the MS mass range was 350–1,400 Da. AGC 
Target settings for MS were 3E6 charges and for 
MS/MS 2E5 charges. Peptides were selected for 
Higher-energy dissociation (HCD) fragmentation 
at an underfill ratio of 1% and a quadrupole 

isolation window of 1.5 Da, peptides were frag-
mented at a normalized collision energy of 25. 
Raw files from MS analysis were processed 
using the MaxQuant (version 1.6.4.0). MS/MS 
spectra were searched against the Swissprot 
human database (download Feb. 2019, canoni-
cal and isoforms; 42417 entries) with 
a precursor tolerance of 4.5 ppm and an MS/ 
MS tolerance of 20 ppm. Peptides with mini-
mum of seven amino-acid length were consid-
ered with both the peptide and protein false 
discovery rate (FDR) set to 1%. Enzyme speci-
ficity was set to trypsin and up to two missed 
cleavage sites were allowed. Cysteine carbami-
domethylation (Cys) was searched as a fixed 
modification, whereas N-acetylation of proteins 
and oxidized methionine (Met) were searched 
as variable modifications (default MaxQuant 
settings).

Figure 4. Integration network for colorectal cancer versus controls colorectal cancer versus control network. a: differentially expressed 
features of proteins, bacterial taxa and amino acids data were selected using Least Absolute Shrinkage And Selection operator (LASSO) 
and Elastic Net (EN). The significant correlations among the features are calculated at p < .05. b: Features in the boxplots correspond to 
the following markers (from left to right, above to below): SERPINA1, HBB, HBA1, C3, CDHR5, SIAE, Methanobrevibacter (OTU1), 
Eubacterium hallii (OTU112) and Desulfovibrio (OTU200). B: Based on Pearson correlation, selected markers from these separate datasets 
were combined into one integration model. In this figure, solely correlations with a coefficient above 0.3 or below −0.3 have been 
depicted. Each type of marker is represented as node in different colors: Proteins as green and microbial taxa as red. The correlation 
values are used as edge in the nodes/features. Abbreviations: CRC, colorectal cancer.
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Statistical procedure

All the omics datasets sets of amino acid profiles, 
microbiota and proteomics data were normalized 
using auto scaling (mean-centered and divided by 
SD of each variable). The variation of each of the 
individual data sets was measured using principal 
component analysis (PCA).

Machine learning methods
First, we split our participants randomly into 
a training (75%) and test (255) dataset. Then, we 
used 10-fold cross validation to optimize the hyper-
parameters. Then, we applied two feature selection 
methods on the training set, Least Absolute 
Shrinkage and Selection operator (LASSO) and 
Elastic Net (EN).43,44 These are two forms of vari-
able selection methods and extension of the linear 
regression method. Both EN and LASSO are able to 
automatically select the best features linked with 
the outcome variable from the dataset-based pen-
alty applied and hence provide a sparse solution. 
Penalty parameters, λ (Range of λ:0 to 1) is opti-
mized using 10-fold cross validation. The stronger 
the penalty (close to 1), smaller number of variables 
are selected, while if the penalty is weaker (close 
to 0) higher numbers of variables are selected. In 
other words, the penalty function λ controls the 
trade-off between likelihood and penalty thereby 
influencing the variables to be selected. The differ-
ences between regularization methods lie with the 
different functions they penalize. For the case of 
LASSO, the penalty is applied to the sum of the 
absolute values of the regression coefficients (L1 
norm). Elastic Net, on the other hand, employs 
a mixed version of both L1 and L2 penalty (Ridge 
penalty). The L1 penalty encourages the sparse 
representation, whereas L2 stabilizes the solution. 
Similarly to LASSO, this method has an improved 
performance in the case that the number of features 
are significantly larger than the number of samples 
with high collinear groups of features, by allowing 
for grouped selection or de selection of correlated 
variables. We combined selected variables identi-
fied by both LASSO and EN and then applied 
a generalized linear model (GLM) to cater for the 
stability analysis of the selected features. The pro-
cess was repeated 100 times and the features were 
ranked according to their respective selection 

frequency associated with each run. We then 
selected the first quartile from the combined 
LASSO and EN selected features over 100 runs. 
These selected features were then further modeled 
using logistic regression and area under the curve 
(AUC) calculations. We produced two AUC distri-
butions. One is from random label sampling, i.e. 
randomizing the sample labels in each iteration and 
averaged over 100 iterations and displayed as 
a ‘random AUC’. The other AUC is based on the 
true bootstrapped samples and considered as true 
distributions of AUC.45,46

External validation cohort
No datasets were available online that included all 
three omics platforms used in this study. As our 
proteomics dataset consists of the highest number 
of features, we sought for external validation of this 
data and found an online available dataset in which 
fecal samples were processed, measured and ana-
lyzed in the same manner as to our methods.8

Network integration strategy
We applied a twostep selection approach over the 
different omics features. As described above, we 
used a machine learning pipeline to obtain best 
predictive markers per omics platform (amino 
acids, proteins, microbiota) for each of the compar-
isons (CRC vs. controls, adenoma vs. controls, CRC 
vs. adenoma). Selected markers from each data set 
were combined based on the comparisons and 
resulted in a combination of proteins, amino 
acids, or microbiota. A further selection was per-
formed using machine learning methods to identify 
the best predictive combinations. To link the fea-
tures, a Pearson correlation-based analysis on 
selected features (at p < .05) was performed and 
visualized using MATLAB. Each node represents 
the features (either OTUs, amino acids, or pro-
teins), whereas the Pearson correlation value repre-
sents the edge/interaction between the features. To 
investigate the consistency of our data, we addition-
ally assessed correlations using Spearman correla-
tion and Kendall correlation coefficient.
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