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Abstract
Joint models of longitudinal process and time-to-event data have recently gained 
attention, notably to provide individualized dynamic predictions. In the presence 
of competing risks, models published mostly involve cause-specific hazard func-
tions jointly estimated with a linear or generalized linear model. Here we propose 
to extend the modeling to full parametric joint estimation of a nonlinear mixed-
effects model and a subdistribution hazard model. We apply this approach on 
6046 patients admitted in intensive care unit (ICU) for sepsis with daily Sequential 
Organ Failure Assessment (SOFA) score measurements. The joint model is built 
on a randomly selected training set of two thirds of patients and links the cur-
rent predicted SOFA measurement to the instantaneous risks of ICU death and 
discharge from ICU, both adjusted on the patient age. Stochastic Approximation 
Expectation Maximization algorithm in Monolix is used for estimation. SOFA 
evolution is significantly associated with both risks: 0.37, 95% confidence interval 
(CI) = [0.35, 0.39] for the risk of death and −0.38, 95% CI = [−0.39, −0.36] for the 
risk of discharge. A simulation study, inspired from the real data, shows the good 
estimation properties of the parameters. We assess on the validation set the added 
value of modeling the longitudinal SOFA follow-up for the prediction of death 
compared with a model that includes only SOFA at baseline. Time-dependent 
receiver operating characteristic area under the curve and Brier scores show that 
when enough longitudinal individual information is available, joint modeling 
provides better predictions. The methodology can easily be applied to other clini-
cal applications because of the general form of the model.
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INTRODUCTION

A major ambition of precision medicine is to provide 
every patient with a personalized and adapted medical 
treatment. Individual dynamic predictions of a clinical 
outcome based on discrete longitudinal observations of 
a biomarker fully enter the scope of precision medicine. 
To get individual predictions that can be updated as more 
observations become available, a natural approach is to 
use the fit of a joint model combining (i) the longitudi-
nal model for the evolution of the biomarker and (ii) the 
time-to-event process describing the risk of the clinical 
outcome in consideration.

This joint modeling approach has recently gained at-
tention,1–4 mainly for two reasons. First, a much simpler 
strategy where biomarker observations are included as 
a time-varying covariate in a survival model imposes to 
make a hypothesis about the marker evolution between 
measurements, neglects measurement errors, and is 
known to be incorrect because of the endogenous nature 
of the covariate (i.e., whose existence is directly related 
to failure status).5,6 Second, one could consider fitting a 
first model for the biomarker evolution and then plugging 
the predicted evolution as a time-dependent covariate 
in the survival model, resulting in a so-called two-stage 

procedure. Unfortunately, the dropout process induced by 
the survival model, that is, the onset of an event that pre-
cludes any further biomarker measurements, generates 
missing data for the biomarker that can be not at random 
(missing not at random [MNAR]). This leads to possible 
bias in the estimations as described in a published study.7 
The joint modeling approach genuinely overcomes these 
two methodological issues. A recent publication8 proposes 
a workflow for a joint model of longitudinal and time-to-
event data.

Competing risks are frequent in biomedical applica-
tions, where patients are at risk of multiple and mutually 
exclusive events (e.g., death and relapse in oncology or 
death and discharge in a hospital ward). When dealing 
with competing events, two distinct risks can be modeled: 
the cause-specific hazard (CSH)9 and the subdistribution 
hazard (SDH).10 Although both approaches are essentially 
two different parametrizations of the same random pro-
cess, some authors argue that the CSH parameters are 
more suitable for etiologic studies and SDH parameters for 
risk prediction.11,12 We also emphasize that the hypothesis 
of proportionality of risks on CSH and SDH are generally 
not compatible.13 Although the cause-specific approach 
was the most often used in the context of joint model-
ing,3,14–16 we decided here to analyze the data assuming 

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Joint modeling under competing risk setting has been rarely described in the liter-
ature, especially when dealing with nonlinear mixed-effects models (NLMEMs). 
Most published models considered a linear biomarker evolution, possibly with 
spline functions to deal with nonlinearity. One considers an NLMEM model 
jointly estimated with a cause-specific multistate model using NONMEM 
software.
WHAT QUESTION DID THIS STUDY ADDRESS?
We propose an approach to model joint estimation of NLMEM and competing 
risks using a parametric subdistribution hazard model. We apply this new ap-
proach on a large data set of patients admitted in intensive care unit (ICU) for sep-
sis, with daily Sequential Organ Failure Assessment (SOFA) score assessments, 
to predict the risk of death with the competing risk being discharge from ICU.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
The Stochastic Approximation Expectation Maximization algorithm can be used 
to provide unbiased estimates of such model parameters. In the real case applica-
tion, we showed that the joint modeling improves the quality of predictions when 
sufficient SOFA follow-up is considered compared with a model that only uses 
baseline information.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
The methodology can be easily extended to other clinical applications of indi-
vidualized predictions, which is useful because a competing risk setting arises in 
many biomedical applications.
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that the hypothesis of proportional hazards holds on the 
SDHs.

The joint estimation with competing risks complicates 
the analysis, especially when the biomarker evolution is as-
sociated with the risk of both events. In the literature, lin-
ear17–19 and nonlinear1,4,20 joint models have been extensively 
described. However, when dealing with competing risks, 
linear mixed-effects submodels, possibly involving a combi-
nation of spline functions to deal with nonlinearity (using R-
INLA21 or JMbayes15) are predominant. To our knowledge, 
only one study22 considered a nonlinear mixed-effects model 
(NLMEM) jointly estimated with a cause-specific multistate 
model using NONMEM software (ICON plc).

A popular application when treating of joint models is 
to derive individual dynamic predictions of both marker 
evolution and associated risks of event. It consists of con-
sidering a so-called landmark time and predicting, for one 
individual, the future evolution of the marker and the cu-
mulative incidences of the competing events conditionally 
to the overall survival up to that landmark time.1,23 In that 
case, the competing risk framework imposes to carefully 
define the at-risk population for predictions, in particular 
when assessing their performances.

In this work, we propose to use Monolix software 
(Lixoft) to jointly estimate a nonlinear mixed-effects sub-
model for modeling the longitudinal trajectory of a bio-
marker and a parametric SDH submodel for modeling 
multiple risks of events. This approach is then applied to 
a subset of OUTCOMEREA database in patients admitted 
in intensive care unit (ICU) for sepsis, a life-threatening 
condition where severe organ dysfunctions are caused by 
the infection of the organism by a pathogen.24 We also 
propose a simulation study to assess performances of the 
estimation in terms of relative bias and relative root mean 
square error.

METHODS

General framework

Joint Model

Nonlinear mixed-effects models
Let N be the number of subjects and {yi1, … , yini} the vec-
tor of longitudinal observations of subject i (for i = 1, … , 
N). Observation yij denotes the jth measurement of patient 
i at time tij (for j = 0, … , ni). Let m be the known nonlinear 
function describing the structural model and g the known 
function describing the error model. The NLMEM writes 
as follows:

ψi = f(μ, ηi, Zi) denotes the individual parameters ex-
pressed as a function of population parameters, noted 
μ; individual random effects, noted ηi; and an optional 
vector of individual covariates Zi. The random effects 
are assumed to be normally distributed with mean 0 and 
variance–covariance matrix Ω, and independent of the re-
sidual Gaussian error, noted ϵij, of mean 0 and variance 1. 
σ denotes the vector of the error model parameters.

SDH models
Let the variable T describe the time-to-event distribution, C 
the noninformative censoring time, and K denotes the event 
type that occurs. For the sake of simplicity, we consider only 
two events k ∈ {1, 2}. We set 𝛿 = 1T<C × K as the event indi-
cator, thus δ = K in case of failure and δ = 0 in case of cen-
soring. The couple 

(

T̃ , �
)

 with T̃ =min (T ,C) is observed for 
each individual. The cumulative incidence ℙ(T < t,K = k) 
on event k is modeled with an SDH λk associated with 
the variable Tk defined as: Tk = T × 1K=k + ∞ × 1K≠k. To 
model T1 and T2 and derive cumulative incidences, we in-
troduce two parametric SDH functions �1 and �2.

Likelihood and estimation
Longitudinal and survival parts are supposed to be linked 
as described in the following equation:

where h1 and h2 are the baseline hazard functions for the 
risk of event 1 and the risk of event 2, and which depend 
on vectors of parameters χ1 and χ2, respectively. �1 and 
�2 are the coefficients that link the current predicted 
value of the marker with the instantaneous risks of 
event 1 and event 2, respectively. For the sake of clarity, 
we only considered a linear link between the longitudi-
nal process and the subdistribution risks. Depending on 
the modeled data, more complex link functions could 
also be considered (e.g., involving splines or integra-
tion). Wi is the optional vector of covariates with coef-
ficient β1 or β2.

Both longitudinal and survival submodels are linked 
by shared random effects, and the joint likelihood writes:

(1)yij =m
(

tij,� i

)

+ g
[

m
(

tij,� i

)

, �
]

�ij

(2)
yij=m

(
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, �
]

ϵij
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(

t,�1
)

exp
[
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where � =
{

�,Ω, �,�1,�2, �1, �2, �1, �2
}

 is the vector of  
parameters to estimate. p(yij|ηi, Zi; θ) is the density func-
tion of longitudinal process, p(ηi; θ) the density function 
of random effects, and p(t, δ|ηi; θ) is the density function 
of the survival process given by:

where, for k = {1, 2}, Fki
(

t|� i,Wi; �
)

= 1 − exp
(

− ∫ t0 �ki(u|� i,Wi; �
)

du
)

 
is the individual cumulative incidence function for event 
k at time t.

The population parameter θ can be estimated by the maxi-
mization of the likelihood with the Stochastic Approximation 
Expectation Maximization (SAEM) algorithm implemented 
in Monolix (http://lixoft.com). This algorithm has been shown 
to be powerful, having good theoretical properties and accu-
rately estimating parameters.25 Variance–covariance matrix 
Σ of the population parameters is estimated with a stochastic 
approximation.26 We note �̂ and Σ̂ their estimates.

Individual dynamic predictions

A popular application of joint models is to provide indi-
vidual dynamic predictions for the biomarker evolution 
and for survival outcome(s). For a new patient i who 
has longitudinal observations until a landmark time l, 
Yi(l) =

{

yij; 0 ≤ tij ≤ l
}

, we aim at predicting his future 
marker value at time l + t, denoted mi(l + t|l), and his  
event 1 survival probability si(l + t|l). The time t is called 
horizon time. Because dynamic predictions are applied to 
patients who are event free before time l, we focus on the 
conditional probability of not experiencing the event of in-
terest expressed as:

Thus, for each landmark time l, the marker measurements 
of patient i up to time l and the information provided by 
the population parameters are used to compute the a pos-
teriori distribution of the individual parameters and infer 
the desired quantities. But as the a posteriori distribution 
has no closed form, Markov chain simulation is needed. 
In particular, some authors27 compared different software 
and computing methods to draw a posteriori values and 
showed that Monolix software and its Metropolis-Hastings 
(MH) algorithm are able to provide those quantities with 
good properties. Then, the Monte Carlo process described 
in Rizopoulos23 can be used to derive R samples of individ-
ual parameters. For a repetition r ∈ [1, R], 

1.	 draw �(r) ∼(

�̂, Σ̂
)

 to take into account estimation 
uncertainty on population parameters

2.	 draw a realization of �(r)
i

 on the a posteriori distri-
bution: 𝜂

(r)
i

∼
{

𝜂i |Ti > l,Yi(l),Zi,Wi, 𝜃
(r)
}

 and infer 

�
(r)
i

= f
(

�(r), �(r)
i
,Zi

)

3.	 compute m(r)
i

(

l + t|� (r)
i

)

 and s(r)
i

(

l+ t|� (r)
i

)

=

F (r)
1i

(∞)+F
(r)
2i
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(r)
1i
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(r)
2i

(l)

F (r)
1i
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2i
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2i

(l)
 with F (r)
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(
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i
,Wi; �

(r)
)

.

Estimates of mi(l + t|l) and πi(l + t|l) are derived with

Prediction intervals can be derived by reporting the 
corresponding percentiles.

Performances are assessed in terms of discrimination 
with the time-dependent receiver operating characteristic 
area under the curve (ROC AUC)28 and calibration with 
the time-dependent Brier score.28 Details on the defini-
tion and computation of those indicators can be found in 
Supplementary Information S1.

Application framework

Data and objectives

Description of the data
The data are a subset of the OUTCOMEREA database 
composed of patients admitted in the ICU in 30 French 
centers between 1997 and 2015. Ethical and legal as-
pects of the database are described in Supplementary 
Information  S2. In this application, we focus on pa-
tients included for sepsis or septic shock aged older than 
18 years. Exclusion criteria were readmissions, admis-
sions for palliative care, brain deaths, or early decisions 
not to forego life-sustaining therapy. The patient set was 
randomly divided into two subsets to build a training data 
set composed of two thirds of the data and a validation 
data set composed of the remaining one third. Daily as-
sessment of the sepsis-related Sequential Organ Failure 
Assessment (SOFA) score was available for each patient 
stay. The SOFA score quantifies the number and the se-
verity of organ dysfunctions between 0 (no organ dys-
function) and 24 (very severe organ dysfunctions).29–31 
This score is measured daily from ICU admission to dis-
charge from ICU, but not after. ICU duration stay; status 
(alive/dead) at the end of the stay; and baseline covari-
ates such as age, sex, and presence of comorbidities (e.g., 
diabetes, chronic heart failure, chronic kidney diseases, 

(4)

p
(
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)

=
[

�1i
(
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)

× (1−F1i(t|� i,Wi; �))
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×
[
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(
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×
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(

t|� i,Wi; �
)

−F2i(t|� i,Wi; �)
)1�=0

(5)si(l + t| l) = ℙ
(

T1i > l + t|Ti > l,Yi(l),Zi,Wi, 𝜃
)

(6)
m̂i(l+ t| l)=median

{

m(r)
i

(

l+ t|� (r)
i

)

, r=1, … ,R
}

ŝi(l+ t| l)=median
{

s(r)
i

(

l+ t|� (r)
i

)

, r=1, … ,R
}

http://lixoft.com
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liver cirrhosis, chronic obstructive pulmonary diseases 
and immunocompromised status) were also available.

Objectives
The objective is to estimate jointly the individual SOFA score 
evolutions and the associated risk of ICU death and discharge 
within 30 days after ICU admission. It is worth noting that 
death and discharge are competing events because the oc-
currence of discharge precludes the possibility to observe the 
ICU death. It is also reasonable to presume that discharged 
patients do not have the same risk of death than other patients 
still hospitalized in the ICU. In this application, SOFA score 
evolution is modeled by a parametric NLMEM, death and 
discharge are modeled by a parametric competing risk sub-
distribution model with ICU death as the event of interest and 
discharge from ICU as the competing event. The added value 
of modeling the longitudinal evolution of the SOFA score is 
assessed by comparing prediction performances of a baseline 
model (model that only includes baseline SOFA measure-
ment and other baseline covariates) versus the joint model.

Baseline and joint models

Baseline model
SDHs are parametric functions with a constant baseline 
hazard noted h1 for the risk of death and h2 for the risk 
of discharge. Both instantaneous risks include the base-
line SOFA measurement. Covariate selection for age, sex, 
and number of comorbidities is based on Bayesian infor-
mation criterion (BIC). All combinations are tested, and 
the one that minimizes the BIC is added in the baseline 
model. Briefly, the model writes:

Joint model
To allow monotonous or nonmonotonous evolution (e.g., 
initial increase of SOFA followed by a decrease or vice 
versa), the structural model m is defined as:

where ϕ is a capping function used to enforce the predicted 
SOFA score to remain between 0 and 24:

and we have:

The parameter tlag stands for the delay between symp-
tom onset and the first SOFA evaluation. Details of co-
efficient interpretations can be found in Supplementary 
Information S3.

We used a combined error based on a model selec-
tion procedure using the BIC criteria. Thus, g[m(tij, ψi), 
σ]  =  σa + σb × m(tij, ψi), with σ  =  {σa, σb}. Details refer-
ring to error model selection are presented in Table S1 
of the Supplementary Materials. In our joint model, the 
survival part includes baseline covariate(s) to model the 
dependence between prognosis and a patient's charac-
teristics. In accordance with physicians, we made the 
hypothesis that the covariates only affect survival, for 
a given SOFA trajectory, and not the SOFA process it-
self. Therefore, it was not tested in the longitudinal sub-
model. Of note, exploring and testing various covariates 
on each of the five parameters of the structural model 
would require a careful handling of multiple testing 
issues.

SDHs are the same parametric functions as presented 
in the baseline model but including a coefficient linking 
the longitudinal process and the respective instantaneous 
risk.

We used Monolix 2018R2 with a maximum of 2000 
iterations in the exploratory phase and in the stochas-
tic approximation for both baseline and joint model 
estimations.

Details and help for readers on practical model 
implementation can be found in Supplementary 
Information S4.

Individual dynamic predictions

For both baseline and joint modeling, four landmark 
times are considered at 0, 3, 6, and 9 days after patient 
admission. Multiple horizon times are also considered, 
from landmark time plus 1 day to 30 days after admission.

To assess the performances of the models and according 
to the methods described, at a landmark time l and an hori-
zon time t, a case is a patient who died in the ICU between 
l and l + t, and a control is a patient still hospitalized in the 
ICU or who was discharged between l and l + t. We note that, 

(7)
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in our context, no censoring occurs between landmark and 
horizon times, and there is only an administrative censor-
ing at 30 days. Thus, estimators of the AUC and Brier score 
in the absence of censoring presented in Supplementary 
Information S1 are used (Equations 2 and 4).

For the settings of the MH algorithm, we set one chain 
with three proposal functions that are used in turn: the 
population distribution, a unidimensional Gaussian ran-
dom walk, or a multidimensional Gaussian random walk. 
For the random walks, the variance of the Gaussian is au-
tomatically adapted to reach an optimal acceptance ratio 
of 0.3. The algorithm stops when, for all parameters, the 
average conditional means and standard deviations of the 
last 50 iterations do not deviate by more than 5%.

Evaluation of the estimation performances 
by simulation

We conducted a simulation study to confirm that the 
SAEM algorithm implemented on Monolix 2018R2 pro-
vides good estimation performances of such a joint model. 
We assessed the estimation accuracy in terms of relative 
bias and evaluated the incertitude of estimation using rel-
ative root mean square errors (RRMSEs).

Simulation setting

We simulated M = 200 data sets of N = 1000 patients as-
suming that SOFA score measurements were available 
every day for at most 30 days after the ICU admission. 
SOFA measurements were reported for each patient 
until time of ICU death or ICU discharge or also end 
of the first 30 days of the stay, with no other censoring 
process.

The longitudinal data were simulated according to the 
model proposed in the application methods. Thus, this 
model is used:

with

For the survival part, we considered here two compet-
ing events and one categorical covariate W with three 

modalities. We adapted methods already described32,33 to 
generate failure time data. The subdistribution for the event 
of interest is given by:

with λ(s) = exp(α1 × m(ψi, tij) + β1 × Wi). Parameters p1 and 
g1 are used to control the number of event 1 at infinite 
time and the speed of onset. The subdistribution for the 
competing risk was then obtained using an exponential 
distribution with rate t

b
, where b controls the speed of 

event 2 onset:

Estimation setting

For each data set m ∈ {1, … ,M}, we estimated the fol-
lowing joint model:

Estimation was performed by the maximization of the 
likelihood using the SAEM algorithm implemented on 
Monolix 2018 software with the same settings as explained 
in the application.

Evaluation criteria

We aimed to assess the performances of the estimation 
on a subset of the vector of parameters, the longitudinal 
parameters, and the survival parameters for the event 
of interest (death). We defined � =

{

�,�, �1, �1
}

 and �̂ 
its estimate. The model specification for data simulation 
does not allow α2 and β2 to be easily identified, which 
is why the estimation evaluation was based on vector 
�̂. We evaluated the relative bias and the RRMSE of �̂ 
defined as:
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We also provided violin plots of relative estimation er-
rors (REE) defined for each data set m ∈ {1, … ,M} as:

RESULTS

Data description

A total of 6046 patients were considered, with 4050 patients 
included in the training set and 1996 in the validation set. 
The data flowchart is detailed in Figure 1.

Most of the patients were men (62%), and the median 
age at admission was 65.1 years ([Q1–Q3]: [52.7–76.2]). 
About half of the patients had no comorbidity at admis-
sion, one third had one, and one third had more than one. 
Median admission SOFA was 6 and 30 days after admis-
sion, about 19% of the patients died, whereas 72% were 
discharged. Table 1 summarizes the main patient charac-
teristics at admission in both data sets.

Figure 2a shows the longitudinal SOFA trajectories of 
100 random patients of the training data set. Figure  2b 
shows the cumulative incidences of both competing 
events (death and discharge) on the training set, truncated 
at day 30.

Baseline model fit

The baseline model includes the baseline SOFA 
measurement and the patient age in three categories 
with cutoffs at 60 and 75 years (see Table  S2 of the 
Supplementary Materials). The baseline SOFA already 
has a strong effect on the instantaneous risks of death and 
discharge: at a constant age category, a patient with a one-
point higher baseline SOFA has his instantaneous risk of 
death multiplied by 1.22 with a 95% confidence interval 

(CI) of [1.20, 1.24] and his instantaneous risk of discharge 
divided by 1.13 with a 95% CI of [1.12, 1.14]. Age also 
has an effect on both risks: for the same baseline SOFA, 
patients aged [60, 75[years have an instantaneous risk of 
death multiplied by 1.40 (with 95% CI: [1.18, 1.68]), and 
patients aged 75 years or older have their risk multiplied 
by 1.84 (with 95% CI: [1.55, 2.19]), compared with patients 
aged <60 years. For the risk of discharge from ICU, the 
effect is more moderate: patients aged [60, 75[years have 
an instantaneous risk of discharge divided by 1.23 (with 
95% CI: [1.14, 1.35]), and patients aged 75 years or older 
have their risk divided by 1.30 (with 95% CI: [1.19, 1.43]). 
All parameter estimates can be found in Table S3 of the 
Supplementary Materials.

Joint model fit

The parameter estimates of the joint model can be found 
in Table 2.

The p values from the Wald test are reported for the link 
coefficients and those associated with covariate effects. As 
expected, we showed a significant association between 
an increase of the SOFA score and a higher risk of death 
(α1 = 0.371 with 95% CI: [0.356, 0.386]) and a lower risk 
of discharge (α2 = −0.375 with 95% CI: [−0.390, −0.360]). 
We also reported the significant effect of age class on both 
death and discharge risk. Age has a more important im-
pact on the risk of death, similar to the baseline model: 
for the same SOFA evolution, patients aged [60, 75[years 
have an instantaneous risk of death multiplied by 1.42 
(with 95% CI: [1.20, 1.68]), and patients aged 75 years or 
older have their risk multiplied by 2.15 (with 95% CI: [1.70, 
2.72]), compared with the reference class age (<60 years).

Some diagnostic plots and indicators that assessed 
the quality of the longitudinal model and the joint 
model, respectively, can be found in Supplementary 
Information S5.

(14)REE =
�̂m − �

�
× 100

F I G U R E  1   Data flowchart. A total 
of 6046 patients were included in the 
analysis, with 4050 in the training set and 
1996 in the validation set.
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Dynamic predictions

Figure 3 illustrates dynamic predictions for two patients 
(a and b) of the validation set using the joint model. It 

shows the observed and predicted SOFA evolution on the 
top and predicted individual survival probability on the 
bottom, depending on landmark time. Predicted SOFA 
evolution and predicted survival are updated at each land-
mark time. Patient a of the figure shows an initial clinical 
deterioration, followed by an improvement of his clini-
cal state. The more landmark time increases, better is his 
predicted survival. The SOFA score of Patient b monoto-
nously increases over time, resulting in his predicted sur-
vival at 30 days getting worse as the landmark increases. 
He finally died on Day 26.

To visualize the covariate effect on predictions, in 
Supplementary Information  S6 we added the median 
[Q1–Q3] survival predictions in the validation population 
for the three age categories and for baseline SOFA splits in 
three categories for various landmark times.

To assess the predictive performances of the baseline 
and joint models, we used the 1996 patients of the val-
idation set. Time-dependent ROC AUC and the Brier 
score including 95% CIs within the joint model are pre-
sented in Figure 4. The ones for the baseline model are 
presented in Figure S1 of the Supplementary Materials. 
The joint modeling approach allows to improve the qual-
ity of prediction when the follow-up is sufficient. For 
instance, when considering landmark time = 6 and hori-
zon time  =  30, AUC  =  0.63 (95% CI: [0.58, 0.68]) and 
AUC  =  0.77 (95% CI: [0.74, 0.80]) for the baseline and 
the joint model, respectively. However, when consider-
ing an early landmark where only one SOFA observation 
is available, the joint model does not perform better than 
the baseline model (for landmark time  =  0 and hori-
zon time =  30, AUC =  0.73, 95% CI =  [0.70, 0.77] and 
AUC = 0.69 with 95% CI = [0.66, 0.72] for the baseline 
and joint models, respectively).

Results of the simulation study

Values of parameters (except p1, g1 and b) used to sim-
ulate data were based on estimates obtained by maxi-
mization of the likelihood using this model on the 
OUTCOMEREA database presented previously. The de-
tails of the values can be found in Table 3. p1, g1 were set 
to 0.01, 0.05, respectively, and b was fixed to 6 to obtain 
about 20% Cause 1 failures, 78% Cause 2 failures, and 
2% administrative censoring at time 30, similar to the 
application.

Table  3 provides the relative biases and RRMSEs ex-
pressed in percentage. Relative biases are low for all pa-
rameters, which reflects good accuracy. The parameter 
that links the longitudinal and the survival process (α1) 
was of particular interest. The simulation showed that it is 

T A B L E  1   Main patient characteristics at intensive care unit 
admission

Variable
Training set Validation set
(n = 4050) (n = 1996)

Age, years, n (%)
<60 1565 (39) 782 (39)
[60, 75] 1333 (33) 682 (34)
≥75 1152 (28) 532 (27)

Sex, n (%)
Male 2491 (61) 1272 (64)
Female 1559 (39) 726 (36)

Comorbidities, n (%)
0 1988 (49) 985 (49)
1 1340 (33) 682 (34)
>1 722 (18) 329 (17)

Admission SOFA, median 
[Q1–Q3]

6 [4–9] 6 [4–9]

30-day mortality, n (%) 781 (19) 362 (18)
30-day discharge, n (%) 2921 (72) 1426 (71)

Abbreviation: SOFA, Sequential Organ Failure Assessment.

F I G U R E  2   Exploratory plots of longitudinal and competing 
risk intensive care unit (ICU) data of the training set: (a) the 
Sequential Organ Failure Assessment (SOFA) score evolution of 
100 random patients and (b) the cumulative incidences of ICU 
death and discharge from ICU (no censoring occurred during the 
follow-up). CIF, cumulative incidence function.
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accurately estimated with a relative bias of about 2% and 
also precisely estimated with a RRMSE about 9%. Overall, 
the parameters are precisely estimated except parameters 
associated with the baseline covariate, which have high 
RRMSEs.

Violin plots can be found in Figure  S2A of the 
Supplementary Materials and provide the same 
conclusion.

DISCUSSION

In many biomedical applications, the patients are not only 
at risk of a single event, but of several. Joint modeling 

under competing risks is seldom explored, particularly in 
a full parametric setting.

In our application, a significant association was 
found between the longitudinal evolution of the SOFA 
and each outcome (death and discharge): an increase of 
the SOFA score is associated with a higher risk of death 
and a lower risk of discharge. In the joint model, higher 
uncertainty was found in the estimates of the baseline 
age effect when adjusted on the SOFA evolution. Of 
note, simulations according to the baseline model (see 
Figure  S2B of the Supplementary Materials), which 
is adjusted on the baseline SOFA value, also reported 
the same trend: high uncertainty in the estimates of 
the baseline age effect, which highlights the difficulty 

T A B L E  2   Joint model parameter 
estimation

Parameter Value SE RSE (%) p Valuea

Longitudinal submodel

Fixed effects

�0 1.69 0.0547 3.23

�1 −0.262 0.0051 1.93

�2 −1.13 0.0188 1.66

�a 10.4 0.135 1.29

�tlag −1.48 0.0286 1.94

Random effects

�0 2.56 0.0424 1.66

�1 0.194 0.00411 2.12

�2 0.494 0.013 2.63

�a 0.459 0.00962 2.10

�tlag
0.669 0.02 3.00

Error parameters

�a 0.887 0.0123 1.39

�b 0.127 0.00265 2.08

Survival submodel

Death

h1 0.000476 6.52 × 10−5 13.7

�1 0.371 0.00788 2.12 <10−4

�1,Age1(ref) 0

�1,Age2 0.348 0.0876 25.1 <10−4

�1,Age3 0.766 0.119 15.6 <10−4

Discharge

h2 0.325 0.00901 2.77

�2 −0.375 0.00768 2.05 <10−4

�2,Age1(ref) 0

�2,Age2 −0.195 0.0187 9.58 <10−4

�2,Age3 −0.225 0.0302 13.4 <10−4

Abbreviation: RSE, relative standard error.
aWald test p values are reported for link and covariate coefficients.
The parameters are those from (8).
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F I G U R E  3   Dynamic predictions for two random patients (a and b) of the validation data set. For each patient, predictions of the 
Sequential Organ Failure Assessment (SOFA) evolution are on the top, and predictions of the risk of death are on the bottom. Patient a, who 
is older than 75 years, was discharged 28 days after his intensive care unit admission, whereas Patient b, also older than 75 years, died 26 days 
after his admission.
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in estimating age effect when the SOFA score is in the 
model.

For landmark time 3 and more, as sufficient informa-
tion becomes available, individual predictions from the 
joint model are significantly improved and outperform 
those from the baseline model. At landmark time 0, no 
added value of the joint model was shown as there is 
no longitudinal information available. Individual pre-
dictions at any landmark time, using all available SOFA 
scores at that time, can be very useful for clinicians in 
routine medical practice as it may help clinical decisions 
such as therapeutic escalation or limitation, as indeed 
those decisions arise during the follow-up and not at 
admission.

The proposed joint model could probably be improved 
on some points. First, we could test for the covariate effects 
in the parameters of the longitudinal submodel. Second, 
we did not assess graphically the quality of the survival 
model fit because usual diagnostic plots are, to date, un-
available for this kind of model. This is because these 
plots rely on simulations, which are currently not avail-
able for SDH formulation and would require additional 

developments that are beyond the scope of this article. 
Finally, we considered the subdistribution approach to 
treat the competing risk setting, and sensitivity analyses 
can be done with a cause-specific approach.

Our approach with joint modeling is justified when 
missing data for the longitudinal biomarker are MNAR. 
However, depending of the richness of the design, miss-
ing data can be considered missing at random (MAR), 
and some authors34 showed that treating MAR data with 
a joint modeling approach can lead to bias in estimates.

The simulation study showed that our estimation pro-
cedure has good statistical properties with no major bias 
in longitudinal parameters and in the coefficient that 
links the longitudinal process with the survival process. 
However, we cannot evaluate the bias on event 2 because 
of the model specification in the simulation process. 
Further developments are thus needed to fully investi-
gate the quality of estimation on both events as well as 
the type I error and power of statistical tests involving the 
coefficients.

In conclusion, we showed in this work that Monolix 
software and its SAEM algorithm can be used for joint 
modeling with competing events and provide accurate pa-
rameter estimates. We also presented a real-case applica-
tion with dynamic predictions. The methodology is easy to 
reproduce and can be easily extended to other clinical ap-
plications because of the general form of the model. The 
longitudinal model can also be extended to ordinary dif-
ferential equations in a more pharmacometric application.
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T A B L E  3   Estimated relative bias and root mean square errors 
based on 200 simulations

Parameter
True 
value

Relative 
bias (%)

RRMSE 
(%)

Longitudinal part

Fixed effects

�0 2 2 11

�1 −0.25 5 10

�2 −1 4 8

�a 10 −0.06 5

�tlag −1 6 12

Random effects

�0 3 6 9

�1 0.2 15 18

�2 0.5 −0.5 13

�a 0.5 −14 16

�tlag
0.8 6 11

Error parameters

�a 0.9 −0.3 2

�b 0.1 3 5

Survival part

�1 0.35 2 9

�1,Age2 0.34 −12 85

�1,Age3 0.76 7 39

Abbreviation: RRMSE, relative root mean square error.
The parameters are those from (12).
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