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Abstract. The 1990s saw the rapid reemergence of malaria in Amazonia, where it remains an important public health
priority in South America. The Amazonian International Center of Excellence in Malaria Research (ICEMR) was designed
to take a multidisciplinary approach toward identifying novel malaria control and elimination strategies. Based on geo-
graphically and epidemiologically distinct sites in the Northeastern Peruvian and Western Brazilian Amazon regions, syn-
ergistic projects integrate malaria epidemiology, vector biology, and immunology. The Amazonian ICEMR’s overarching
goal is to understand how human behavior and other sociodemographic features of human reservoirs of transmission—
predominantly asymptomatically parasitemic people—interact with the major Amazonian malaria vector, Nyssorhynchus
(formerly Anopheles) darlingi, and with human immune responses to maintain malaria resilience and continued endemic-
ity in a hypoendemic setting. Here, we will review Amazonian ICEMR’s achievements on the synergies among malaria
epidemiology, Plasmodium-vector interactions, and immune response, and how those provide a roadmap for further
research, and, most importantly, point toward how to achieve malaria control and elimination in the Americas.

INTRODUCTION

The vast majority of malaria cases currently reported in the
Americas occur in the Amazon Basin, which includes nine
countries of South America.1 Between 2000 and 2020,
malaria cases and deaths declined by 58% and 56%,
respectively, despite setbacks from a drastic increase in
malaria in Venezuela (fewer than 36,000 cases in 2000 and
more than 467,000 in 2019).1 Although Amazonian malaria
cases and associated deaths are a very small portion of the
worldwide toll, the social and economic burden is high, Latin
American Ministries of Health place a high priority on malaria
control and elimination, and the region has unique chal-
lenges for control and elimination that require new knowl-
edge and innovative actions.
Deforestation in the Amazon region is directly related to

malaria transmission, as shown by investigators of the Ama-
zonian International Center of Excellence in Malaria
Research (ICEMR) and others.2–9 Deforestation and other
destruction of natural habitat in the Amazon region have
increased in the past 5 years, mostly due to illegal exploita-
tion of natural resources.10–14 In addition, illegal gold mining
activities have contributed to further forest removal and
malaria transmission.10–14 Climatic conditions, also affected
by the reduction of the forest cover, have been changing
and the number of extreme weather events has intensified,

with more than a dozen in the past 25 years—for example,
climate patterns in the Pacific Ocean (El Ni~no and La Ni~na)
and extreme droughts or rains not associated with the
Pacific. Human mobility related to mining, other resource
exploitation, land settlement, and a network of connections
among cities and agricultural areas is intense and contrib-
utes to the circulation of parasites with ever-changing
dynamic microgeographic introductions and reintroductions.
Occupation- and other social factor-related mobility is a par-
ticularly important mechanism of maintaining endemic
malaria in Amazonia, especially given the high prevalence of
asymptomatic malaria infections in the region. All of these
factors pose a major challenge for malaria surveillance, diag-
nosis, control, elimination, and prevention from reintroduc-
tion in areas that have achieved elimination. Several areas
are of emerging concern driven by cross-border mobility:
French Guiana, Suriname, and Brazil, fueled in large part by
gold mining,15 and Brazil, Guyana, and Venezuela, fueled by
gold mining and exacerbated by the continued intense
movement of Venezuelans fleeing the country because
of political instability.16 Newly recognized outdoor-biting
behavior by vectors contributes to significant proportions of
outdoor malaria transmission, evading standard malaria con-
trol measures, such as insecticide-impregnated bednets and
indoor residual spraying, leading to residual foci—resilient
malaria that requires specific control measures.17

With regard to elimination, Brazil launched an elimination
plan in 2015 focused on Plasmodium falciparum. Recently, it
launched a national elimination plan, with four phases: 1)
preparation phase, with the goal to reduce the incidence to
,68,000 cases by 2025; 2) consolidation phase, with the
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goal to achieve zero deaths due to malaria, and to eliminate
P. falciparum transmission by 2030; 3) elimination phase,
with the goal of keeping zero deaths, zero P. falciparum
cases, and to eliminate malaria transmission by 2035; and 4)
prevention of reintroduction phase, with the goal to maintain
the country free of malaria. As for Peru, in 2017, the govern-
ment put in place a formal malaria elimination plan
(2017–2021), the Malaria Zero Program (MZP), that takes a
community-level approach to control malaria with the goal of
elimination by 2030 with three phases: 1) the control phase,
testing and treating, which focuses on the elimination of
symptomatic infections and has a duration of 3 years; 2) a
elimination phase, the goal of which is to eliminate malaria
parasites from individuals at a regional level by targeting
asymptomatic and low parasite density infections; and 3) a
final elimination phase, to identify and ameliorate residual
malaria transmission foci, including reintroductions.18 The
MZP was successful in the first (control) phase prioritized in
the high endemicity region of Loreto decreasing the number
of cases by 74.5% from 2017 to 2021. A second malaria
elimination plan, which describes in detail the elimination
phase involving not only the Loreto region but also the whole
country, was published in 2022.19

Malaria transmission in Amazonia, as elsewhere, takes
place in a dynamic, complex, and constantly evolving con-
text, where malaria remains resilient despite standard
control measures. In that context, and to shed light on the
biological and sociodemographic challenges to malaria
elimination, the ICEMR network in Peru and Brazil was
established.

ORIGINS AND GOALS OF THE AMAZONIAN
INTERNATIONAL CENTER OF EXCELLENCE IN

MALARIA RESEARCH

Field-based fundamental malaria research in Peru became
active with US National Institute of Allergy and Infectious
Diseases (NIAID) funding in the mid-2000s and focused on
identifying human reservoirs of malaria transmission. The
high prevalence of asymptomatic Plasmodium parasitemia
(as high as 50%) became an organizing principle for malaria
field research in Amazonia, where it was recognized that
understanding the combined sociodemographic and immu-
nological factors in maintaining endemic, resilient malaria
was key to developing new approaches to future malaria
control.20 The first high impact reports from Rondônia, Bra-
zil, demonstrated that asymptomatic Plasmodium infections
were detected in 20–50% of the study participants by
molecular methods and were four to five times more fre-
quent than full-blown clinical malaria;21–23 similar findings
were reported from Iquitos, Peru.24 Amazonian ICEMR stud-
ies carried out in the same settings in 2015 confirmed these
earlier findings: quantitative PCR demonstrated a geometric
mean Plasmodium vivax parasitemia of 90 parasites/mL,
(95% CI [42–190]) with 50% of subjects having fewer than
10 parasites/mL.25

These observations provided the major rationale to for-
mally create a field-based malaria research platform in the
Peruvian Amazon. Such a platform has been instrumental to
others, such as the pivotal clinical trials of tafenoquine.26–29

The Iquitos region of the Loreto Department of Peru has had
a long-standing NIAID-supported malaria research program

focused on understanding the dynamics of P. vivax, explicitly
examining the contribution of the asymptomatic human res-
ervoir to continuing malaria transmission.30 As part of such
efforts, the need to improve entomological and more
broadly, vector biology information and tools was clear. An
important achievement was establishing the first reported
long-term colony of Nyssorhynchus (formerly Anopheles)
darlingi, originating from wild-caught mosquitoes in Loreto,
in Iquitos,31 Peru, where this important malaria vector has
been continuously colonized for more than a decade. Based
on the Peruvian experience, transfer of know-how led to sim-
ilar success in establishing a long-term colony of N. darlingi
in Rôndonia State, Brazil, also originating from local wild-
caught mosquitoes.32,33 After carrying out experimental
Ny. darlingi with F1 mosquitoes using P. vivax obtained
ex vivo from infected humans, 30 being able to produce con-
sistent quantities of N. darlingi has enabled field-based
transmission studies of experimental mosquito infections
well as production of P. vivax sporozoites for experimental
work.31,32,34–36

NIAID-supported field-based malaria research in Brazil
started in 2004. At that time, hypoendemic malaria transmis-
sion prevailing across the Amazon Basin was assumed to
rarely elicit the status of clinical immunity seen among adults
exposed to holoendemic malaria in Sub-Saharan Africa,37,38

except for remote riverine populations that are continuously
exposed to infection since birth. This hypothesis was tested
by investigating the epidemiology of malaria in frontier farm-
ing settlements in Acre State, where the most heavily
exposed people were recent migrants from malaria-free
areas in South and Southeast Brazil. These investigations
found that 67% of the P. vivax and 76% of the P. falciparum
infections in these settings were subclinical, usually with
very low parasite density,39,40 consistent with some degree
of antiparasite and antidisease immunity; few asymptomatic
infections left untreated developed into overt disease over
the next weeks of follow-up.41 The P. vivax accounted for
80% of infections and, somewhat surprisingly given the rela-
tively low malaria transmission intensity, displayed extensive
genetic diversity over time and space.42,43

The overall research goal of the Amazonian ICEMR is to
take an integrated, comprehensive approach to understand
complex sociodemographic and biological features that
drive endemic malaria in the Amazon, that is, to identify
human reservoirs of malaria transmission that lead to contin-
ued malaria endemicity despite standard control measures.
The ultimate goal is to use such integrated information
toward the regional control and elimination of P. falciparum
and P. vivax. A key premise is that areas of low to moderate
malaria transmission will become more common as overall
malaria transmission is reduced. Thus, the Amazonian
ICEMR has focused on generating data applicable to
other malaria-endemic regions, where elimination is on the
horizon. The Amazonian ICEMR has been structured to
achieve synergy along multidisciplinary lines toward this
goal (Figure 1).
Areas with low to moderate transmission have biological

and clinical complexities hidden by low morbidity and mor-
tality: 1) patients infected by either of the two major parasite
species in the region—P. falciparum, P. vivax—exhibit
a spectrum of disease that includes asymptomatic and
often submicroscopic malaria; 2) a high prevalence of
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asymptomatic and submicroscopic infections indicates that
clinical immunity develops even when exposure is low; 3)
disease dynamics are driven by groups that disproportion-
ally contribute to transmission due to factors such as
gender, age, and economic activity; and 4) a complex com-
position of malaria vectors may not be equally susceptible to
patients with low to submicroscopic parasitemia. In such a
context, areas with low to moderate transmission, particu-
larly those with P. vivax, are a challenge to sustain
elimination.
The Amazonian ICEMR has focused primarily on P. vivax

because it is a more common cause of malaria in the region.

However, given recent developments in Brazil and Peru,
including the cross-border situation between Brazil and Ven-
ezuela, P. falciparum malaria also became a focus of the
Amazonian ICEMR’s work1–3,16,44–46 In Brazil, the national
malaria control program made P. falciparum a primary focus
of elimination efforts in 2015.47 A major hotspot of P. falcipa-
rum malaria in Brazil is the Juru�a Valley, our primary study
site in Western Brazilian Amazonia. Achieving such a goal is
challenged by socially determined human mobility as in the
Guyana Shield, including the situation in Venezuela, driven
by a challenging political situation. In Peru, after the cessa-
tion of Global Fund-supported malaria control efforts in

FIGURE 1. Amazonian International Center of Excellence in Malaria Research (ICEMR) Program Organization. The Amazonian ICEMR focuses
on three approaches to understanding malaria transmission. The project seeks to comprehend malaria epidemiology and diagnostics in highly het-
erogeneous sites in the Amazon (Project 1), vector biology, ecology and genetics of local vectors (Project 2), and the transmission biology, clinical
pathogenesis, and asymptomatic malaria immunology (Project 3). The integration from these projects grants the basis for mathematical modeling
to understand the disease dynamics and design effective public health interventions for malaria control and elimination. The ICEMR receives sup-
port from Core A (Administration) and Core B (Data Management and Biostatistics). This figure appears in color at www.ajtmh.org.
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2010, P. falciparum has reemerged as a significant public
health threat.4 The Amazonian ICEMR’s recent meetings
with the Loreto Ministry of Health witnessed the high level
of concern about malaria reemergence and the Ministry’s
interest in harnessing the Amazonian ICEMR’s research
strengths to address this emergent and timely issue. Overall,
it is anticipated that the lessons learned in Amazonia will be
generalizable and instructive for global malaria eradication’s
audacious goal.
The Amazonian ICEMR’s basic approach is to carry out

population-based longitudinal cohort studies in geographi-
cally and epidemiologically distinct sites Brazil and Peru.25,48

In Brazilian and Peruvian Amazonia, there are complex
patterns of malaria transmission in heterogeneous and epi-
demiologically contrasting sites (e.g., increasing transmis-
sion versus disappearing malaria, as we have described48).
The primary hypothesis that integrates the projects compris-
ing the Amazonian ICEMR is that asymptomatic, submicro-
scopic parasitemia drives ongoing hypoendemic malaria.
Residual malaria due to outdoor-biting N. darlingi mosqui-
toes is likely related to anthropogenically driven changing

vector behaviors and genetics.25 Emerging, complex pat-
terns of malaria reintroductions have made studying alterna-
tive approaches to malaria elimination critical. The ecology
of the major malaria vector in Amazonia—N. darlingi—inter-
acting with human behavior determines hypoendemic pat-
terns of malaria incidence and prevalence.49,50 At the
population-level, acquisition of nonsterilizing antidisease
immunity implies that low parasitemia has the potential to
maintain transmission in the endemic setting, implying a
mechanism for so-called “resilient malaria.”51 Understanding
such immunity mechanisms is central to new approaches to
malaria vaccine development.32,52 The Amazonian ICEMR is
quantifying malaria transmission from asymptomatic individ-
uals to colonized N. darlingi and placing the infectivity poten-
tial of such individuals to mosquitoes in the context of
immune-biomarkers of transmission.53

In this article, we will describe the overall hypothesis, ratio-
nale, approaches, and outcomes of the Amazonian ICEMR.
The main goal is to understand patterns and determinants of
two types of contrasting malaria epidemiological settings in
the Amazon: residual malaria with continuing hypoendemicity,
and foci of high transmission. These settings have different
local ecologies (riverine, highway, and urban areas) and human
behavior (e.g., levels of bednet use, different occupations, and
degrees of mobility). Project 1, which focuses on the epidemi-
ology of malaria, has three aims. The first aim comprehensively
calculates and interprets local transmission indices and identify
local determinants of malaria transmission. Aim 1 integrates all
three Projects of the ICEMR by identifying and characterizing
the context of malaria cases and referring symptomatic and
asymptomatic patients to Project 2 to guide mosquito popula-
tion characterization and transmission biology studies and
to Project 3 for immunological experiments, respectively
(Figure 1). In Aim 2, comprehensive molecular epidemiological
approaches and population genetics are being used to identify
temporal population changes in P. vivax and P. falciparum,
detect reintroductions and parasite population replacements,
and estimate parasite population complexity at baseline and
potentially after interventions. Aim 3, also integrating all three
Amazonian ICEMR projects, models malaria transmission
dynamics, simulates the optimal intervention packages to
reduce malaria in epidemiologically contrasting settings,
explicitly accounting for ecological heterogeneity and differ-
ences in human sociodemographics. This Project has already
contributed new solutions to ongoing and emerging malaria
challenges in Amazonia. The overall ICEMR program integra-
tes a comprehensive molecular and epidemiological data sets
from Project 1 with studies of vector ecology and transmission
biology in Project 2, and with laboratory-based immunology
studies of asymptomatic malaria in Project 3, to provide a
roadmap for new approaches to malaria elimination.

EPIDEMIOLOGY OF ASYMPTOMATIC
PLASMODIUM PARASITEMIA

Over the past decade, the Amazonian ICEMR has system-
atically investigated malaria transmission patterns in diverse
settings. These include numerous riverine villages,7,51,54,55

frontier farming settlements,48,56 and urban spaces.32,57,58

Recently, we started pilot studies in Venezuela as it is a
source of cross-border malaria in Northern Brazil.16,59,60

FIGURE 2. Drone imagery for the detection of Nyssorhynchus dar-
lingi breeding sites. In recent years, unnamed aerial vehicles (UAVs)
have become feasible tools for vector disease monitoring. (A) An UAV
or drone employing multispectral cameras to collect aerial images
from a rural riverine community in the Peruvian Amazon. (B) An image
of a flooded area located in the Santa Rita village, within the district of
Iquitos in the Amazonian region of Loreto, Peru. Later on, image anal-
ysis will be used to determine the presence and location of possible
Ny. darlingi breeding sites.99 This figure is open access and permis-
sion to reuse it is through Creative Commons.
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Each study site in Peru and Brazil was found to have
a high prevalence of asymptomatic Plasmodium infec-
tions that differed in character and magnitude in sites with
different geographic and sociodemographic characteris-
tics.7,14,30,50,61 This finding challenges the traditional belief
prevalent until the 1990s that populations exposed to rela-
tively low forces of infection rarely develop clinical immu-
nity.37,38,62,63 We are also learning from the unfortunate
unique situation of Southern Venezuela that the malaria situ-
ation is indeed fluid. Based on preliminary data emerging
from the region, when transmission gets out of control, clini-
cal profiles seems to revert to more severe clinical presenta-
tions, including P. vivax with an unusually high proportion of
cases with at least one criterion of severe malaria, as was
found in Venezuela.7

A high malaria burden of asymptomatic and submicroscopic
infections in Amazonia has consistently been found. Those
infections with very low parasitemia (more than 50% of infec-
tions have , 10 parasites/mL) are heterogeneously distributed
in the Peruvian communities challenging the use of micros-
copy during the active case detections performed by the Min-
istry of Health.8,9 In the unusual malaria situation in Venezuela,
we also found that mixed infections (P. vivax and P. falciparum)
are frequently underreported by microscopy.10,40

Conditions associated with the high prevalence of asymp-
tomatic parasitemia are shaped by many factors, including
age, time lived in the community, and occupational activi-
ties.8,30 As such clusters of infected individuals, symptom-
atic or asymptomatic, emerge as an important factor as
usually is linked to specific age groups with occupations that
require mobility across endemic areas.
How low-level malaria transmission reconciles with natu-

rally acquired immunity to infection and disease remains
uncertain, but malaria risk heterogeneity may provide a clue.
Over time, the distribution of clinical malaria episodes expe-
rienced by each individual tends to be overdispersed: most
people experience few, if any, episodes, while some individ-
uals living in the same community are repeatedly infected.57

Mathematical modeling was carried out, with the basic
assumption that the population is comprised of high-risk
and low-risk components. The model that best fits the
observed data (age-related malaria incidence and number of
episodes per person over time) estimates that �20% of the
population contributes disproportionately to overall malaria
burden.64 One conclusion from this modeling is that individ-
uals in the high-incidence group experience enough
repeated infections to develop clinical immunity and consti-
tute an asymptomatic parasite reservoir.64

Although most partially immune carriers harbor low parasite
burdens, often missed by conventional microscopy, some can
still infect mosquito vectors.22,32,65 Very few asymptomatic
infections that are left untreated will eventually progress to clin-
ical disease and become detectable by malaria surveil-
lance.11,12 As asymptomatic infections tend to cluster around
malaria cases detected by passive surveillance,13 reactive
case detection may be an efficient way of detecting additional
infections that are missed by routine case finding.

HUMAN MOBILITY AND MALARIA RISK

A hypothesis that the Amazonian ICEMR seeks to test is
whether mobile high-risk groups of individuals disproportionally

drive malaria transmission, including asymptomatic-subclinical
infections. Our premise is that by integrating parasite genetic
and genomic data linked to epidemiological data, we can char-
acterize malaria risk and characterize the factors that could
make malaria resilient to interventions. We usually summarize
this broad goal as “human mobility” because it builds on the
drivers of human movements in contexts that facilitate the dis-
persion of parasites by asymptomatic infected individuals. The
Amazonian ICEMR has participated in global P. falciparum66

and P. vivax67 genome projects that have assessed parasite
diversity, which is key for developing tools for forensic
approaches to determining the relationship of mobility and ori-
gins of introduction and reintroduction of parasites in the era of
malaria elimination.
It is worth noticing that traditional population genetics

metrics offer limited information if epidemiological data is
absent. Metrics, such as gene flow, for example, could be an
average of several transmission seasons68 rather than a
description of recent events that are the ones we require to
assess epidemiological changes. Indeed, the Amazonian
ICEMR and others have used those to explain overall genetic
differentiation patterns essential to obtaining a big picture of
malaria in the region.69,70 However, we need to identify pat-
terns to address epidemiological questions pertinent to
malaria control. Unveiling such patterns require combining
parasite genetics and longitudinal epidemiological data.
Human mobility has been previously linked to malaria

transmission in the Peruvian Amazon. For instance, periur-
ban villages along the Iquitos–Nauta road present parasite
populations genetically very similar to those in Iquitos city,
the most developed urban center of the region, suggesting
that the movement for economic reasons promotes the
introduction of parasites from Iquitos into these communi-
ties.14 Likewise, rural villages from Loreto Department, the
region most struck by malaria in Peru, share genetically simi-
lar parasite populations, suggesting that mobile individuals
allow for the reintroduction of parasites in distant (. 30 km)
rural riverine communities.15

A particular example is human mobility driven by extrac-
tive economic activities, such as gold mining and logging,
which involve parasite translocation by humans and aggre-
gation of individuals in impoverished settlements that facili-
tate transmission. It has been hypothesized that such
occupational-driven mobility patterns may generate malaria
transmission corridors.71 Under such a model, malaria trans-
mission may be sustained by human mobility across com-
munities. Consistent with this process, we have documented
that gold mining is an important driver of malaria crises in
Venezuela3,10 and Peru,16 and logging in the Southeastern
region of the Peruvian Amazon.17 Mobility is also important
in the context of mutations associated with antimalarial drug
resistance in P. falciparum because mining areas have
multidrug-resistant genotypes, fortunately, not yet with
mutations linked to the delayed clearance of ACTs.10,18

In recent years, new ways to measure human mobility
have been developed. The use of a digital platform (Geo-
ODK) to collect self-reported travel trajectories seems prom-
ising in assessing routes following riverine pathways to
nearby villages and rural settlements, where logging, hunt-
ing, or fishing activities are carried out and suggests high
connectivity among the communities in this region.19 We
have shown that fine-scale monitoring of human movement
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by GPS devices in a population subset from malaria trans-
mission areas has shown that malaria-positive participants
move to nearby villages and supports the idea of approach-
ing these communities not individually but as a network of
connected units.20,72 Although rural villagers in the Peruvian
Amazon are open to initiatives that seek to understand
and eradicate malaria transmission, assessing movement
through GPS devices for an entire population (�200 or more
participants) is a technical and economic challenge because
such studies would require a large number of devices
adapted to the rural conditions surrounding malaria trans-
mission.72 Yet, experience in other infectious diseases has
shown that the fine-scale tracking of mobile individuals
allows for understanding heterogeneity of vector exposure,
an aspect less explored in malaria transmission that
undoubtedly will shed light onto patterns of residual malaria
transmission.21

As studied by ICEMR investigators and other, illegal
gold mining has been regularly associated with malaria
outbreaks in Peru,13,14 Brazil,16 and elsewhere in South
America,46,59,60,73,74 associated with gold miner occupation-
related mobility as one epidemiological feature both in terms
of malaria-naïve individuals arriving to an area of malaria
transmission as well as infected gold miners bringing malaria
away from such sites of transmission.16,46,59,60,73,74

Often perceived as an exclusively rural disease, malaria
has been increasingly diagnosed within and near urban cen-
ters in the Amazon. Human mobility in our field site in Juru�a
Valley, Northwestern Brazil, favors the spread of malaria par-
asites across the urban-rural interface and places urban resi-
dents at increased risk of infection. They often engage in
seasonal farming in high-transmission areas surrounding the
cities and towns, and many maintain both urban and rural
residences.75 Natural and human-made larval habitats—
including fish farming ponds—are increasingly abundant in
cities and towns and favor vector proliferation in densely
populated areas, occasionally leading to outbreaks.75

Molecular genotyping data are consistent with sustained
urban malaria transmission in the Juru�a Valley region of Bra-
zil, with a single genetic cluster comprising 32% of all of P.
vivax infections examined over 1 year.76 Importantly, locally
circulating P. vivax lineages appear to seed regional malaria
transmission, as they share recent genome-wide ancestry
with parasites at large geographic distances.77

Thus, the emerging pattern from our investigations is that
the impact of mobility is modulated by its contexts. One of
those factors is the parasite’s biology, which contributes to
transmission maintenance in these communities. In particu-
lar, there is a high prevalence of subclinical infections with
gametocytes, that is, 67% of P. vivax and all P. falciparum
gametocyte carriers detected were asymptomatic and/or
submicroscopic.48 Considering that asymptomatic infec-
tions are not detected in passive surveillance, the effect of
mobility of such infected individuals is difficult to assess in
traditional epidemiological investigations. Furthermore, epi-
demiological data usually cannot distinguish among a cluster
of cases resulting from a recent introduction from an out-
break from asymptomatic patients’ ongoing transmission
that was not previously detected. Such distinction is impor-
tant during the elimination phase and only can be achieved
by integrating genotyping with epidemiological data.

The second important factor relates to the ecological con-
text where human populations move. Malaria in the Juru�a
Valley75 illustrates how the dynamic of vectors modulates
the impact of human mobility on local transmission. Like-
wise, at a different geographic scale, preliminary studies in
the case of migrants in the North of Brazil support the notion
that vectors modulate the effect of migrants on local trans-
mission.78 In particular, areas that receive a significant influx
of migrants have many imported malaria cases, but that
does not translate into a spike of local cases following the
massive introduction of infected individuals simply because
the local vector is not very efficient at breeding in proximity
to those infected individuals. Thus, assessing the impact of
human mobility on regional malaria resilience requires the
novel integration of parasite, epidemiological, and entomo-
logical data.72

VECTOR BIOLOGY

Ecology and population structure of Ny. darlingi. The
earliest entomology studies focused on Ny. darlingi in the
Amazonian ICEMR in Loreto, Peru, confirmed that this
species is the primary regional vector and the only species
consistently infected by Plasmodium.79 We and others dem-
onstrated that anthropogenic and ecological changes have
favored the spread of Ny. darlingi through numerous river
systems in Loreto, Peru.80–82 One of our most significant
vector biology discoveries was the detection of high propor-
tions of avian blood-meals in resting Ny. darlingi in riverine
villages outside Iquitos. This and a subsequent study under-
scored the adaptability of Ny. darlingi and also suggested
that host availability is a major player in Ny. darlingi feeding
choice, even though this species remains primarily anthro-
pophilic.82,83 We also provided evidence of greater risk of
transmission by Plasmodium-infected Ny. darlingi feeding
outdoors compared with indoors.79,82

The question of whether N. darlingi’s behavioral heteroge-
neity (exo- and endophagy, exo- and endophily, host range,
biting time) has a genetic or environmental basis led to stud-
ies in three ecologically distinctive communities (heavily
forested, deforested, and urban) in Acre State, Western
Amazonian Brazil. Only single nucleotide polymorphisms
(SNPs), but not microsatellites, detected population diver-
gence and genetic heterogeneity at a microgeographic
scale.9 A second study using genome-wide SNPs detected
genetic markers associated with indoor versus outdoor feed-
ing in addition to dawn versus dusk feeding time, although
there was also evidence of admixture among populations.84

A subsequent study genotyped samples of Ny. darlingi from
these three sites in Mâncio Lima using low coverage geno-
mic sequencing data. For the first time, we observed a sta-
tistically significant association between: 1) biting behavior
and SNP markers adjacent to cytochrome P450 CYP4H14,
known to be linked to insecticide resistance and 2) between
blood seeking periodicity and SNP markers adjacent to
genes associated with the circadian cycle (Alvarez et al
unpub.data). Together, these studies emphasize the need to
incorporate local dynamics of vector populations for the
most effective local interventions.
The first Ny. darlingi colony. To enable research on Plas-

modium infections in Ny. darlingi, a continuous colony of Ny.
darlingi was established in Iquitos for the first time.31
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Subsequently, systematic production of P. vivax sporozoites
in colonized Ny. darlingi mosquitoes in the Peruvian Amazon
was established using P. vivax-infected blood derived from
human.31 Following the launch of an ICEMR site in Porto
Velho, Rondonia State, Brazil, the first free-mating colony of
Ny. darlingi in Brazil was established.33

Ny. darlingi genomics. Colonized Ny. darlingi from Iqui-
tos, Peru were used to produce a new whole genome
sequence expected to be released in 2022. It is anticipated
that a newly assembled genome, as compared with previous
more fragmentary genome information,85 will permit discov-
ery of significant nucleotide diversity (high genetic polymor-
phism) linked to the rapid evolution and adaptation of Ny.
darlingi. Anticipating evolutionary responses to increased
anthropogenic and climate change, and how to more effec-
tively control Ny. darlingi will require an understanding of the
enormous genetic diversity that fuels it.86

Nomenclature of Ny. darlingi and additional species
detected. A molecular phylogenetic study resulted in the
proposed recognition of several new Latin American genera,
especially Nyssorhynchus and Kerteszia87 that comprise
many malaria vectors and are considered to be subgenera.88

This provisional nomenclatural shift is not without contro-
versy, and a discussion is ongoing and likely to continue until
whole genomes among many anopheline taxa are compared
phylogenetically.89–91

We also detected additional anopheline vector species
and distribution data were expanded. Nyssorhynchus dun-
hami was identified molecularly in Peru for the first time, in
several villages South of Iquitos.92 Also, the sole evidence
of Ny. dunhami infected with P. falciparum and P. vivax
throughout its distribution in Brazil and Peru was recorded in
Lupuna, although this species appears to have a minor role
in malaria transmission.92 The known distribution of Ny.
benarrochi B in malaria-endemic regions was expanded to
include Madre de Dios Department in Southern Peru,93

Andoas District in the Datem del Maranon Province in North-
ern Peru, and the Amazonian Provinces of Orellana and
Morona Santiago in Ecuador.94 This is an important finding
because this species is a secondary vector throughout most
of its distribution.94–96

The use of drones to identify Ny. darlingi larval
habitats. The potential contribution of larval source manage-
ment (LSM) as part of an integrated malaria control program
depends on the ecology of Ny. darlingi.97 In Loreto, a study
examined environmental characteristics of larval habitats rel-
ative to spatial heterogeneity of human malaria transmission
and found that Ny. darlingi was significantly associated with
low-light conditions, recent deforestation, low-vegetation
index, and other anopheline species. Houses with more
reported malaria cases were located nearer to Ny. darlingi
larval habitats; targeted control of these sites would likely
reduce malaria risk.98 In a proof-of-concept paper, these lar-
val site characteristics together with high resolution (�0.02
m/pixel) multispectral imagery were used to discriminate a
profile of water bodies, where Ny. darlingi was most likely
to breed (86.7–97% accuracy) in the Mazan District, Loreto,
Peru (Figure 2).99

Fishponds are common in and around the town of Mâncio
Lima, Western Amazonian Brazil, contributing substantially
to malaria transmission. Researchers found that fishponds in
rural but not urban sites appear to maintain populations of

Ny. darlingi during the dry season, and fishponds with abun-
dant Ny. darlingi larvae were those significantly associated
with emergent aquatic vegetation that were actively in use.49

Biological larvicide application in this situation could have an
impact in reducing malaria, as recently demonstrated.100

Experimental Ny. darlingi infection: Relationship of
parasitemia to mosquito infection. Information remains
scant on infectivity of P. vivax to mosquitoes in diverse
ecological transmission contexts, which led us to measure
the transmissibility of clinical and subclinical P. vivax malaria
parasite carriers to the major mosquito vector in the Amazon
Basin, Ny. darlingi using membrane mosquito feeding
assays (MFA), in which blood from an infected individual
is placed into a membrane feeder and offered to
mosquitoes.31,33,34,101

In Brazil, 15 asymptomatic individuals with positive PCR in
the same blood sample used for MFA, eight were able to
infect mosquitoes, as evidenced by the oocysts found in
their midgut ranging from one to seven per midgut.
Importantly, even with undetectable parasitemia by qPCR,
asymptomatic contribute with low rates of transmission to
anophelines, suggesting their potential role in sustaining the
P. vivax cycle in hypoendemic areas.32

In Peru, none of the asymptomatic low-density PCR detected
infections infected a single mosquito suggesting that additional
assessment to determine the infectivity of low-level parasitemia
in the context of the Peruvian Amazon is needed.65 However,
our results are consistent with studies showing that P. vivax
gametocyte and parasite density in symptomatic individuals
are closely related to mosquito infectivity.65

Paradoxically, the lack of a linear relationship of absolute
parasitemia and gametocytemia to infectivity of P. vivax-
infected individuals for Ny. darlingi mosquitoes is a consis-
tent finding, mirrored by other Plasmodium-mosquito
relationships in diverse settings.102–105 In Project 3, we con-
tinue to explore the contribution of human host immunologi-
cal factors to parasite infectivity to mosquitoes in the
endemic field setting.52

IMMUNOLOGY OF PLASMODIUM VIVAX MALARIA

Knowledge about parasite biology and mechanisms
involved in the control of P. vivax blood-stage by the immune
system remains scant and has been slowed by the difficulty
of in vitro culture mainly because the infection is restricted to
reticulocytes that rapidly mature into erythrocytes.52 An
important facet of malaria is that sterile immunity is uncom-
mon, so populations in endemic regions have recurrent
infections. Two distinct hypotheses can be proposed to
address this issue: 1) innate immune cells from asymptom-
atic patients become hyporesponsive to Plasmodium stimu-
lation preventing systemic inflammation, leading to impaired
acquired immunity, which is inefficient in controlling infection
and allowing parasite transmission; and 2) asymptomatic
patients develop robust acquired immunity that maintains
low parasite biomass preventing systemic inflammation and
vector infectivity. The pathobiology pathogenesis of malaria
is complex and the immune system has to kill the parasite
and avoid tissue damage simultaneously.106 In this context,
it has to be determined whether there are specific patterns
of the immune response associated with the development of
symptomatic or asymptomatic persons.
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We have directed our efforts toward identifying immune-
biomarkers of resistance and susceptibility to disease to
better understand malaria pathogenesis (Figure 3). It is estab-
lished that the paroxysm triggered by inflammatory cytokines
is a clinical hallmark of acute malaria and these molecules
have been associated with both control and symptoms of the
disease. Monocytes, the primary source of proinflammatory
cytokines in the circulatory system, are expanded during
acute P. vivax infection.107 Classical and patrolling monocytes
produce large amounts of IL-1b after stimulation with lipo-
polysaccharide (LPS; endotoxin), probably due to the
NLRP12/NLRP3-dependent activation of caspase-1.108 A
third subset, the intermediate monocytes, have an increased
ability to phagocytose parasite-infected reticulocytes and to
produce intracellular reactive oxygen species production.
Recent data from our group suggested that P. vivax infection
fosters a metabolic shift favoring the production of mitochon-
drial reactive oxygen species (mROS) by monocytes. Mono-
cytes from malaria patients are reprogrammed to maintain
their effector functions increasing their glycolysis rate and
decreasing the production of ATP via oxidative phosphoryla-
tion.109 With this shift, mROS is produced as a result of the
energy derived from the variation in mitochondrial membrane
potential generated by electron transport via the electron
transport chain. The close contact of mitochondria with phag-
olysosomes containing the P. vivax-infected reticulocytes
suggests the involvement of mROS with parasite killing. In
parallel, CD81 T cells are also involved in parasite killing

during acute malaria. CD81 T cells express large amounts of
cytotoxic proteins and form immunological synapses with P.
vivax-infected reticulocytes. Consequently, CD81 T cells kill
intracellular parasites and infected host cells, which lose cho-
lesterol from their membranes becoming susceptible to gran-
ulysin during infection.110

The inflammatory environment resulting from the innate
immune system activation impacts the development of the
adaptive response. High levels of cytokines have been asso-
ciated with the expression of programmed death-1 (PD-1)
and its ligand, limiting T-cell-effector function. Our studies
show that P. vivax infection leads to increased expression of
inhibitory molecules, such as PD-1 cytotoxic T lymphocyte
attenuator-4 (CTLA-4) and T cell immunoglobulin domain
and mucin domain-3 (TIM-3) on T cells. These lymphocytes
retain the ability to respond to antigens and the cytokine
response is reestablished when CTLA-4, PD-1, and TIM-3
are contemporaneously blocked, indicating that induction of
multiple regulatory molecules during P. vivax infection is
necessary to impair T cell function.110 The expression of PD-
1 is also associated with diminished function of regulatory T
cells in P. vivax-infected patients. PD-1 expressed Treg dis-
play inflammatory characteristics and were less capable of
suppressing proliferation of CD41 T cells. Importantly, the
presence of these regulatory T cells was correlated with aug-
mented levels of bilirubin in malaria patients.110 This finding
reflects similar findings with Tregs in P. falciparum malaria in
Peru.111

FIGURE 3. Immune response against Plasmodium vivax infection. Monocytes, neutrophils, and CD81 T cells mediate parasite killing through pro-
duction of mitochondrial reactive oxygen species (mROS), SOD, and cytotoxic granules, respectively. Parasite killing by monocyte is antibody
dependent. Cytokines produced by innate cells and act on cells from adaptive immune response, shaping effector functions of CD41 T helper cells
and Treg. Parasite burden and cytokines are associated with symptoms and trigger the expression of chemokines, chemokine receptors and acti-
vation and inhibitory molecules. The production of IFN-gamma is probably affected by this environment. The IL-21 is also induced by P. vivax
infection, leading to T follicular helper (Tfh) expansion and it is associated with antibody production by plasma cells. The number of malaria epi-
sodes are associated with increased frequencies of Tfh cells and classical memory B cells, probably impacting protection.
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Studies have been focused on the importance of humoral
immunity to malaria and immunoglobulin production against
Plasmodium is dependent on T cells. More specifically, P.
vivax infection triggers the expansion of T follicular helper
(Tfh) cells, which favors the generation of plasma cells that
secrete high-affinity antibodies and maintain long-lived
memory B cells. Although the expression of PD-1 on T cells
during malaria suggests impaired function of some cell sub-
sets, PD-1 expression, in association with the chemokines,
CXCR5 and ICOS, specifically defines circulating counter-
part of bona fide Tfh cells. Importantly, reinfection with P.
vivax further expands Tfh cells, which is associated with
increased frequencies of classical memory B cells and levels
of IgG.112

The conceptual understandings from studies on the immu-
nopathology of symptomatic malaria paved the way to fur-
ther explore mechanisms underlying asymptomatic malaria
(Table 1). Since 2018, an endemic urban area for malaria due
to P. vivax in the Brazilian Amazon is screened to identify
asymptomatic cases. Distinct from what is observed during
symptomatic malaria, there are no alterations in the common
hematological and biochemical biomarkers supporting the
lack of systemic inflammation in asymptomatic individuals.32

Asymptomatic carriers of P. vivax display measurable anti-
body levels against P. vivax, although with lower levels of
IgG compared than symptomatic patients. Those lower lev-
els suggest the hypotheses that there could be a reduction
of antigen-specific antibody levels or changes affinity of anti-
P. vivax IgG over time.52,113–115

These findings support the need for deep experimental
investigations of immune mechanisms in asymptomatically
infected individuals. We are currently carrying out extensive
phenotyping of circulating leukocytes and performing func-
tional assays to identify mechanisms that explain the lack of
systemic inflammation, the absence of symptoms, and the
lower parasitemia observed in asymptomatic individuals.
The project provides resources to study these hypotheses
and also contribute to the education of the community on
malaria, fostering the awareness of the local health authori-
ties of the occurrence of undiagnosed malaria cases.
Key antigenic targets of naturally acquired antibody-

mediated immunity to P. vivax malaria remain to be deter-
mined and cohort studies may offer some useful insights.
We have focused on antibodies to the cysteine-rich domain
II of P. vivax Duffy binding protein (PvDBP) that inhibit bind-
ing of this parasite ligand to its receptor on red blood cells,
the Duffy antigen/receptor for chemokines (DARC), known

as binding-inhibitory antibodies (BIAbs). We showed that
high levels of BIAbs are associated with a . 40% decrease
in the prospective risk of clinical vivax malaria in subjects.115

Importantly, human monoclonal antibodies with binding-
inhibitory properties partially inhibit ex-vivo red blood cell
invasion by P. vivax merozoites and target a conserved
PvDBP epitope.113,114

Using genome-level protein microarrays in which a large
number of P. falciparum and P. vivax asexual and sexual
stage proteins identified from proteomic and gene expres-
sion profiling are put onto a chip for probing with sera from
human subjects,116 a limited set of P. falciparum protein
antigens was associated with the development of naturally
acquired clinical immunity in the Peruvian Amazon.117 Simi-
larly, P. vivax antigen relapse was distinguished from reinfec-
tion by a merozoite surface protein, MSP10, as the top hit
among other proteins.118 These data identified candidates
for seroepidemiological tools to support malaria elimination
efforts in P. falciparum- and P. vivax-endemic regions.
In this context, we focused on the production and use of

recombinant Merozoite Surface Proteins for P. vivax
(PvMSP8 and PvMSP10) and P. falciparum (PfMSP10 and
PfRH2b) as serological markers (SEM) of recent exposure in
low-to-moderate transmission settings in coendemic areas
of the Peruvian Amazon region.24,119–121 In addition, using a
panel of 34 SEM for P. vivax in cohorts from Peru (Lupuna
and Cahuide), Brazil, and Thailand, we found a strong corre-
lation of high IgG levels against this SEM with age; but living
in Lupuna and being male were associated with 20 and 15
SEM, respectively, indicating the high exposure in this com-
munity. The performance of these 34 SEM to classify recent
exposure was lower in Peru than in Thailand and Brazil; this
could be due to differences in malaria transmission inten-
sity.121 Future prospects in this area are the study of IgM
antibody response and IgG subtypes against these sero-
markers their functional characterization.122

CONCLUSION

Malaria in Amazonia presents complexities hidden by its
low levels of morbidity and mortality. The Peruvian MZP has
been designed based on data from the Amazonian ICEMR
to accelerate malaria control and elimination in the region.123

People infected by either P. vivax or P. falciparum exhibit a
broad spectrum of disease severity, including a high propor-
tion of asymptomatic submicroscopic infections with game-
tocytes. Thus, those are likely to be untreated transmission
reservoirs because of the lack of clinical illness that typically

TABLE 1
Some immunological features of symptomatic and asymptomatic malaria*

Symptomatic* Asymptomatic* References

Hematological and biochemical parameters Some altered Not altered Not available
Levels of specific antibodies against P. vivax antigens Increased Increased 32,52

Expression of regulatory molecules on CD41 and CD81 T cells Increased ? 52,111

Frequency of circulating CD41 T cells Decreased ? 52

Frequency of circulating CD81 T cells Decreased ? 52

Frequency of monocytes Increased ? 52,107,110

Frequency of follicular helper T cells Increased ? 32,52,112

Frequency of regulatory T cells Increased ? 52,111

Leukocyte response to innate stimulus Increased ? 52

Serum cytokines Increased ? 52,53

* Compared with healthy controls or patients after treatment. Note on data sources: References as indicated or unpublished observations/data from Amazonian ICEMR.
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prompts treatment. High-risk groups linked to particular eco-
nomic activities exhibit high mobility and disproportionally
drive malaria transmission in various ecological contexts.
Such dynamics of mobile and asymptomatic malaria makes
the disease resilient to elimination. Although success can be
achieved in dramatically reducing malaria morbidity and
mortality by scaling up interventions, there is a need to char-
acterize factors that make malaria resilient to optimize
surveillance toward the long-term goal of containing reintro-
ductions. Correctly modeling disease dynamics considering
such factors is critical to inform malaria elimination pro-
grams. Such an understanding is required to make malaria
elimination both feasible and sustainable. The mechanisms
leading to clinical immunity–asymptomatic parasitemia in
low-transmission areas like Amazonia may enable new vac-
cine development approaches and understanding of malaria
pathogenesis.

IMPACT OF COVID-19 PANDEMIC ON AMAZONIAN
ICEMR RESEARCH ACTIVITIES

The impact of the COVID-19 on malaria in Amazonia has
been difficult to determine precisely. The COVID-19 pan-
demic led to a strict lockdown imposed throughout Peru in
2020; all field and laboratory activities were stopped for 6
months. After the first wave between March and August
2020, funds had to be reallocated for humanitarian purposes
to purchase personal protective equipment (PPE) as malaria
research activities were impossible to carry out. Despite
numerous obstacles, the ICEMR team was able to carry out
remote work, which included focusing on the organization
and analysis of large databases, preparation, and submis-
sion of ICEMR-related and other manuscripts. Timely experi-
ments and small data collections were allowed under safe
conditions. In 2021, activities were reactivated at better
speed and planned for long-term samples collections per-
forming the experiments and sample collections activities as
usual to accomplish the committed deadlines. In this
context, we were able to describe the direct impact of
COVID-19 on malaria in Loreto, as evidenced by an apparent
reduction in malaria control activities by the Peruvian
MZP.124 At the time, there was substantial concern that
reduction in malaria control activities might lead to a hidden
increase in malaria cases. This has not yet been observed,
paradoxically—and consistent with epidemiological themes
of the Amazonian ICEMR—the prolonged regional shutdown
of transportation during the highest malaria transmission
season in 2020 that lowered occupation-related and other
mobility may have in fact reduced malaria transmission. The
effect of COVID-19 on malaria resurgence and excess mor-
bidity and mortality due to malaria will be determined by
continued surveillance by the Amazonian ICEMR.
No effect of COVID-19 on malaria case incidence or para-

sitemia prevalence was apparent in Brazil. As in Peru,
COVID-19 surveillance took precedence, including in West-
ern Brazilian Amazonia In Mâncio Lima, the Amazonian
ICEMR primary study in Brazil, field studies have, since
2020, expanded to include SARS-CoV-2 antibody measure-
ments during the ongoing COVID-19 pandemic in the
hard-hit Amazon Basin of Brazil. Three consecutive cross-
sectional serosurveys have been carried out (October–No-
vember 2020, April–May 2021, and October–November

2021), complemented with the genomic characterization of
locally circulating SARS-CoV-2 isolates in August 2020 and
April 2021. We identified possible interactions between den-
gue fever and COVID-19 during the first pandemic wave and
tested whether the emergence of Gamma variant, which
dominated the second SARS-CoV-2 transmission wave in
the Amazon between December 2020 and June 2021, led to
increased morbidity in the overall population of chil-
dren.125,126 Data from the latest serosurvey are currently
under analysis and will allow for estimating the duration of
naturally acquired and vaccine-induced antibody responses
in the study population.
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