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ORIGINAL RESEARCH ARTICLE

Artificial Intelligence for Contrast-Free MRI: Scar 
Assessment in Myocardial Infarction Using Deep 
Learning–Based Virtual Native Enhancement
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Elena Lukaschuk, MSc; Katharine E. Thomas , MBBS; Rebecca Mills, BSc; Joana Leal Pelado, BSc;  
Chrysovalantou Nikolaidou , MD; Iulia A. Popescu , DPhil; Yung P. Lee, MBBS; Xinheng Zhang , PhD;  
Rohan Dharmakumar, PhD; Saul G. Myerson , MD; Oliver Rider , DPhil; Oxford Acute Myocardial Infarction (OxAMI) Study; 
Keith M. Channon, MD; Stefan Neubauer , MD; Stefan K. Piechnik , PhD†; Vanessa M. Ferreira , MD, DPhil†

BACKGROUND: Myocardial scars are assessed noninvasively using cardiovascular magnetic resonance late gadolinium 
enhancement (LGE) as an imaging gold standard. A contrast-free approach would provide many advantages, including a 
faster and cheaper scan without contrast-associated problems.

METHODS: Virtual native enhancement (VNE) is a novel technology that can produce virtual LGE-like images without the need 
for contrast. VNE combines cine imaging and native T1 maps to produce LGE-like images using artificial intelligence. VNE 
was developed for patients with previous myocardial infarction from 4271 data sets (912 patients); each data set comprises 
slice position-matched cine, T1 maps, and LGE images. After quality control, 3002 data sets (775 patients) were used for 
development and 291 data sets (68 patients) for testing. The VNE generator was trained using generative adversarial 
networks, using 2 adversarial discriminators to improve the image quality. The left ventricle was contoured semiautomatically. 
Myocardial scar volume was quantified using the full width at half maximum method. Scar transmurality was measured 
using the centerline chord method and visualized on bull’s-eye plots. Lesion quantification by VNE and LGE was compared 
using linear regression, Pearson correlation (R), and intraclass correlation coefficients. Proof-of-principle histopathologic 
comparison of VNE in a porcine model of myocardial infarction also was performed.

RESULTS: VNE provided significantly better image quality than LGE on blinded analysis by 5 independent operators on 
291 data sets (all P<0.001). VNE correlated strongly with LGE in quantifying scar size (R, 0.89; intraclass correlation 
coefficient, 0.94) and transmurality (R, 0.84; intraclass correlation coefficient, 0.90) in 66 patients (277 test data sets). Two 
cardiovascular magnetic resonance experts reviewed all test image slices and reported an overall accuracy of 84% for VNE 
in detecting scars when compared with LGE, with specificity of 100% and sensitivity of 77%. VNE also showed excellent 
visuospatial agreement with histopathology in 2 cases of a porcine model of myocardial infarction.

CONCLUSIONS: VNE demonstrated high agreement with LGE cardiovascular magnetic resonance for myocardial scar assessment 
in patients with previous myocardial infarction in visuospatial distribution and lesion quantification with superior image quality. 
VNE is a potentially transformative artificial intelligence–based technology with promise in reducing scan times and costs, 
increasing clinical throughput, and improving the accessibility of cardiovascular magnetic resonance in the near future.
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Ischemic heart disease (IHD) is increasingly prevalent 
and a leading cause of morbidity and mortality world-
wide.1 Myocardial scars and viability are assessed 

on cardiovascular magnetic resonance (CMR) imaging 
using late gadolinium enhancement (LGE) as the imag-
ing gold standard and is useful to inform clinical decision-
making regarding revascularization, risk stratification, 

and long-term prognosis in the management of patients 
with IHD.2,3 LGE-CMR is used routinely in contemporary 
clinical practice, offers high spatial resolution, detects 
small and subendocardial infarctions that may be missed 
by other imaging modalities,4 and is highly reproducible 
for assessment of infarct size.5 Landmark studies have 
shown that the extent of infarct size and transmurality on 
LGE-CMR predicts functional improvement after revas-
cularization.6–10 LGE requires intravenous gadolinium-
based contrast agents, which increase scan time and are 
contraindicated in certain populations. There is increas-
ing interest in transitioning toward less invasive, contrast-
free techniques, which can shorten scan and preparation 
times, reduce costs, and improve the availability of CMR.

Native (precontrast) CMR methods, such as steady-
state free precession cine imaging and T1 mapping, are 
gadolinium-free approaches for cardiac phenotyping that 
can detect abnormalities associated with LGE signals.11 
T1 mapping has shown promise in the contrast-free 
assessment of previous myocardial infarction (MI)12 with 
good correlation with histopathology when performing 
detailed quantitative image analysis.13,14 However, the 
diagnostic performance of T1 mapping using visual anal-
ysis alone is suboptimal because of a lack of standard-
ized display of the T1 maps and other confounders.15–17 
It would be highly advantageous to develop a means to 
visualize T1 maps easily in routine clinical practice.

Virtual native enhancement (VNE), a novel artificial intel-
ligence (AI) approach, has shown promise in this regard. 
VNE uses deep learning to generate LGE-like images 
by enhancing the imaging signals in native T1 maps and 
cine magnetic resonance images. VNE was first validated 
in patients with hypertrophic cardiomyopathy, achieving 
excellent visuospatial agreement with standard LGE with 
superior image quality.18 VNE presents a potential solution 
to achieve rapid magnetic resonance imaging without the 
need for contrast agent administration. VNE holds prom-
ise to extend to other major pathologies encountered in 
clinical practice, such as assessment of myocardial scars 
and viability in patients with previous MI, which comprises 
a large proportion of routine CMR referrals.19

We hypothesized that further deep learning develop-
ment of VNE can enable gadolinium-free visualization of 
myocardial scars in the assessment of MI. The VNE deep 
learning model was developed and tested on large-scale 
data sets of patients with previous MI to enable LGE-like 
visualization and quantification of myocardial scar burden, 
compared with conventional LGE, in a ready-to-use clini-
cal format. We provide the first proof-of-principle histo-
pathologic comparison of VNE with a porcine model of MI.

METHODS
Materials
The anonymized test data and materials that support the 
findings of this study are available from the corresponding 

Clinical Perspective

What Is New?
• Artificial intelligence–based virtual native enhance-

ment (VNE) in cardiac magnetic resonance imag-
ing can reliably detect and visualize myocardial scar 
in patients with a history of previous myocardial 
infarction.

• Developed on 4271 data sets from 912 patients, 
VNE demonstrated superior image quality com-
pared with late gadolinium enhancement and cor-
related strongly with late gadolinium enhancement 
in quantifying scar size and transmurality.

• VNE showed excellent visuospatial agreement with 
histopathology in the first proof-of-principle com-
parison in 2 cases of a porcine model of myocardial 
infarction.

What Are the Clinical Implications?
• VNE provides a contrast-free alternative to late 

gadolinium enhancement for tissue characterization 
in patients with previous myocardial infarction, hold-
ing promise to eliminate the need for contrast in a 
large proportion of cardiovascular magnetic reso-
nance scans.

• VNE has great potential for further translation 
across a wide range of myocardial pathologies.

• VNE is an emerging artificial intelligence technol-
ogy that can reduce scan times and costs, increase 
clinical throughput, and improve the accessibility of 
cardiovascular magnetic resonance imaging in the 
near future.

Nonstandard Abbreviations and Acronyms

AI artificial intelligence
CMR cardiac magnetic resonance
ICC intraclass correlation coefficient
IHD ischemic heart disease
LGE late gadolinium enhancement
LV left ventricle
MI myocardial infarction
OxAMI Oxford Acute Myocardial Infarction
ShMOLLI  shortened modified look-locker inversion 

recovery
VNE virtual native enhancement



OR
IG

IN
AL

 R
ES

EA
RC

H 
AR

TI
CL

E

November 15, 2022 Circulation. 2022;146:1492–1503. DOI: 10.1161/CIRCULATIONAHA.122.0601371494

Zhang et al VNE for Scar Assessment in MI

author upon reasonable request and subject to study com-
mittees’ approval.

We performed this single-center study at the University of 
Oxford John Radcliffe Hospital. Human CMR data sets were 
collected from the University of Oxford Centre for Clinical 
Magnetic Resonance Research clinical service (using a 1.5T 
Avanto or Avanto Fit scanner; Siemens Healthcare) and the 
OxAMI study (Oxford Acute Myocardial Infarction)20 (using a 
3T Verio or Tim Trio scanner; Siemens Healthcare). For the clin-
ical service data set, consecutive patient CMR clinical reports 
from 2010 and 2021 were screened for presence of MI on 
LGE by 2 experienced clinicians (M.K.B., V.M.F.). Patients were 
included if there was evidence of previous MI (ie, an ischemic 
pattern of subendocardial or transmural LGE scars), no clinical 
history or CMR features of acute MI (eg, substantial myocardial 
edema, presence of microvascular obstruction) given the effect 
that acute myocardial edema may have on native T1 values, no 
substantial concomitant myocardial pathology (ie, no underlying 
cardiomyopathy or infiltrative disease), and signed written con-
sent for research. OxAMI is a single-center prospective study of 
patients presenting with acute MI and in follow-up during their 
recovery. CMR data from the follow-up time point (typically 6 
months after MI) were used for this development.

All materials in this study included written informed 
consent from participants for research and the necessary 
approvals from research ethics and study committees. All 
participants from the clinical service included in this study 
had signed written consent for their anonymized data to be 
used for clinical research as per local unit protocols. Further 
ethics approval for the retrospective use of anonymized data 
was granted by the National Health Service Health Research 
Authority (Integrated Research Application System reference 
number 210155). Approval for the OxAMI study was provided 
by the Health Research Authority’s National Research Ethics 
Service Committee–South Central Oxford A (reference num-
ber 11/SC0397).

Once CMR data were acquired, further screening was 
performed to ensure that only data sets with slice position–
matched native T1 map, precontrast or postcontrast cine, and 
LGE images were included. Quality assurance of T1 mapping 
sequences was performed using a standardized phantom as 
described previously.21

As per our routine clinical protocol, short-axis cines were 
typically acquired postcontrast. These scans were used for 
training the VNE generator, with the cine images transferred 
to synthetic precontrast images using a dedicated neural 
network approach (detailed in Supplemental Material 3). All 
patient scans with cine images acquired before gadolinium 
injection were identified and reserved as an independent test 
data set to generate VNE images that were completely free 
of contrast agent.

In vivo CMR scans (including cine, T1 maps using the ShMOLLI 
method [shortened modified look-locker inversion recovery],22 and 
phase-sensitive inversion-recovery LGE) of a porcine model of MI 
were performed 8 to 9 weeks after inducing an MI with ligation 
of the left anterior descending artery for 90 minutes followed by 
reperfusion at Cedars-Sinai Medical Center. The study received 
institutional ethics approval. Two pigs were killed 48 hours after 
the 8- to 9-week CMR scan to obtain histologic data of the left 
ventricle including ex vivo slices (5 μm thick) and magnified images 
taken with light microscopy after applying hematoxylin & eosin 

stain and Masson trichrome stain, respectively. All histopathologic 
slices were matched as closely as possible to the corresponding 
CMR images. VNE was produced offline at the Oxford center and 
validated against the histopathology data.

Deep Learning Method
The VNE generator has multiple U-Net23 streams to pro-
cess cine frames and T1 maps (including inversion-recovery 
weighted images) and to produce feature maps, similar to pre-
viously described methods.18 The feature maps by U-Nets are 
concatenated and input into a further neural network block to 
fuse the information from multimodalities and produce a final 
VNE image (Figure 1A).

The neural networks were trained using a conditional gen-
erative adversarial network approach24 tailored for this VNE 
application. The generative adversarial network optimizes the 
generator G together with 2 adversarial discriminators D1 and 
D2. G was trained to produce VNE images that match LGE 
images in perceptual similarity25 (using a pretrained VGGNet26) 
and pixelwise similarity (as measured by L1 loss), resem-
ble LGE in image appearance (supervised by D1), and have 
improved image clarity learned from cine images (supervised 
by D2; Figure 1B). D1 was trained to distinguish VNE and LGE 
images and D2 was trained to distinguish the clarity of low-level 
image features randomly sampled from VNE and cine images 
(Figure 1C). To improve the transparency of the deep learning 
decision making, an additional convolutional layer was attached 
at the end of the cine and T1 map streams, producing interme-
diate VNE signals that match LGE in pixelwise similarity. Full 
deep learning details are provided as Expanded Methods in 
Supplemental Material 2 for reproducibility.

Image Quality Assessment and Data Analysis
Three experienced clinical operators (M.K.B., M.S., C.N.) and 
2 senior CMR radiographers (R.M., J.L.P.) scored the image 
quality of VNE and LGE blindly, as described previously.18 A 
scale from 0 to 100 was used and guided by 5 categories: 
uninterpretable (score 0 to 20), poor quality (score 21 to 40), 
acceptable (score 41 to 60), good quality (score 61 to 80), or 
excellent quality (score 81 to 100). Semiautomated myocardial 
lesion quantification by VNE and LGE was performed as fol-
lows: epicardial and endocardial left ventricular (LV) contours 
were initialized automatically27 and corrected manually on all 
images by an experienced blinded operator. A remote reference 
region of interest without LGE and an LV blood pool region 
of interest were added and scar region of interest was calcu-
lated using the full width at half maximum method, taking aver-
age signal intensities of the remote myocardial and LV blood 
pool regions of interest as the minimum and maximum values. 
Myocardial scar volume fraction was quantified for each patient 
as the sum of the lesion area divided by the total LV myocardial 
area in all available short-axis slices. Two CMR experts (M.K.B., 
V.M.F.) independently scored the test VNE and LGE images on 
visuospatial agreement and myocardial scar extent, with any 
differences in assessment achieved by consensus.

Transmurality was measured using the centerline chord 
method17 by calculating the extent of the scar along 100 equally 
placed chords drawn on the LV myocardium on each slice. 
Distribution of the transmurality was visualized using the American 
Heart Association 16-segment model,28 with a colormap to 
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indicate the likelihood of myocardial viability.6 This viability-likeli-
hood colormap was inspired by the landmark study by Kim et al.,6 
which showed that up to 80% of myocardial segments with <25% 
transmural LGE extent may gain functional recovery after revas-
cularization, compared with <10% of segments in which infarction 
is >50% wall thickness. Mean scar transmurality for each patient 
was calculated by averaging the transmurality across all the chords 
on all available slices that had at least 1% of scar extent.17

Statistical Analysis
Statistical data analysis was performed in Python (version 3.9.6) 
using SciPy (version 1.6.2) and Pingouin (version 0.4.0) packages. 
For image quality assessment and control, interobserver variabil-
ity was calculated as standard deviation and intraclass correla-
tion coefficient (ICC). The statistical significance of differences in 
VNE and LGE quality scores was analyzed using nonparametric 
Wilcoxon tests. Correlation between scar size and transmurality by 
VNE and LGE was assessed using linear least-squares regression 
(taking VNE as exposure variables, LGE as outcome variables), 
Pearson correlation coefficients, and ICC. The model ICC(3,k) was 
used to evaluate both the strength of correlation and the concor-
dance.29 Bland-Altman analysis was performed to analyze any 
systematic differences between quantification by VNE and LGE. 
Statistical significance was defined as P<0.05.

RESULTS
Study Population
A total of 912 patients (64±11 years of age; 81% 
male) with evidence of previous MI on CMR imag-

ing were included in the study. These patients were 
recruited from the Oxford clinical CMR service (719 
patients providing 2585 imaging data set triplets of 
slice-matched native T1 maps, cine, and LGE short-
axis images) and the OxAMI study (193 patients 
providing 1686 imaging data set triplets; Figure 2). 
Overall, data from 842 patients (64±11 years of age; 
81% male) were included in the training data set and 
70 patients (66±11 years of age; 81% male) in the 
test data set. Patient characteristics, including cardio-
vascular risk factors, history of revascularization, and 
age at previous MI, are presented in the Table 1.

CMR Training and Test Data Sets
Of the 912 patients, 842 (3955 image triplets) had 
postcontrast short-axis cines, which were translated 
into synthetic precontrast (Supplemental Material 3). 
These synthetic precontrast cines alongside precon-
trast T1 maps were used for the training data set. LGE 
images were also included in the training data set and 
underwent strict quality control, rejecting any subopti-
mal quality LGE images, so that the neural networks 
trained on these materials learned to produce good-
quality LGE-like VNE images. In total, 3002 triplets of 
matching native T1 maps, synthetic precontrast cine, 
and LGE images (775 patients) were used for train-
ing. Seventy separate patients (316 triplets of images) 
had short-axis cine images acquired before gadolin-
ium contrast injection and were all reserved for the 

Figure 1. Deep learning approach of VNE for myocardial infarction.
A, The neural network that combines cine frames and T1 maps (including inversion recovery–weighted images) and produces virtual native 
enhancement (VNE) images. B, Training VNE generator with a modified conditional generative adversarial network (cGAN) approach. C, 
Simultaneous training of 2 discriminators D1 and D2. LGE indicates late gadolinium enhancement; and MRI, magnetic resonance imaging.
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independent test data set to generate VNE images 
that were completely free of contrast agent. After qual-
ity control, 291 triplets (from 68 patients) were output 
from the independent test data set for multiobserver 
quality assessment of LGE and VNE before infarct scar 
quantification (Figure 2).

CMR imaging (with precontrast cines, T1 maps, and 
LGE) and histopathology data from a porcine model of 
MI (n=2) were obtained for proof-of-principle demon-
stration of visuospatial agreement between VNE and 
LGE against histopathology.

Image Quality
VNE provided significantly better image quality than 
LGE, as assessed by all 5 blinded operators. Aver-

age quality scores (on the previously described 0- 
to 100-point scale) were 77.9±5.9 for VNE versus 
66.8±4.5 for LGE (n=291; P<0.001; Wilcoxon test; 
Figures S2 and S3). Interobserver variability values 
were SD=9.82±1.25 and ICC=0.82±0.03. Cases with 
LGE scored as uninterpretable (11 image slices out of 
291) were excluded from further MI assessment, as 
shown in Figure S4A. An additional patient with previ-
ous MI and concomitant substantial valvular heart dis-
ease with a severely thinned and dilated left ventricle 
(3 image slices) was identified during quality control 
and rejected (Figure S4B). A total of 277 triplets of 
matching native T1 maps, precontrast cine, and LGE 
images (66 patients) ultimately were available for the 
VNE independent testing data set for further scar bur-
den quantification and viability assessment.

Figure 2. Flow of patient selection for VNE development and testing using clinical data sets.
Clinical data sets used were from the University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR) and the OxAMI 
study (Oxford Acute Myocardial Infarction). The training data set underwent strict late gadolinium enhancement (LGE) quality control to 
train the neural network to produce good-quality virtual native enhancement (VNE) images. The test data set went through initial rejection 
followed by multiobserver quality control. Rejected test data are available in Figures S1 and S4. *The generative adversarial network (GAN) 
translating postcontrast cine is specified in Supplemental Material 3. GBCA indicates gadolinium-based contrast agent; and LGE, late 
gadolinium enhancement.
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MI Scar Size and Transmurality
Myocardial scar quantification was performed on the inde-
pendent test data set consisting of 277 short-axis pairs of 
VNE and conventional LGE images from 66 patients. Four 
representative patient examples are given in Figure 3A 
through 3D, showing VNE and LGE images alongside 
their detected scars (infarcted regions delineated in or-
ange) and transmurality of the scar displayed on bullseye 
plots for each patient. On bullseye plots, the scar transmu-
rality of each chord was color-encoded into the ranges 0 
to 25% (green), 26% to 50% (light green), 51% to 75% 
(light red), and 76% to 100% (red). These correspond to 
likelihood of myocardial viability, judged as viable, likely vi-
able, likely nonviable, or nonviable, respectively, per routine 
clinical practice and landmark studies that showed <10% 
of segments with >50% infarct transmurality regain func-
tion after revascularization.6 VNE detected a left anterior 
descending artery territory myocardial scar in patient A, a 
left circumflex territory scar in patient B, a multiterritory 
myocardial scar involving the left anterior descending and 
right coronary artery territories in patient C, and little scar 
signal in patient D, all with VNE images closely matching 
the signals detected by LGE (Figure 3).

In the 66 test patients, VNE showed strong identity 
correlation with LGE in quantifying myocardial lesion bur-
den for both infarct scar size (Figure 4A; P<0.001) and 
transmurality (Figure 4B; P<0.001). The high agreement 
in both scar size (R=0.89, ICC=0.94) and scar trans-
murality (R=0.84, ICC=0.90) supports the promise of 
VNE to replace LGE for noninvasive and contrast-free 
myocardial scar assessment. Bland-Altman plots (Fig-
ure 4) showed excellent accuracy with high precision 
and no significant bias. The mean differences between 

VNE and LGE were within ±2% for both scar volume 
fraction and transmurality, with a 95% confidence inter-
val upper bound of 11% and lower bound of −11% for 
scar volume fraction and upper bound of 24% and lower 
bound of −21% for transmurality. The observed differ-
ences between VNE and LGE are within the range of 
reported LGE intramethod variability and interlaboratory 
inconsistencies.30 There was no significant difference 
in scar assessment between male and female patients 
using VNE (Figure S5).

Histopathologic Comparison
Contrast-free VNE images were generated using pre-
contrast cine and native T1 maps from the porcine test 
data set (n=2) and compared with LGE imaging and 
slice-matched histopathology. Histopathologic data 
(macroscopic anatomic specimens, hematoxylin & eo-
sin staining, and collagen accumulation on Masson tri-
chrome stains) were acquired 48 hours after the final 
CMR scans and matched to the corresponding VNE and 
LGE images. VNE revealed clear evidence of transmu-
ral MI involving the entire left anterior descending artery 
territory in both cases (Figure 5). The pattern, size, and 
visual extent of the scars on VNE were in high agree-
ment with those of LGE. Quantitative infarct sizes for the 
2 cases were VNE 29.2% versus LGE 30.7% and VNE 
25.9% versus LGE 24.8%, respectively. There was ex-
cellent visuospatial agreement between the myocardial 
scar shown on VNE (Figure 5A) and LGE (Figure 5B), 
macroscopic scarring on anatomic ex vivo slices (Fig-
ure 5C), histologic evidence of infarction and fibrosis on 
hematoxylin & eosin staining (Figure 5D), and collagen 
accumulation on Masson trichrome staining (Figure 5E).

Table 1.  Characteristics of the Patients Whose Cardiovascular Magnetic Resonance Imaging Data Were Used for the Develop-
ment of Virtual Native Enhancement Deep Learning Models

Characteristics 

All (n=912) Training data set (n=842) Test data set (n=70)

Values n* Values n* Values n* 

Age, y 64.1±11.3; 65.0  
(57.0–73.0)

911 63.9±11.4; 64.0  
(57.0–73.0)

841 66.2±10.8; 68.5 
(60.0–74.0)

70

Male 740 (81.3) 910 683 (81.3) 840 57 (81.4) 70

Body mass index, kg/m2 28.6±5.1 907 28.6±5.0 837 28.6±5.6 70

Cardiovascular risk factors

 Diabetes 172 (20.8) 827 160 (20.7) 773 12 (22.0) 54

 Hypertension 321 (40.7) 788 297 (40.0) 743 24 (53.3) 45

 Hypercholesterolemia 299 (38.3) 780 279 (38.0) 734 20 (43.5) 46

 Smoking history 228 (29.4) 775 216 (29.6) 730 12 (26.7) 45

 Chronic kidney disease 127 (16.0) 794 124 (16.6) 746 3 (6.3) 48

Previous revascularization 486 (54.5) 891 447 (54.4) 822 39 (56.5) 69

Known history of previous myocardial infarction 676 (74.1)  624 (74.1)  52 (74.3)  

 Time since known previous myocardial infarction, mo 7.0 (5.3–35.8) 912 7.0 (5.0–43.5) 842 6.4 (5.9–8.8) 70

Counts are presented as number (%) and continuous variables as mean±SD; median (interquartile range). 
*The actual number of patients with the reported characteristics retrospectively available from the clinical reports and cardiovascular magnetic resonance scan 

reports. There were no statistically significant differences between the characteristics of the training and test set.
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Individual Slice Review of the Human Data
Two CMR experts (M.K.B., V.M.F.) independently reviewed 
the 277 slices of test VNE and LGE images on visuo-
spatial agreement and infarct extent as part of the qual-
ity control consensus process. A total of 46 out of 277 
(17%) slices had VNE–LGE discrepancies that were at-
tributable to technical factors: position mismatch (29/46 
slices), poor native or LGE image quality (11/46 slices), 
and presence of artefacts (6/46 slices). VNE had excel-
lent agreement on both visuospatial location and scar ex-
tent with LGE in the remaining good-quality paired data 
sets (194/231 slices).

In the remaining 37 out of 231 (16%) slices that were 
of good quality and well-paired between VNE and LGE, 
there were true discrepancies in lesion characterization 
not attributable to the technical factors noted. In 19 of 
these 37 slices, VNE did not detect small subendocar-
dial LGE-positive areas, potentially because of very thin 
myocardial walls or limited subendocardial scar extent 
(ie, very small MIs). In a further 11 slices, VNE–LGE 
differences were associated with evolving T1 signal 
abnormalities after recent acute MI: in 3 of these slices, 
VNE detected more extensive lesions in areas of high 
myocardial T1 in the absence of LGE (possibly because 

Figure 3. Examples to illustrate high agreement between LGE and contrast agent–free VNE for the visuospatial distribution and 
transmurality of myocardial scar.
A through D, Three short-axis slices of late gadolinium enhancement (LGE) and virtual native enhancement (VNE) images of the same patient 
are shown on the left (color masks were used to depict areas of scar as orange and noninfarcted myocardium as dark blue); on the right, scar 
transmurality measured by LGE and VNE is shown, suggesting the likelihood of myocardial viability (0 to 25%, viable; 26% to 50%, likely viable; 
51% to 75%, likely nonviable; 76% to 100%, nonviable). Dashed lines delineate presumed boundaries between myocardial territories. Arrows 
point to the areas of scar. LAD indicates left anterior descending artery; LCx, left circumflex artery; and RCA, right coronary artery.
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of residual myocardial edema still present after large 
acute MIs). In total, there were 4 slices in which VNE 
lesions had perceivably brighter signal intensity than on 
the corresponding LGE images. In 8 slices, VNE had 
missed portions of LGE-positive myocardium in areas 
of potentially low or pseudonormalized T1 that corre-
sponded to large areas of microvascular obstruction 
after acute MI. Overall, there were 33 false-negative 
slices (from 14 individual patients) in which VNE either 
did not detect small areas of scar or detected them 
to a lesser extent than shown on LGE. There were no 
cases where VNE falsely introduced a myocardial scar 
in LGE-negative slices. Overall, on CMR expert review, 
VNE demonstrated an accuracy of 84% in detecting 
a scar when compared with LGE, with a specificity of 
100% and a sensitivity of 77%.

DISCUSSION
This study makes several major contributions. In a large 
data set from patients with a history of previous MI, as-

sessment of myocardial scars using VNE demonstrated 
superior image quality compared with LGE CMR, with 
excellent agreement in visuospatial distribution, scar 
size, and transmurality (Figures 3 and 4). Proof-of-prin-
ciple histopathologic comparison showed that VNE had 
excellent visual agreement with the degree of infarction 
on macroscopic pathologic specimens and hematoxylin 
& eosin staining as well as collagen accumulation on 
Masson trichrome staining (Figure 5). VNE represents 
a potential paradigm shift in CMR imaging for assess-
ment of myocardial scars, as it can allow significantly 
faster, lower-cost, and contrast-free CMR scans with 
improved image quality and similar accuracy to the cur-
rent gold standard LGE in an easy-to-use format ready 
for routine clinical use.

The major advantages of VNE are that it obviates the 
need for gadolinium contrast administration and can sub-
stantially shorten scan time. Debates around the safety 
of gadolinium contrast continue, because studies have 
shown gadolinium deposition in the brain after repeated 
administration31,32; gadolinium-based contrast agents are 

Figure 4. Assessment of myocardial scar size and transmurality using VNE.
Virtual native enhancement (VNE) correlated strongly with late gadolinium enhancement (LGE) in scar size as a volume fraction of the sampled 
left ventricular (LV) myocardium (A) and in quantifying the mean transmurality of scarred chords per patient (B) in 66 test patients. Mean scar 
transmurality for each patient was calculated by averaging the transmural scar extent across all the chords (using the centerline chord method) 
that had at least 1% of scar extent on all available slices. Top, Correlation plots with the linear regression equations, Pearson correlation 
coefficients (R), statistical significance of correlation (P value), and intraclass correlation coefficients (ICC; 95% CI shown in brackets) provided. 
Bottom, Bland-Altman plots to analyze any systematic differences between quantification by VNE and LGE. 
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also used with caution in certain populations, including 
those with kidney disease,33 which is present in ~20% of 
patients with MI (Table 1).34 Noncontrast imaging short-
ens scan times and can reduce costs. Others have also 
recognized the importance of minimizing gadolinium use 
and applied native T1 mapping to characterize myocardial 
scars in animal13 and human studies of previous MI12,15–

17; however, this requires complicated quantitative post-
processing image analysis, which is time-consuming and 
unrealistic for routine clinical practice. Clinical research is 
increasingly turning to AI-based technologies to address 
necessary improvements in patient care and clinical 
throughput, including rethinking contrast enhancement 
mechanisms in radiology. VNE is a novel solution, given 
that the technology offers immediate and visually diag-
nostic representation of T1 maps not previously possible, 
with excellent agreement with LGE CMR, superior image 
quality, and good histopathologic correspondence.

Landmark studies using LGE CMR to assess myo-
cardial scars and viability performed histopathologic 
validation. The spatial extent of late enhancement in a 
canine model of chronic infarction was shown to match 
the spatial extent of collagenous scars and replacement 
fibrosis35 and ex vivo LGE CMR accurately quantified 
and characterized different histologic grades of fibrosis 
in infarcted swine hearts.36 Recent porcine models of 
MI have incorporated native T1 mapping alongside LGE, 
providing further validation that these imaging technolo-

gies closely correlate with infarction on histopathology, 
although extent and viability are underestimated if using 
T1 mapping alone.14,37 This may be because T1 values 
of tissues in vivo are dynamic and can change over 
time. This is seen in the biology of chronic infarct scars, 
which can develop lipomatous metaplasia with collagen 
replacement by interstitial adipocytes and subsequently 
lower T1 values38,39; in acute MI, infarct size and transmu-
rality on LGE may be overestimated because of expan-
sion of the extracellular space from myocardial edema, 
allowing increased gadolinium contrast uptake.40–42 VNE 
technology provides a solution to this by combining T1 
mapping with cine imaging signals containing functional 
wall motion information, which can improve sensitivity in 
detecting and quantifying myocardial scars when com-
pared with using T1 mapping on its own. Proof-of-princi-
ple demonstration that VNE closely matches the spatial 
extent of myocardial scars on histopathology in a porcine 
model of MI, alongside LGE, is also provided.

True discrepancies between VNE and LGE on good-
quality and well-paired human data sets provided inter-
esting insights to inform directions for future work. These 
were primarily attributable to cases in which VNE did not 
detect small subendocardial scars. This may be caused by 
very thin myocardium (particularly in the lateral and api-
cal walls), minimal or absent signal on raw T1-weighted 
images in the presence of normal wall motion, limited 
subendocardial infarct extent, and better blood pool 

Figure 5. Histopathologic comparison of VNE on 2 porcine model cases 8 to 9 weeks after myocardial infarction.
Infarction was induced with ligation of the left anterior descending artery for 90 minutes followed by reperfusion. In both cases, virtual native 
enhancement (VNE) detected chronic myocardial infarction (arrows) in the left anterior descending territory (A) and was in high visual 
agreement with late gadolinium enhancement (LGE; B) and the ex vivo pathologic slices. These slices demonstrate macroscopic evidence of 
infarction (C); the infarcted region is pale pink on hematoxylin & eosin (H&E) staining (D), with collagen accumulation shown in light blue on 
Masson trichrome stain (E).
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nulling for LGE acquisitions. VNE detection of small sub-
endocardial scars may be improved by using larger data 
sets of small, subendocardial scars for machine learn-
ing, combined with enhanced blood pool nulling algo-
rithms, and alongside strict quality control procedures 
and slice selection. VNE–LGE differences may also be 
explained by evolving T1 signal abnormalities after acute 
MI, either because of high myocardial T1 (likely reflecting 
residual edema) or potentially low or pseudonormalized 
T1 (because of large areas of previous microvascular 
obstruction, intramyocardial hemorrhage, and develop-
ment of fatty metaplasia within the scar). Further training 
on more acute and varied pathologies, as discussed in 
the following, can overcome these limitations.

There were no cases where VNE falsely introduced 
a myocardial scar in an LGE-negative patient, but there 
were 4 examples (from 2 individual patients) where VNE 
displayed a similar scar location to that on LGE, but with 
greater extent and higher signal intensity in a blooming-
like effect, largely because of enhanced signal abnor-
malities on T1 maps. Although a scar on LGE is taken as 
ground truth, in the absence of histopathology in human 
participants, it is worth considering whether VNE may 
provide more information than LGE in highlighting the 
extent of abnormality within the myocardium perhaps not 
apparent on conventional LGE, given that up to 20% of 
LGE-negative segments do not show functional recov-
ery despite successful revascularization.6 Further work to 
determine the clinical and functional relevance of such 
lesions is required.

A robust quality control process is essential for clinical 
translation of AI technologies to provide confidence that 
the images generated are reliable to inform clinical deci-
sion-making. Here, the incorporation of an automated 
deep learning quality control algorithm into the data pro-
cessing pipeline,27,43 followed by manual inspection and 
alongside strict image acquisition standardization pro-
cesses,21 will help reassure the end user of clinical reli-
ability. This may be improved upon using T1 map motion 
correction strategies.44 A further benefit of the VNE 
technology is that images can be checked in real time on 
the scanner, allowing the operator to reacquire images 
if necessary to confirm findings and ensure sufficient 
image quality without time pressure or concerns about 
contrast washout. VNE may enable effective screening 
to determine whether contrast injection is required in a 
scan before completely replacing LGE, similar to a previ-
ous report,45 or be combined with gadolinium-free stress 
CMR for IHD assessment.46–48 VNE can thus provide a 
comprehensive myocardial scar assessment with supe-
rior image quality to LGE CMR and quicker throughput 
(currently ~10 to 15 minutes for a full viability study 
protocol) than existing rapid IHD protocols.49 This may 
be improved upon with the use of existing accelerated 
acquisition strategies. A case example of real-world real-
time clinical use is given in Supplemental Material 4.

Limitations
This study has several limitations. VNE technology has 
been validated in hypertrophic cardiomyopathy18 and 
now for assessment of myocardial scars in patients 
with a history of previous MI; further work is required to 
expand VNE to the full spectrum of myocardial patholo-
gies. Patient characteristics associated with the CMR 
materials for this VNE development were retrospec-
tively collated from historical clinical reports and scan 
reports, meaning some individual characteristics were 
not available. Although the close correlation between 
VNE and LGE may imply similar outcomes on the ba-
sis of previous landmark studies using LGE to assess 
myocardial viability and functional recovery,6,10 we have 
not directly assessed viability and prediction of func-
tional recovery in this study. Patients with acute MI were 
excluded from this study because of the potential con-
founding effects of acute myocardial edema, although 
some patients with MI in this study may still have had 
residual edema despite being several months out from 
the acute event. Given that T1 mapping reflects differ-
ent myocardial tissue properties than LGE and offers 
additional sensitivity to edema, further development 
of VNE may allow the differential characterization of 
acute pathologies beyond LGE, potentially including 
other edema-sensitive modalities such as T2-based 
imaging.50 Multicenter validation linking VNE to clinical 
outcomes across a range of pathologies will inform the 
next steps toward widespread rollout into clinical prac-
tice once it is proven to be a reliable clinical tool.

Conclusions
VNE shows promise as a transformative and paradigm-
shifting AI-based technology for the future of CMR 
imaging. It has superior image quality to conventional 
LGE, can be applied to clinical practice in a ready and 
easy-to-use format that is familiar to clinicians, and 
does not require contrast agents. VNE demonstrates 
high agreement with LGE CMR and histopathology for 
the assessment of myocardial scars in cases of pre-
vious MI. There is great potential for VNE to reduce 
scan times and costs, increase clinical throughput, and 
improve the accessibility of CMR for patients in the 
near future.
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