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ABSTRACT
◥

The somatic landscape of the cancer genome results from
different mutational processes represented by distinct “muta-
tional signatures.” Although several mutagenic mechanisms are
known to cause specific mutational signatures in cell lines, the
variation of somatic mutational activities in patients, which is
mostly attributed to somatic selection, is still poorly explained.
Here, we introduce a quantitative trait, mutational propensity
(MP), and describe an integrated method to infer genetic deter-
minants of variations in the mutational processes in 3,566
cancers with specific underlying mechanisms. As a result, we
report 2,314 candidate determinants with both significant

germline and somatic effects on somatic selection of mutational
processes, of which, 485 act via cancer gene expression and 1,427
act through the tumor–immune microenvironment. These data
demonstrate that the genetic determinants of MPs provide
complementary information to known cancer driver genes, clon-
al evolution, and clinical biomarkers.

Significance: The genetic determinants of the somatic muta-
tional processes in cancer elucidate the biology underlying somatic
selection and evolution of cancers and demonstrate complementary
predictive power across cancer types.

Introduction
Cancer acquires malignant phenotypes through various somatic

mutations in the genome, which result in functional gains or losses
contributing to the tumor fitness (1). Somatic driver mutations are
critical for cancer initiation and evolution and cause the genetic
heterogeneity, which determines the clonal architecture in cancers (2).
The mutations occur through different mutational processes, which
are evidenced in distinct mutational signatures represented by the
frequencies ofmutationswithin correspondingnucleotide contexts (3).
The mutational signatures surrogate for the mutational processes
during tumorigenesis, which drive the clonal evolution (4), and in
turn, impact the complex clinical phenotypes of the disease (5).

So far, there are 67 signatures of single-base substitution (SBS)
identified, of which, 49 were considered likely to be of biological
origin (6). The mutagenic mechanisms of some mutational signatures
have been elucidated in cell lines or mouse models (7, 8). External
mutagens, such as tobacco smoking and UV, result in specific muta-
tional signatures; then alterations of certain biological functions, such
as deficiencies in double-strand breaks (DSB) repair mechanism and
APOBEC enzymatic activities give rise to specific mutational signa-
tures (3, 6). Finally, the random mutations can change the fitness
of the tumor cells; hence, they are subject to extrinsic selective
pressures such as immune responses, chemotherapy regimen, and
targeted therapies (9–11). For instance, APOBECmutational signature
is a predictive marker for immunotherapy response in non–small cell
lung cancer.

The activities of the mutational signature vary substantially among
individual cancers, suggesting complex biological mechanisms under-
lying somatic selection of mutational processes (3, 12). The mutagenic
processes only partially account for the activities of the mutational
signatures in patients with cancer. For example, APOBEC3B activity
contributes to SBS2 and SBS13; however, APOBEC3B expression
only explains 20% to 30% of the total variance of the APOBEC
mutational signature (Spearman r ¼ 0.3), whereas the causes of the
rest of the variation are still unknown (13). Likewise, SBS4 is caused
by exposure to tobacco smoking (9). However, no more than 20% of
the SBS4 activities are explained by the tobacco exposure level in
lung squamous cell carcinomas and lung adenocarcinomas (14). It
appears that, although the causal mutagenetic factors of the muta-
tional processes are known, the majority of the intertumor varia-
tions in the activities of the mutational processes in real patients are
still largely unexplained.

However, there still lacks reliable methodology for identification of
the genetic determinants of somatic selection of mutational process-
es (15). The major challenges are, first, the measure of the activities of
the mutational signatures, which are regularly confounded by con-
tamination, sequencing errors, and mapping biases among the cancer
samples (16). Moreover, the distribution of the signature activities in
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cancers are usually heavily skewed, to which most of the linear models
do not fit and fail to reveal the statistical associations. Therefore, in this
study, we introduced the quantitative trait of mutational propensity
(MP), which is tethered to the relative activity between a given
signature and a reference signature. The MP is quasi-normal distrib-
uted and more explainable by linear models. Then, we described a
regression model integrating evidences from both germline and
somatic levels to identify the genetic determinants of somatic selection
of mutational processes. In addition, we inferred the causal biological
mechanisms for the candidate determinants of the mutational pro-
cesses via cancer gene expression and tumor–immune microenviron-
ment (TIME).

Previous studies identify cancer driver genes (or driver mutations),
of which, the mutational statuses are significantly associated with
specific mutational processes (17, 18). However, the genetic determi-
nants that impact the mutational processes are rarely reported until
recently (19). We hypothesized that the intra- and intertumor varia-
tions of the activities of the mutational signatures largely result from
the selection processes during somatic evolution, which is caused by
the heterogeneity in the genetic background, the somatic landscape,
and the microenvironment. Recent studies reported several cancer
genes with functional and clinical significance based on the effects on
the mutational processes (20, 21).

Our analyses provide a systematic view of the genetic determination
of somatic selection of themajormutational processes in 3,566 cancers
from The Cancer Genome Atlas (TCGA) and suggest highly relevant
biological processes with clinical and therapeutic implications. In
addition, the study described an alternative approach to identify cancer
genes based on the process of clonal evolution, which further broadens
our understanding of the formation of intratumor heterogeneity and
informs the future precision medicine for cancer.

Materials and Methods
Data collection

We analyzed multiomics data on 13 cancer types including breast
Cancer (BRCA, N ¼ 690), colorectal cancer (COAD, N ¼ 344),
esophageal adenocarcinomas (EAC, N ¼ 82), squamous-cell carcino-
mas (ESCC, N ¼ 31), glioblastoma multiforme (GBM, N ¼ 326),
kidney renal clear cell carcinoma (KIRC,N¼ 299), liver hepatocellular
carcinoma (LIHC,N¼ 121), lung adenocarcinoma (LUAD,N¼ 427),
ovarian cancer (OV,N¼ 345), prostate adenocarcinoma (PRAD,N¼
231), stomach adenocarcinoma (STAD, N ¼ 213), thyroid carcinoma
(THCA, N¼ 82), and uterine corpus endometrial carcinoma (UCEC,
N ¼ 375; Supplementary Table S1).

The genotype data, germline, and somatic variants and mRNA
expressions were downloaded from Genomic Data Commons Data
Portal. The gene-based somatic copy number alterations (SCNA) and
DNA methylation were downloaded from UCSC Xena TCGA hub
(https://tcga.xenahubs.net). The gene fusions were downloaded from
Tumor Fusion Gene Data Portal (https://tumorfusions.org). The
immune characteristics were downloaded from the published
study (22, 23), including intratumor heterogeneity (ITH), immune
cell fractions, subtypes, and clone number (Supplementary Methods).

To avoid biases from the populational background, it is a general
practice to control for the ethnicity of the population. To infer the
ancestry, we performed principal component analysis using five
populations of the 1000 Genomes Project Phase 3 (1KGP) as refer-
ences. For a certain population, the genotypes were prephased using
SHAPEIT2 and imputed using IMPUTE2 with the 1KGP reference
panel for further analyses (Supplementary Methods; refs. 24, 25).

We calculated the gene-wise genetic burden for each class of
germline variants (missense, truncated, and structural variant) and
encoded the gene-wise statuses of somatic nonsynonymous mutations
(somatic nsy-mutations), SCNAs, methylation aberrations in the
promoter regions (TSS-methylation), and fusions for integrated
regression analyses (Supplementary Methods).

The matched multilevel data of 1,631 cancer cell lines were down-
loaded from the Cancer Cell Line Encyclopedia project (CCLE; https://
portals.broadinstitute.org/ccle), including the somatic mutations,
SCNAs, DNA methylations, and mRNA expressions. The profiling
protocols were consistent with the preference rules of TCGA
(Supplementary Methods). The 563 cell lines’ CERES scores were
downloaded from The Cancer Dependency Map Project at Broad
Institute (DepMap, v19q2; https://depmap.org). CERES score is a
computational method to estimate gene-dependency levels from
CRISPR-Cas9 essentiality screens while accounting for the copy
number–specific effect (26). The drug sensitivity data (IC50) of 305
drugs in 988 cell lines were downloaded from Genomics of Drug
Sensitivity in Cancer V8 (GDSC; https://www.cancerrxgene.org).

Deriving the consensus mutational signatures from multiple
cancer types

The distribution of mutational signatures (MS) activities is heavily
skewed; thus, it prevents the development of an optimized model for
the discovery of driver genes for these mutagenic processes. To
overcome the statistical obstacle, we retrieved the somatic mutational
signatures using “pmsignature” based on 5-nucleotide context (27).
This algorithm introduced a “background signature” that is designed
to capture biases in intrinsic genome sequence composition and is
calculated from the composition of consecutive nucleotides of the
human genome sequence (27). All the mutational signatures were
compared with the results of the SBS mutational signatures in the
COSMIC (https://cancer.sanger.ac.uk/cosmic) using cosine similarity
(CS) measure. To account for the confounding effects in the future
analysis, we set a threshold of 1 � 10�3 for the present call of a given
signature k. Then, we used the background signature as the reference
and generated a new statistical term called MP, which is the relative
activity of mutational signature as the ratio between the activities of a
given signature k and the reference (Eq. A).

MPki ¼ ln
MSki
MS7i

� �
ðAÞ

Here,MSki is the activity of the kth signature of ith individual;MS7i is
the reference signature (MS7); MPki is the kth mutational propensity.

We used Bioconductor package “deconstructSigs” to determine the
activities of the conserved mutational signatures in cancer cell
lines (28), and the MPs were computed in the same way as aforemen-
tioned. We compared the mean of MPs between the TCGA and CCLE
cohorts based on cosine similarity.

Integrated regression analyses suggest driver genes of
mutational processes

To estimate the effects of each gene on the mutational processes, we
combined seven classes of gene variations: germline variants (mis-
sense, truncated, and structural variant), somatic nsy-mutations,
SCNAs, TSS-methylation, and gene fusions. We excluded highly
polymorphic genes from the analysis, namely the human leukocyte
antigen genes and olfactory receptor genes. Then, for pan-Cancer and
cancer-specific analyses, we excluded the samples with low present call
(N < 30) and genes with very low mutation/variation rate (N < 5). We
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used the MPs to evaluate the effects of the mutational status of each
gene using a linear model for both pan-cancer (Eq. B) and cancer-
specific analysis (Eq. C). The regression coefficients of b represent the
effect sizes of the variations of genes.

MPki ¼ b0ij

1
Gmisij
Gtruij
Gstrij
Snvij
Scnaij
Methij
Fusij
Ci

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
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MPki ¼ b0ij

1
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Gtrunij
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1
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Here, "ijk � Nð0; s2Þ is a Gaussian error term; Gmisij refers

to the jth gene’s missense genetic burden of ith individual; and
Gtrunij; Gstrij; Snvij; Scnaij; Methij; and Fusij are the truncation
genetic burden, structural genetic burden, somatic nsy-mutation
status, SCNA status, TSS-methylation levels, and fusion status,
respectively; Ci is the cancer type. MPki is the kth mutational
propensity. We define a driver gene, of which, the germline variants
and somatic variants are both significantly associated with the MPs.

Instrumental variable regression analysis
We then aimed to find the genes, of which, the genetic features

impact the mutational processes through their expression levels by
performing instrumental variable analysis using the Julia (v1.1.1)
package of “FixedEffectModels.” Briefly, the dependent variable is the
MPs, the independent variable is the expression levels of genes that
significantly associated with MPs, and the genetic instruments are the
genetic features in Eq. B and Eq. C, which were previously found
significant (Eq. D).

MPki ¼ b0 þ b1 �mRNAij j GFijk þ Ci þ "ijk ðDÞ

Here, "ijk � Nð0; s2Þ is a Gaussian error term; MPki is the kth

mutational propensity of the ith individual; mRNAij is the jth gene
expression; GFijk are the genetic features; Ci is the cancer type.

Models with instrument variables were estimated using Two-Stage
least squares (2SLS; Julia package, FixedEffectModels). To determinate
the significance of the independent variables, we calculated FDR based
on the P values of the regression coefficients using Benjamini–
Hochberg procedure. To determinate the significance of the instru-
mental variables, we used theweak instruments testP values (29) based
on the Kleibergen–Paap rankWald F-statistic and estimated FDRweak.
Finally, we chose genes, of which, the expression levels and genetic
instruments were both significant to call E-genes (FDR < 0.1 and
FDRweak < 0.1).

Similarly, we performed the IV analysis to find the genes, of which
the genetic statuses impact the mutational processes through inter-
acting with the TIME. The dependent variable is the MPs, the

independent variable is the immune cell fraction (22), the genetic
instruments are the genetic features. Finally, we selected a set of genes,
of which genetic features associated with immune cell fractions,
and in turn, impacted somatic mutational processes (FDR < 0.1 and
FDRweak < 0.1), which were called I-genes.

Identify the drug-related candidate genes in cancer cell lines
To evaluate the effects of the candidate genes on the drug sensitivity/

resistance to therapy, we used a linear model to calculate the associ-
ation between the mRNA expression levels of E-genes and I-genes and
the IC50 of drugs (Eq. E):

IC50ik ¼ b0 þ b1 �mRNAij þ Ci þ "ijk ðEÞ

Here, "ijk � Nð0; s2Þ is a Gaussian error term; IC50ik is the IC50 of

the kth drug of ith cell line; mRNAij is the mRNA expression of the jth

gene; Ci is the cancer type.

Identify the genes associated with anti–PD-1 therapy response
To identify the genes associated with anti–PD-1 therapy response,

we performed a one-sided Student t test to capture genes that were
differentially expressed between the nonresponse groups (progressive/
stable disease, PD/SD) and response groups (partial/complete
response, PR/CR) in melanoma (N ¼ 55; ref. 30) and metastatic
gastric cancer (N¼ 45; ref. 31). A P < 0.05 was considered significant.

Identify common noncoding variants influencing themutational
processes

To examine the association between noncoding germline variants
and the mutational processes in cancers, we took the MP as a
quantitative trait and performed a whole-genome quantitative trait
loci (QTL) mapping based on linear model in both pan-cancer level
(Eq. F) as well as cancer-specific level (Eq. G), which resulted in a set of
mpQTLs significantly associated with the MPs (FDR < 0.1).

MPki ¼ b0 þ b1 � gij þ Ci þ "ijk ðFÞ

MPki ¼ b0 þ b1 � gij þ "ijk ðGÞ

Here, "ijk � Nð0; s2Þ is a Gaussian error term; MPki is the kth

mutational propensity of the ith individual; gij is the jth SNP’s genotype;
Ci is the cancer type.

Then, we used the significant variants as genetic instruments to
examine the association between the nearby genes of variants (< 1Mb)
and the corresponding MPs in each cancer type using Julia (v1.1.1)
package FixedEffectModels (Eq. H):

MPki ¼ b0 þ b1 �mRNAijl j gijk þ Ci þ "ijkl ðHÞ

Here, "ijkl � Nð0; s2Þ is a Gaussian error term; MPki is the kth

mutational propensity of the ith individual; mRNAijl is the lth gene

expression nearby the jth SNP (<1 Mb); gijk is the genotype of the jth

SNP, which is significantly associated with the kth MP; Ci is the cancer
type.

Annotation of biological processes determine the mutational
processes

The above E-genes and I-genes were then subjected to gene set
enrichment analysis using gene sets including Reactome (MSigDB
v6.1) and Hallmark (MSigDB v6.1), Kyoto Encyclopedia of Genes
and Genomes (MSigDB v6.1).

Driver Genes and Variants of Mutational Processes in Cancers
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Gene sets enrichment test
We performed Fisher exact test to evaluate the enrichment of

E-genes and I-genes enriched for known cancer driver gene sets using
R packages GeneOverlap.

Clinical analysis
To assess the effects of E-genes and I-genes on the treatment

outcome, we collected a cohort of 60 patients with LUAD from The
First Affiliated Hospital of Xiamen University (FHXU, Xiamen,
China). Informed written consent was obtained from each subject or
each subject’s guardian. The usage of patient data is approved by the
ethics committee/institutional review board of FHXU (Xiamen, Chi-
na). We used a logistic regression to evaluate the interaction between
somatic mutational burden of E-genes or I-genes and the targeted
therapies on the binary clinical outcomes (PR and PD/SD), adjusting
for clinical covariates including stage and smoking. A P < 0.05 was
considered significant.

The Kaplan–Meier method was utilized to estimate overall survival,
and difference between groups was assessed using the log-rank test.
A P < 0.05 was considered significant.

Data availability statement
The Code Ocean capsule containing the necessary data and codes to

replicate the results of this study can be found at https://codeocean.
com/capsule/6181333/tree/v1 (DOI: 10.24433/CO.2000361.v1).

Results
Mutational propensity in thirteen cancer types

We obtained a dataset of 13 cancer types from TCGAwithmatched
germline variants, somatic mutations, SCNAs, DNAmethylation, and
expression of mRNA (32). After filtering for populational background
and removal of unmatched individuals, we identified a population of
3,566 Utah residents of northern and western European ancestry
(CEU; Fig. 1; Supplementary Fig. S1A and S1B; Supplementary
Table S1) for the following analysis.

To derive a quantitative trait for intertumor variations in the
mutational processes, wefirst retrieved seven highly conserved somatic
mutational signatures (MS) from the mutational profiles based on a
5-nucleotide context (Fig. 2A; Supplementary Fig. S2A–S2C). These
signatures are highly comparable with the known SBS signatures in the
COSMIC according to the cosine similarity (CS; Supplementary
Fig. S2D; ref. 6). For example, MS1 is highly similar to SBS1 (the
deamination of 5-methylcytosine, characterized by C>T at NpCpG
trinucleotide, CS¼ 0.97).MS2 associates with SBS2 (CS¼ 0.79), which
is attributed to the activity of the AID/APOBEC family of cytidine
deaminases. MS3 correlates with SBS6 (CS¼ 0.75), which is associated
with defective DNAmismatch repair (dMMR).MS4 correlates to SBS4
(CS¼ 0.87) caused by tobacco smoking. MS5 and MS6 correlate with
SBS10a (CS ¼ 0.96) and SBS10b (CS ¼ 0.91), respectively, both of
which are caused by polymerase epsilon exonuclease (POLE) domain
mutations (3, 6). Finally, the MS7 universally correlates with the
multiple mutational signatures in the COSMIC databases (Supple-
mentary Fig. S2D). Among all MSs, MS7 is abundant in all nucleotide
contexts, representing the most recurrent and conserved mutations in
the genome, and is universally present in all cancer types; hence, it is a
suitable reference mutational signature in the following analysis.

To control for the latent confounders of between-sample variation
and improve the skewed distribution of MSs, we introduced MP as a
quantitative trait for somatic selection pressure over the MSs. MP is
defined as the natural log ratio of the activities between a signature of

interest and the reference signature (Eq. A). Hence, a positive MP
indicates that the corresponding mutational process is positively
selected in the given cancer. After removal of the extreme values, the
MPs in the cancer population follow approximately normal distribu-
tion (Fig. 2B and C).

The MPs retain the important biological properties of the original
MSs (Fig. 2D). Of note, in LUAD,COAD, andUECE, tumor with high
tumor mutation burden (TMB) inclined to specific MPs, suggesting
the corresponding mutational processes are dominant in high TMB
tumors. Among the 13 cancer types, the effect sizes (Spearman rho) of
MPs on TMB are strongly correlated with those of the original MSs
(R ¼ 0.822, P < 2.20 � 10–16; Fig. 2E). We calculated the Shannon
index based on the activities of MS as a measure of diversity of the
mutational processes. Our data suggested that tumors with more
diverse mutational processes showed significantly increased number
of clones (P ¼ 7.00 � 10–4; Supplementary Fig. S3A–S3C) and the
effect sizes (Spearman rho) ofMPs on ITH are strongly correlated with
those of MSs (R ¼ 0.795, P < 2.20 � 10–16; Fig. 2F). We also noticed
that theMPs are significantly associated with tumor immune subtypes
(Supplementary Fig. S4).

To further validate theMPs in cell lines, we retrieved the sixMPs in 544
cancer cell lines ofCCLE representing 13 cancer types. TheMPs are highly
consistent between cancer tissues and the cell lines of the same cancer
typewith anoverall correlationof 0.957 (P¼ 1.00� 10–6;Fig. 2G).Within
each cancer type, the cosine similarity between TCGA sample and cell
lines ranges from 0.938 (ESCC) to 0.996 (EAC). The results suggested that
the MPs are highly conserved in both cancer tissues and cell lines; hence,
they are a robust surrogate for the mutational processes in cancer (33).

In addition, the MPs are significantly associated with IC50 of 116
drugs (FDR < 0.1). For example, MP3 is associated with the IC50 of
BRAF inhibitor (dabrafenib, FDR ¼ 0.0781 and PLX-4720, FDR ¼
0.0240); MP4 is associated with the IC50 of HSP90 inhibitors (CCT-
018159; FDR ¼ 0.0568; Supplementary Fig. S5), which is consistent
with the previous reports that treatment influences the mutability of
cancer (10, 34).

The genetic determinants of somatic selection of mutational
propensities in cancers

Next, we sought to identify genes that influence somatic selection of
MPs. We defined a regression model integrating the effects of the
germline statuses, the somatic statuses, and the epigenetic statuses
(TSS methylation levels). To determine the germline statuses of the
genes, we classified the 524,912 rare variants into three subtypes: 9,584
structural variants (>50 bp), 467,709 missense variants, and 47,619
truncated variants. Then, we computed the burden of each class of
variations separately for 17,810 genes. For the somatic mutational
statuses, we obtained a total of 820,907 single-nucleotide variants
(SNV), 163,544 deletions, and 54,084 insertions from TCGA for 3,566
cancers. We, then, retrieved 19,105 genes’ somatic mutational statuses
based on 797,814 nonsynonymous variants. The samples with high
TMB (>20) occur mostly in UCEC (17.6%), COAD (17.4%), and
STAD (16.0%), which is consistent with prior studies (35).

We evaluated 17,027 genes in 3,566 cancers and found 87.5% (N¼
14,903) genes, of which at least one type of genetic status was
significantly associated with the MPs (FDR < 0.1), suggesting a wide
influence of the mutational processes. Among the genes associated
with the MPs, 14,373 (84.4%) act at the pan-cancer level and 13
(0.0763%, ESCC) to 9,596 (56.4%, UCEC) are cancer specific. As for
the effect sizes, the somatic nsy-mutations were significant in
12,836 genes and accounted for most of the variations of MPs,
especially for MP5 (1.77% to 54.1%), MP6 (0.0864% to 27.0%), and
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MP3 (0.798% to 29.9%; Fig. 3A); followed by the SCNAs, which were
significant in 11,721 genes and accounted for 0.764% to 48.8% of the
variance of MP1 and MP3, respectively. Of note, there are a small
subset of genes, of which, SCNA statuses accounted formore than 40%
of the variance of MP1 (adjusted R2 > 0.4), including PIK3CA (FDR¼
6.68 � 10–4, adjusted R2 ¼ 0.477) andMAP3K1 (FDR ¼ 1.25 � 10–4,
adjusted R2 ¼ 0.478; Fig. 3A). In addition, the TSS-methylation of
8,199 genes accounted for over 10% of the variance ofMP2 and 20% of
the variance of MP6. Genes in this category include CDH1 (MP2,
FDR ¼ 2.75 � 10–5, adjusted R2 ¼ 0.162) and ERCC3 (MP6, FDR ¼
0.0318, adjusted R2 ¼ 0.227; Fig. 3A). The effect sizes of the germline
variants are much smaller than those of the somatic mutations
(Fig. 3A). The germline missense mutations were significant in
3,304 genes, followed by the truncated mutations, which were signif-
icant in 737 genes, and the structuralmutations, whichwere significant
in 107 genes. Gene fusions were significant in only 48 genes. Never-
theless, the fusion statuses of 12 genes showed very strong effects on
MP1 (R2 > 0.4).

To further validate the methodology, we chose a set of cancer genes
with known germline pathogenic effects for an internal validation,
including MBD4, BRCA1, BRCA2, and several dMMR genes (MLH1,
MSH2, MSH6, and PMS2). As a result, we found that MP1 (the
deamination of 5-methylcytosine) is influenced by the germline
truncation of MBD4 (P ¼ 9.17 � 10–3, adjusted R2 ¼ 0.467) and
BRCA2 (P ¼ 3.79 � 10–5, adjusted R2 ¼ 0.468) at pan-cancer levels,
which is consistent with the previous report (19). MP3 (dMMR-
related) is influenced by germline missense variants of PMS2 in LUAD
(P¼ 0.0431, adjustedR2¼ 0.0122) andMSH6 inBRCA(P¼ 3.93�10–4,
adjustedR2¼ 0.0232). AndMP2 (APOBEC-related) is influencedby the
missense variant of APOBEC3H (P¼ 3.61�10–3, adjusted R2 ¼ 0.156;
Fig. 3A).

Our data indicated thatmany genes are associatedwith theMPs, but
such associations do not necessarily imply any causal effects. To
ascertain the causal effect of a given gene, wemandated the significance
of both germline effect and nongermline effect on the same MP
(Supplementary Methods). Thus, we identified 2,314 candidate driver
genes of MPs in cancer based on FDR of 0.1 (Fig. 3B). Among the
candidate genes, 1,268 (54.8%) genes influence the MPs at pan-cancer
level, 935 (40.4%) in specific cancer types, and 111 (4.80%) are
significant at both pan-cancer and cancer-specific level, such as

BRCA1/2, FAT3, and SETDB1 (Fig. 3C). The majority of the can-
cer-specific candidate genes ofMP are identified inUCEC (38.4%,N¼
888), COAD (5.49%, N ¼ 127), and BRCA (1.17%, N ¼ 27). On the
other hand, 87.9% of the 2,314 candidate driver genes are associated
with unique MPs (Fisher exact test P < 0.01), suggesting the biological
mechanisms underlying somatic selection of mutational processes are
highly specific; 10.46% (N ¼ 242) are associated with two and only
1.64% (N¼ 38) are associatedwithmore than twoMPs (Fig. 3D).MP2
(N¼ 661), MP5 (N¼ 491), MP6 (N¼ 452), MP1 (N¼ 362), andMP3
(N ¼ 352; Supplementary Table S2A) are the mutational processes
with themost genetic determinants (90.3% total), whereasMP4, which
is caused by tobacco smoking has the least (N ¼ 310).

We also validated the candidate genes in the population of African
Ancestry in Southwest United States (ASW, N ¼ 564) and Han
Chinese in Beijing, China (CHB,N¼ 363). Among the 2,314 candidate
genes, the germline genetic burdens of 9 genes in ASW and 4 in CHB
are significantly associated with the same MPs as in CEU, and the
somatic statuses of 223 genes in ASW and 18 in CHB are significant
(Supplementary Table S2A).

To infer the biological processes mediating the effects of the
candidate determinant genes and the selection of mutational process-
es, we performed an instrumental variable (IV) regression for the 2,314
candidate driver genes based on two possible mechanisms of somatic
selection: first, the genetic and/or epigenetic statuses of a candidate
gene directly alter its expression level in cancers and influence the
fitness of the cell. As a result, we identified 485 unique “expression-
associated determinant genes” (E-genes; FDR < 0.1 and FDRweak <
0.1; Fig. 3B; Supplementary Table S2B). In another scenario, the
genetic and/or epigenetic statuses influence the selection ofmutational
process through interacting with the TIME. Thus, we identified
another set of 1,427 “Immune-interactive-genes” (I-genes; FDR <
0.1 and FDRweak < 0.1; Fig. 3B; Supplementary Table S2C).

We further analyzed candidate genes in detail and found that the
485 E-genes and 1,427 I-genes are both significantly enriched for
known cancer driver genes, such as the COSMIC cancer gene con-
sensus (CGCs; 2.39-fold, P¼ 1.30� 10–5; 1.74-fold, P¼ 2.80� 10–5)
and three other cancer driver gene sets (P < 0.05, OR ¼ 1.78–
4.05; Fig. 4A; refs. 15, 36, 37), suggesting the genetic determinants
of somatic selection of mutational processes we found are highly
consistent to the known cancer driver genes.
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Figure 1.

The schematic view of this study. In this study,
we introduced the quantitative trait of MP,
which is tethered to the relative activity
between a given signature and a reference
signature. Then, we described a regression
model integrating evidences from both germ-
line and somatic levels to identify the genetic
determinants of somatic selection ofmutational
processes and also performed mpQTL analysis
for MP-associated loci. In addition, we inferred
the causal biological mechanisms for the can-
didate determinants of the mutational process-
es via cancer gene expression and TIME.
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Cancer gene expression intermediates the genetic
determinants of mutational propensity

Of the 485 “E-genes,” 210 influence the MPs at pan-cancer level,
whichmainly affect themutational processes ofMP1 (N¼ 73,OR¼ 15.5,
P ¼ 3.41 � 10–43) and MP3 (N ¼ 23, OR ¼ 5.91, P ¼ 7.55 � 10–10;
Fig. 4B). There are also 283 “E-genes” acting in specific cancer types,most
of which are identified in UCEC (N¼ 244), COAD (N¼ 42), and BRCA
(N ¼ 10, Supplementary Table S2B).

The 485 E-genes are significantly enriched in pathways of cancer cell
growth and proliferation pathways, such as metabolism of RNA
(FDR ¼ 2.26 � 10–6), RNA polymerase III transcription (FDR ¼
3.72 � 10–3), cell cycle (FDR ¼ 3.86 � 10–3), and metabolism of
lipids (FDR ¼ 3.21 � 10–5; Fig. 4C). Many E-genes are well-known

cancer driver genes, such as BRCA1 (MP2, FDR ¼ 7.20 � 10–3),
PIK3R1 (MP6, FDR¼ 1.89� 10–5), while others are newly reported,
such as PPIP5K2 (MP1, FDR ¼ 0.00250) and SNX24 (MP6, FDR ¼
2.51 � 10–6).

Tumor–immune microenvironment intermediates the genetic
determinants of mutational propensity

Of the 1,427 “I-genes,” 797 significantly influence MPs at pan-
cancer level, which are significantly enriched for determinants of
the mutational processes corresponding to MP2 (N ¼ 360; OR ¼
4.09; P ¼ 1.70 � 10–48), MP3 (N ¼ 58; OR ¼ 8.42; P ¼ 4.45 � 10–10),
MP5 (N ¼ 180; OR ¼ 3.98; P ¼ 3.89 � 10–28), and MP6 (N ¼ 138;
OR¼ 3.82; P¼ 4.20� 10–22; Fig. 4B). There are another 680 “I-genes”
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acting in specific cancer types, most of which are identified in UCEC
(N ¼ 599), COAD (N ¼ 54), and BRCA (N ¼ 23, Supplementary
Table S2C).

The pathways significantly enriched in the I-genes are con-
sistent with the functions in cancer immunity. The I-genes are
enriched in cytokine signaling in immune system pathways (FDR ¼
3.16 � 10–7) and innate immune system pathway (FDR ¼ 1.29 �
10–5, Fig. 4C); hence, they have an effect on the activities of

tumor microenvironment. Then, the I-genes are also enriched in
cancer invasion and metastasis pathways, such as epithelial
mesenchymal transition (EMT; FDR ¼ 2.59 �10–5) and adhesion
(FDR ¼ 1.66 �10–22), suggesting that intercellular communica-
tions are involved in somatic selection and influence the clonal
evolution (38). Finally, certain metabolism pathways, such as the
lipid metabolism (FDR ¼ 5.41 � 10–3) are also enriched in the
I-genes.

B
C D

1 2 3 4
0

500

1,000

1,500

2,000

MP count
panCancer

0

500

1,000

G
en

e 
co

un
t

Cancer
specific

828

469
362

2,630

1,226

728

55

191
111

82

4,687

783

278
179

142
66

0

1,000

2,000

3,000

5,000

In
te

rs
ec

tio
n 

ge
ne

 c
ou

nt

Fusion
TSS Methylation

SCNAs
Somatic nsy-mutation

Germline structural

Germline missenses
Germline truncation

9,525
48 11,721

12,836107
737

3,304

0 5,000 10,000
Gene count

BRCA2 (BRCA) BRCA2 (panCancer)

APOBEC3H (LUAD)

MSH6  (BRCA)
PMS2 (UCEC)

MSH6 (panCancer)

MLH1 (panCancer)

POLE (UCEC)POLE2 (panCancer)

MP1

MP2

MP3

MP4

MP5

MP6

0.0 0.1 0.2 0.3 0.4 0.5
Adjusted R2

POLE (COAD) POLE (UCEC)
POLE3 (panCancer)

POLE (panCancer)
POLE (COAD)

POLE3 (panCancer)

MSH2/6 (UCEC)

MSH2 (COAD)
MSH6 (COAD)

A
500

1,000

500
1,000
2,000

500

500

500

500
1,000

G
en

e 
co

un
t

Germline missenses
Germline truncation
Germline structural
Somatic nsy-mutation

Fusion

SCNAs
TSS Methylation

APOBEC1/2/3B/3H (panCancer)

POLD1 (panCancer)

Figure 3.

Genes’ genetic statuses influence themutational propensities.A, The fraction of variance (adjusted R2) of 6 MPs explained by different statuses of genes (FDR < 0.1),
including three types of germline variations (missense, truncated, structural), four types of somatic alterations (somatic nsy-mutation, SCNA, fusion), and epigenetic
stats (TSS-methylation). The benchmark geneswith different colors are the known cancer driver genes, of which, germline or somatic mutations are associated with
the certain MSs. B, The Upset plot shows the overlaps among the gene sets, each of which is significantly associated with the MPs by a distinct genetic status. The
black bar shows the total 2,314 unique genes, which are considered as candidate genes, of which, germline genetic burden and somatic or epigenetic status are
simultaneously significantly associated with the same MP (FDR < 0.1). C, The number of significant genes, of which, genetic statuses impact the MPs at pan-cancer
level or cancer-specific level. D, The number of significant genes, of which, genetic statuses associate with one or multiple MPs.

Driver Genes and Variants of Mutational Processes in Cancers

AACRJournals.org Cancer Res; 81(16) August 15, 2021 4211



A B

D

T Follicular
helper cells

(722)

M1 Macrophages
(415)

CD8 T cells
(301)

Resting mast cells (212)

Others
(235)

Neutrophils
(442)

Memory B cells (132)

Somatic
Nsy-mutation

(733)

SCNA
(413)

TSS
Methylation

(453)

MP5
(316)

MP4
(171)

MP3
(263)

MP1
(187)

MP6
(260)

MP2
(371)

Others (15)

C

Ratio of
enrichment

0.1

0.2

0.3

0.4
0.5

−Log10 (FDR)

3
4
5
6

>7

E−genes

I−genes

MP1

MP2

MP3

MP4

MP5

MP6

E−genes
I−genes

M
et

ab
oli

sm
 o

f R
NA

M
et

ab
oli

sm
 o

f li
pid

s
Di

se
as

e

RN
A 

Po
lym

er
as

e 
III

 tr
an

sc
rip

tio
n

Po
st−

tra
ns

lat
ion

al 
pr

ot
ein

 m
od

ific
at

ion
Ce

ll c
yc

le

Si
gn

ali
ng

 b
y n

uc
lea

r r
ec

ep
to

rs

RN
A 

po
lym

er
as

e 
III

 tr
an

sc
rip

tio
n

ini
tia

tio
n 

fro
m

 ty
pe

 3
 p

ro
m

ot
er

 

M
oly

bd
en

um
 co

fa
cto

r b
ios

yn
th

es
is

sn
RN

P 
As

se
m

bly

Cy
to

kin
e 

sig
na

lin
g 

in 
im

m
un

e 
sy

ste
m

RN
A 

Po
lym

er
as

e 
II 

tra
ns

cr
ipt

ion
In

na
te

 im
m

un
e 

sy
ste

m

Si
gn

ali
ng

 b
y R

ho
 G

TP
as

es

Ex
tra

ce
llu

lar
 m

at
rix

 o
rg

an
iza

tio
n

Di
se

as
es

 o
f m

et
ab

oli
sm

Ph
os

ph
oli

pid
 m

et
ab

oli
sm

Go
 b

iol
og

ica
l a

dh
es

ion

Ha
llm

ar
k e

pit
he

lia
l

m
es

en
ch

ym
al 

tra
ns

itio
n

2.5

5.0

7.5

10.0

Ratio of
enrichment−Log10 (P)

2.5
5

>7.5

692

223
176

82

996

177
121

40
26

310

108

23 35
0

300

600

In
te

rs
ec

tio
n 

ge
ne

 c
ou

nt

Dietlein F et al. 2020
Huang K et al. 2018

I-genes
CGCs

Martínez-Jiménez F et al. 2020

E-genes
Candidate genes

152
460
568
723

1,427
485 2,314

Gene set size

Figure 4.

The E-genes and I-genes influence themutational propensities.A, The Upset plot shows the overlap between the E-genes, I-genes, COSMIC CGCs, and another three
publishedbenchmark cancer gene sets.B,TheE-genes and I-genes are enriched for determinants of differentMPs at thepan-cancer level based on the background of
2,314 candidate genes. The dot color represents the�log10 (FDR). The dot size represents the OR of enrichment based on the background of 2,314 candidate genes.
C, The pathways enriched in E-genes and I-genes. The dot color represents the�log10 (FDR). The dot size represents the OR of enrichment.D, The I-genes impact on
the MPs through different immune cell activities in TIME.

Guo et al.

Cancer Res; 81(16) August 15, 2021 CANCER RESEARCH4212



Of note, 350 of the 485 E-genes are also I-genes, which suggest the
genetic determinants can influence the mutational processes in both
ways (Supplementary Table S2D). Many of these 350 genes are known
cancer genes, such asMSH2,MSH6, BRCA1, ALK, ABL2,MAPK6, and
NF1.

In addition, the impact of the somatic statuses on theMPs is related
to the activities of specific immune cells. For example, the TSS-
methylations are strongly associated with MP2 through neutrophil
activity (25.2%, N ¼ 360, Fig. 4D), and the somatic nsy-mutations
influenceMP5 through the activities of T follicular helper cells (19.1%,
N ¼ 273) and M1 macrophages (9.95%, N ¼ 142). These findings
suggest specific immune responses underlie somatic selection of
mutational processes, which are activated in response to different
types of somatic alterations in I-genes.

The genetic determinants of somatic mutational propensity
impact carcinogenesis and cancer therapy

As the genetic determinants of MPs influence many cancer-related
biological processes, we asked how these genes impact carcinogenesis
and the consequent biological–clinical characteristics of cancer.

Recent advances in gene-editing techniques enable highly specific
evaluation of the genetic dependency of cancer proliferation. We first
evaluated the enrichment of genes annotated for cancer dependency by
CRISPR-Cas9 screening in 233 cell lines (26). We categorized
10,343 genes of cancer dependency according to the median CERES
score across different cell lines. Thenwe compared the fold enrichment
of benchmark gene sets (15, 36, 37), such as COSMIC CGCs and
susceptibility cancer driver gene sets with those of our E-genes and
I-genes. As a result, both E-genes and I-genes are significantly enriched
in the oncogenes, of which, the CERES score is less than zero (Fig. 5A).
For example, E-genes are significantly enriched in the gene set
(CERES ¼ �1.6 � �1.2; P ¼ 0.024, fold enrichment ¼ 9.18) and
I-genes are significantly enriched in the gene set (CERES¼�2.2��2;
P ¼ 0.0137, fold enrichment ¼ 17.7). Of note, the tendency of
enrichment of the E-genes and I-genes remains stable after removal
of known cancer genes.

We compared the CERES scores of E-genes and I-genes. Consistent
with the corresponding biological basis, themedianCERES score of the
E-genes is significantly lower than those of the I-genes (P ¼ 0.0075;
Supplementary Fig. S6), suggesting that I-genes overall show weaker
cancer dependency than E-genes in vitro.

We assessed the therapeutic implications of the E-genes in 300
cancer cell lines treatedwith 320 drugswith specific targets. Among the
six benchmark gene sets (15, 36, 37), E-genes showed the highest
fraction of genes that are significantly predictive of the IC50 in all cell
lines (70.5%,N¼ 148, FDR < 0.1), whereas the fraction of predictive I-
genes is the lowest (63.9%, Fig. 5B). Each of the 320 cancer drugs
targets a specific signaling pathway in cancer. Our results suggest that
E-genes extensively influence the efficacies of targeted therapies in cell
lines, especially on hormone-related pathway and cytoskeleton path-
way (MP2) and chromatin histone methylation pathway (MP3 and
MP6; Fig. 5C). Moreover, in a cohort of 60 LUAD that received
chemotherapy and targeted therapies (Supplementary Table S3), the
somaticmutation burdens of 17 E-genes showed significant interactive
effect on the clinical benefit from EGFR-targeted therapies (PR vs. PD/
SD; P¼ 0.0361; OR¼ 2.26); whereas the mutation burdens of I-genes
showed no such effect.

We then compared the I-genes with genes associated with responses
to immune checkpoint inhibitors (ICI, anti–PD-1) in melanoma
(N ¼ 55; ref. 30) and metastatic gastric cancer (N ¼ 45; ref. 31).
As a result, I-genes showed the strongest overlapping with genes

predictive of anti–PD-1 therapy response in both cohorts (9.91%,
N¼ 79 and 4.52%, N¼ 36), compared with the other five benchmark
gene sets (Fig. 5D and E). Moreover, the 79 I-genes that overlapped
with the anti–PD-1 therapy response genes are enriched in pathways,
such as fatty acid metabolism (FDR ¼ 0.0113) and adipogenesis
(FDR ¼ 0.0113; Supplementary Fig. S7). As for the long-term out-
comes, the somatic nsy-mutation statuses of 6 I-genes, such as
CREBBP (MP3; HR ¼ 0.415; P ¼ 5.66 � 10–4) and PARP1 (MP6;
HR ¼ 0.169; P ¼ 0.0123) were significantly associated with better
overall survival in 1,661 patients who received ICI treatment.
(Supplementary Fig. S8; ref. 39).

In summary, our results suggest that E-genes and I-genes influence
specific mutational processes, respectively. E-genes represent the
proliferation capacity; hence, they have an impact on the age-
related mutational process, such as deamination of methylated cyto-
sines, which occurs throughout the patient’s life time (9). The I-genes,
which influence somatic selection of mutational processes via TIME,
are more effective in the mutational processes associated with cancer
immunity, such as AID/APOBEC processes (40).

Quantitative trait loci of the mutational propensities
Finally, we assessed the effects of 6,103,818 noncoding common

germline variants on six MPs. We found 127 unique noncoding
germline variants, which mapped to two MPs (mpQTLs; P < 5 �
10–8,Fig. 6A; Supplementary Table S4A). Of note, the effect sizes of the
noncoding common germline variations on the mutational processes
are comparable with those of the coding variants. We found that the
MP2 (APOBEC-related) is themost influenced bympQTLs (20q11.21,
15q21.2, and 16q12.2; 77.2%, N¼ 98), followed by MP6 (mut-POLE–
related; 10q24.1, 9.45%, N ¼ 12) and MP1 (NpCpG-related; 5q12.3,
5.51%,N¼ 7; Fig. 6A). Especially, we found that 6 SNPs in 22q13.1 are
significantly associated with MP2 (APOBEC), such as rs112045173
(P < 8.21 � 10–6) and rs17824310 (P < 8.49 � 10–6), which are
consistent with the previous study (19). Among the germline variants
associated with the MPs, 99 loci (78.0%) act at the pan-cancer level
while the others are reported mainly in three cancer types, BRCA
(N ¼ 14, 0.110%), THCA (N ¼ 7, 5.51%), and KIRC (N ¼ 4, 3.15%;
Supplementary Table S4A).

We noticed that all of the unique 127mpQTLs are known eQTL loci
in cancer (41), suggesting the impacts on mutational process are
related to cancer gene expression. To reveal the underlying mechan-
isms through which the mpQTLs exert their functions, we performed
IV regression based on gene expression in cis of the mpQTLs
(Supplementary Methods). The results suggested that 13 mpQTLs
significantly impact the MP2 (APOBEC-related) via acting on mRNA
transcript levels in cis (Supplementary Table S4B). For example,
rs6060924 acts through mitochondrial cytochrome c oxidase subunit
4 isotype 2 (COX4I2) to impact MP2 (Fig. 6B and C); another SNP in
linkage disequilibrium is reported as an eQTL ofCOX4I2 in a variety of
cancer (41). COX4I2 is a component of Warburg effect and related
to tumor progression and metastasis (42). The other mpQTL
(rs35413356) acts through aldehyde dehydrogenase 5 family member
A1 (ALDH5A1), which also impacts MP2 (Fig. 6D and E).

Discussion
In our study, we used the MPs as a measure of the propensity of

mutational processes in cancer. Compared with the raw activities of
MSs, the MPs show better normality, robustness to sample purity and
heterogeneity, and stronger clinical relevance. MPs work as a robust
linkage to somatic selection of mutational processes, which facilitate
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the discovery of relevant cancer genes. Future study with larger
sample size can improve the statistical power to identify more
cancer-evolution–related genes.

Although the germline variants that directly cause MSs are mainly
reported for homologous recombination (HR; ref. 43) and
dMMR (44)-related genes. Recent studies demonstrated that germline
variants other than HR and dMMR also influence the MSs (45). The
germline determinants of MPs include both causal mutagenic pro-
cesses and intrinsic or extrinsic biological processes contributing to

somatic selection and clonality of cancer. In this study, we hypothesized
that many more germline variants can influence the “fitness” of cancer.
Therefore, the candidate genes in our study included both genes from
the causal mutagenic processes and intrinsic or extrinsic biological
processes contributing to somatic selection and clonality of cancer.

Most of the studies trying to identify “cancer drivers” are based on
the significantly high recurrence of somatic mutations in the cancer
populations. Such methods have yielded many meaningful driver
genes and mutations, which are successfully used in cancer diagnosis,
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prediction, and treatment. On the other hand, the clinical benefit of
treatments still vary substantially among patients, which is largely
attributed to the clonal evolution of cancer. This study is designed to
identify genes and variants that potentially influence the processes of
somatic selection and thereby suggest new candidate for cancer driver
genes.

ITH is extensively studied for its association to clonal evolution and
somatic selection, and is a major cause of resistance to treatments (46).
However,most of the ITH studies are still based on limited sample size,
whereas the clinical phenotypic heterogeneity of cancer is observed and
measured in large population of cancer. Alternatively, our approach is
based on the intertumor variations of the evolution processes in a
reasonably large population, which offers the capability to assess the
effects of genetic heterogeneity, especially rare mutational events, on
the somatic evolution, which cannot be addressed in small sample.

Here, we report two gene sets (E-genes and I-genes), which exhibit
additional predictive power in the treatment responses and innate
immune status in TIME. Our findings confirm the importance of
somatic evolution in the development of cancer and provide an
alternative way to identify genes, which further explains the heterog-
enous clinical phenotypes beyond the known driver genes.

Our data suggest that I-genes are enriched in lipid metabolism. For
example, HSPH1 (heat shock protein family H member 1) can induces
macrophagedifferentiation (47).HSPH1 also interactswithBCL6,which
specifies and promotes T follicular helper cell program (48). Therefore,
we deduce that some of the I-genes modulate T follicular helper cell and
M1 macrophage activities via lipid metabolism and thereby impact
MP5. Consistently, recent studies show that tumors with elevated lipid
metabolism have increased antigen presentation and are associated with
response to anti–PD-1 or TIL-based immunotherapy (49).

Some of the I-genes can also be functionally pleiotropic in cancer.
For example, EEF2 (eukaryotic elongation factor 2, CERES score ¼
�2.03), elicits both humoral and cellular immune responses; it also
promotes tumor cell proliferation, angiogenesis, metastasis, and
invasion (50). TYRO3 is involved in both cell proliferation and
survival pathways and immune response regulation (51). CXCR4
promotes cancer cell proliferation (52) and also plays a role in the
recruitment of immunosuppressive cells such as regulatory T cells
(Treg), M2, and N2 neutrophils to limit the effectiveness of immune
responses (53, 54). Altogether, our results showed that the I-genes
and E-genes have multiple roles in both cancer cell survival and
immune response.

Nevertheless, this study is limited in certain aspects. Although we
consider the effects of both germline and somatic statuses, the variants
can cause either gain or loss of the function, which lead to opposite
effects on the signature activity; and the current analysis cannot control
for the consistency of the effects as the functional consequence of the
variants are unknown. Unlike the germline variants, there was no
significant difference in selection pressure among these somatic
variants (missense, nonsense, and splice site; ref. 55). Therefore, we
combined all somatic mutations into a binary status to take the
advantage of sample size. Eventually, our validation based on separated
mutational statuses indicates that the determinant genes of MPs are
highly conserved (Supplementary Table S2A).

Theoretically, the method described is applicable to all MSs. But for
many rarer mutational processes that occur only in certain cancer
subtypes, analyzing such MSs together with common ones will cause
imbalance in the data and introduce unnecessary biases.

In addition, there are other important biological mechanisms,
which influence the somatic evolution, such as age and individual
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mutation order (56, 57).However, the current analysis based onTCGA
samples cannot address the effects of such factors due to the lack of
information. Other factors, such as irradiation (58) or chemothera-
py (10) also influence somatic selection of mutational processes.
However, as TCGA samples receive different treatments, this study
cannot directly assess the effects caused by a specific therapy.

Our findings can be further validated in different levels. For
example, the correlation between the deterministic genes and the
MPs can be validated by CRISPR-Cas9–mediated knockout or
knockin in cell lines or mouse models. Moreover, the MPs can
also be derived from targeted tumor-sequencing tests, such as
MSK-IMPACT (59) and Praxis Extended RAS Panel (60). Thus,
the correlation between MPs and clinical phenotypes, such as
imaging, pathology, and treatment outcomes can be evaluated in
much larger cohorts.

In summary, we provide a systematic view of the landscape of
genetic determination of somatic selection of mutational processes in
cancers. Our findings can inform the identification of cancer genes
with highly potential clinical and therapeutic values.
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