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Loss-of-function of the hippo transducer TAZ reduces
mammary tumor growth through a myeloid-derived
suppressor cell-dependent mechanism
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TAZ, one of the key effectors in the Hippo pathway, is often dysregulated in breast cancer, leading to cancer stemness, survival, and
metastasis. However, the mechanistic bases of these tumor outcomes are incompletely understood and even less is known about the
potential role played by the non-malignant cellular constituents of the tumor microenvironment (TME). Here, we revealed an inverse
correlation between TAZ expression and survival in triple-negative breast cancer (TNBC), but not other subtypes of breast cancer. We
found that TAZ knockdown in two murine TNBC tumor cell line models significantly inhibited tumor growth and metastasis in
immune competent but not immune deficient hosts. RNA-seq analyses identified substantial alterations in immune components in
TAZ knockdown tumors. Using mass cytometry analysis, we found that TAZ-deficiency altered the immune landscape of the TME
leading to significant reductions in immune suppressive populations, namely myeloid-derived suppressor cells (MDSCs) and
macrophages accompanied by elevated CD8+ T cell/myeloid cell ratios. Mechanistic studies demonstrated that TAZ-mediated tumor
growth was MDSC-dependent in that MDSC depletion led to reduced tumor growth in control, but not TAZ-knockdown tumor cells.
Altogether, we identified a novel non-cancer cell-autonomous mechanism by which tumor-intrinsic TAZ expression aids tumor
progression. Thus, our findings advance an understanding of the crosstalk between tumor-derived TAZ expression and the immune
contexture within the TME, which may lead to new therapeutic interventions for TNBC or other TAZ-driven cancers.

Cancer Gene Therapy (2022) 29:1791–1800; https://doi.org/10.1038/s41417-022-00502-0

INTRODUCTION
The TME is now recognized as an integral determinant in
modulating neoplastic progression, including TNBC [1]. The TME
contains a variety of non-cancer cells, such as cancer-associated
fibroblasts (CAFs), vascular endothelial cells, and immune cells,
including T cells, B cells, neutrophils, macrophages, and myeloid-
derived suppressor cells (MDSCs) [2]. Evidence indicates that these
populations contribute to neoplastic progression via signals that
stimulate proliferation, reduce tumor cell death, aid angiogenesis,
invasion and metastasis, and increase resistance to chemotherapy,
radiotherapy, and immunotherapy [3]. Indeed, newly developed
immune checkpoint inhibitors (ICIs), which target negative
regulatory pathways in T cells to enhance the antitumor immune
responses, have led to important clinical advances and provide a
new weapon against cancer [4]. Therefore, understanding how
these different non-cancerous cell types contribute to tumor
progression will help inspire the development of novel therapies.
Dysregulation of the Hippo signaling effector proteins YAP/TAZ is

associated with tumor progression across multiple cancer types [5].

YAP/TAZ are transcriptional co-activators that interact mainly with
the TEA domain (TEAD) transcription factor family of proteins and
drive cell proliferation, migration, and survival [6]. High expression
and nuclear localization of YAP/TAZ has been observed in breast,
liver, lung, and colon cancers [5]. We previously demonstrated in
breast cancer models that activation of YAP/TAZ induced epithelial-
to-mesenchymal transition (EMT), resistance to apoptosis, and
growth factor-independent cell proliferation through activation of
EGFR signaling [7, 8]. Therefore, TAZ confers breast cancer with
stem cell-like traits [9, 10]. We also recently showed that TAZ is not
only a driver of basal-like breast cancer progression, but also a
requirement for tumor maintenance and the establishment of
metastases [11]. Thus, tumor-intrinsic TAZ expression can affect
tumor progression through multiple mechanisms; however, it is not
completely understood how TAZ expression impacts the immune
elements of the TME, which are now regarded as major
determinants governing overall tumor outcome.
Here, to assess the regulatory role of TAZ in the immune-TME,

we deleted TAZ using CRISPR-Cas9 or shRNA systems in two
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distinct mammary tumor models of TNBC: 4T1 and EMT6 cells. We
showed that the loss of TAZ significantly inhibited tumor growth
and metastasis in immune competent mice. In contrast, TAZ
deficiency had no significant bearing on tumor growth in immune
deficient mice, highlighting the importance of the immune
compartment in mediating tumor control. RNA-seq analysis of
control and TAZ knockdown 4T1 tumors identified substantial
alterations in immune components, indicating that TAZ expression
in these tumors played an integral role in immune cell
mobilization to the TME. Using mass cytometry analysis, we
demonstrated significant alterations in immune cell subsets within
the TME of TAZ-deficient tumors of immune competent hosts,
namely leading to reductions in MDSCs and macrophages.
Furthermore, depletion of MDSCs reduced tumor growth in TAZ-
expressing control, but not TAZ-deficient tumors, suggesting that
tumor TAZ expression acts through MDSC-dependent mechan-
isms. Altogether, we uncovered a novel non-cancer cell-autono-
mous mechanism by which tumor intrinsic TAZ expression aids
tumor progression in the field of TNBC.

METHODS
Cell lines and cell culture
4T1 cells were purchased from ATCC. E0771 cells were purchase from CH3
Biosystems. EMT6 cells were kindly provided by Dr. Yurij Ionov and MB49
cells were kindly provided by Dr. Yuesheng Zhang both at the Roswell Park
Comprehensive Cancer Center. 4T1, EMT6, E0771, and MB49 cells were
cultured in DMEM (Corning, NY) supplemented with 10% fetal bovine
serum and 100IU Penicillin & 100 µg/ml Streptomycin. All cells were
cultured in a humidified atmosphere of 95% air and 5% CO2 at 37 °C. All
cell lines were confirmed mycoplasma-free.

Plasmids, shTaz and sgTaz lentiviral production
shNT (SHC002) and shTaz (TRCN0000095952 & TRCN0000095949) con-
structs were purchased from Sigma-Aldrich (St. Louis, MO). sgcon, sgTaz
(Target sequence: GAGGATTAGGATGCGTC-AAG) and Cas9 expression
constructs were a gift from Cellecta (Mountain View, CA) Briefly, for
lentiviral packaging, shRNA plasmid, Δ8.9 and Vsvg were co-transfected
into 293 T cells with the tremeGENE 9 DNA Transfection Reagent from
MilliporeSigma (Burlington, MA). Viral supernatants were collected on days
3 and 4 after transfection. Cas9, sgControl or sgTaz plasmids, psPAX2 and
pMD2.G were co-transfected into 293 T cells with the tremeGENE 9 DNA
Transfection Reagent. Viral supernatants were collected on days 3 and 4
after plasmid transfection.

In vivo tumor growth
1 × 105 sgControl or sgTaz 4T1 or 5 × 105 sgControl or sgTaz EMT6 cells
were injected into the 4th mammary fat pad of 6–8-week-old female SCID
or BALB/c mice. The SCID mice were bred at Roswell Park. The BALB/c mice
were purchased from Charles River Laboratories (Catskill, NY). Tumor sizes
were measured once a week using a digital caliper. Tumor growth was also
detected by the In Vivo Luminescence Imaging System. All animal studies
were approved by the Institutional Animal Care and Use Committee of
Roswell Park.

Tissue dissociation
The primary tumor masses were surgically removed following euthanasia.
Tumors were transferred to gentle MACS C-tubes from Miltenyi Biotec
(Waltham, MA) in the presence of 2 mL of a 1X collagenase/hyaluronidase
cocktail from Stemcell Technologies (Cambridge, MA) and dissociated
using the gentleMACS™ Dissociator per manufacturer’s instructions. The
suspension was further incubated at 37 ˚C in a rotating incubator and then
strained through 100 μm SureStrain from Laboratory Products Sales
(Rochester, NY) filters prior to resuspension in PBS.

Flow cytometry analysis
Isolated cells were subjected to ACK lysis to remove RBCs. One million cells
were suspended in staining buffer (PBS+ 0.5% BSA+ 2mM EDTA) and
treated with Mouse Fc block from (BD Biosciences; NJ) followed by
incubation with the conjugated primary antibodies listed in Table S3, or in

the case of the Gr-1 analysis, stained separately with the anti-CD45 and
anti-CD11b antibodies listed in Table S3 along with PE-Cy5 anti-Gr-1
(Biolegend, #108409). Immunostained samples were then incubated with
DAPI (Thermo-Fisher Scientific; NY) for dead cell exclusion. Samples were
acquired on the LSR II flow cytometer (BD Biosciences) using FACSDiva
version 6.1.3 software. Data analysis was performed using FCS Express 7.0.

Immunoblot analysis
For immunoblot analysis, cells were lysed in RIPA buffer (Boston Bio-
Products; MA) in the presence of protease and phosphatase inhibitors
(Thermo-Fisher Scientific). Protein concentration was determined using the
Bradford protein assay. Briefly, BSA standards at varying concentrations
were made to create a standard curve. Standards were made using RIPA
buffer. Absorbance was read at 650 nm and protein concentrations were
calculated based on the slope of the standard curve. 20–30 ug of protein
was loaded, separated by SDS-PAGE, and then transferred onto PVDF
membranes (EMD Millipore). Membranes were blocked in 5% milk in the
Tris Buffered Saline with Tween (TBST) for 1 h and incubated overnight at
4 °C with the primary antibodies. The next day membranes were incubated
with anti-mouse or anti-rabbit secondary antibody (Bio-Rad). Proteins were
detected using Peirce ECL western blotting substrate. Anti-TAZ antibody
(#83669) was purchased from Cell Signaling Technologies (Danvers, MA)
and anti-GAPDH antibody (Y1041) was purchase from Ubiquitin-
Proteasome Biotechnologies (Dallas, TX).

Colony formation assay
For colony formation experiments, 200 cells were plated in a 6-well plate
allowing growth to occur for 7–10 days. The plates were washed once with
PBS, fixed with 4% paraformaldehyde for 10min, and stained with crystal
violet for 30min. Colony numbers were counted under the microscope.

Mass cytometry assay and data analysis
A single cell suspension for each sample was analyzed by Helios (Fluidigm;
CA). FCS files were then normalized, as described [12]. Nucleated single
cells were manually gated by DNA intercalators 191Ir/193Ir and event
length. Dead cells were excluded by Cisplatin 194Pt/195Pt staining. Live
single cells were manually gated, and corresponding FCS files were
exported for data analyses in Cytobank and Flowjo. For viSNE analysis in
Cytobank, typically 15,000 to 30,000 live singlet events/sample were
utilized to generate t-SNE maps with 2000 or 3000 iterations, perplexity at
30 or 60, and theta value at 0.5. Equal events were used for each batch of
viSNE analysis, which was repeated at three time with a setting change.

RNA-seq, NanoString immunology panel analysis and RT-qPCR
For the RNA-seq analysis, total RNA was extracted from sgControl or sgTAZ
4T1-generated whole-tumors using Trizol Reagent (Thermo-Fisher Scien-
tific) according to the manufacturer’s instructions. The RNA samples were
subjected to transcriptome sequencing (RNA-seq) with an Illumina HiSeq
2000 sequencer in the Roswell Park Genomic Shared Resource. Raw reads
that passed quality filter from Illumina RTA were mapped to the mm10
mouse reference genomes and corresponding GENCODE (v12) annotation
databases using STAR two-pass algorithm [13]. The mapped bam files were
further QCed using RSeQC [14], a quality control Bioconductor R package
for RNA-seq data, to identify potential RNA-seq library preparation
problems. From the mapping results, the read counts for genes were
obtained by featureCounts from Subread [15]. Transcript level quantifica-
tion were generated using kallisto [16], an alignment free tool. Dara
normalization and differential expression analysis were preformed using
DESeq2 [17], a variance-analysis package developed to infer the statically
significant difference in the RNA-seq data. Pathway analysis was performed
by GSEA [18] pre-ranked mode using a ranked gene list based on test
statistics from differential gene expression analysis against the hallmark (H)
and the canonical pathways in MSigDB. The volcano plots were generated
using the Enhanced Volcano Bioconductor package and the heatmaps
were generated using the heatmap R package.
For the NanoString immunology panel analysis, total RNA was extracted

from sgControl or sgTAZ 4T1 cells using Trizol Reagent according to the
manufacturer’s instructions. The RNA samples were subjected to Nano-
String immunology panel run in the Roswell Park Genomic Shared
Resource.
For RT-qPCR, total RNA was harvested was extracted from sgControl or

sgTAZ 4T1 cells using Trizol Reagent according to the manufacturer’s
instructions. cDNA synthesis and quantitative real-time PCR were then
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performed. GAPDH was used as the internal control. The primer sequences
were as follows:

Gapdh-F: 5’-AAC AGC AAC TCC CAC TCT TC-3’
Gapdh-R: 5’-CCT GTT GCT GTA GCC GTA TT-3’
Il33-F: 5’-TCC ACG GGA TTC TAG GAA GA-3’
Il33-R: 5’-GAG GCA GGA GAC TGT GTT AAA-3’
Tgf-β1-F: 5’-GGG CTT AGT GTT CTG GGA AA-3’
Tgf-β1-R: 5’-CCG ATG GAT CAG AAG GTA CAA G-3’
Ccl5-F: 5’-CCA ATC TTG CAG TCG TGT TTG-3’
Ccl5-R: 5’-ACC CTC TAT CCT AGC TCA TCT C-3’
Il1a-F: 5’-GAA GAA GAG ACG GCT GAG TTT-3’
Il1a-R: 5’-TCA CTC TGG TAG GTG TAA GGT-3’
Cx3cl1-F: 5’-GCT TTG CTC ATC CGC TAT CA-3’
Cx3Cl1-R: 5’-GTC TTG GAC CCA TTT CTC CTT C-3’

Data acquisition and preprocessing from TCGA
There were 1093 breast cancer patients with clinical and primary tumor
mRNA expression data from RNA sequence studies available through The
Cancer Genome Atlas (TCGA). The clinical and the gene expression
quantification data (mRNA expression Z-score from RNA sequence) were
downloaded through the cBioportal (http://cbioportal.org) [19, 20]. PAM50
classification data was downloaded through UCSC Xena (https://
xena.ucsc.edu/) [21]. TAZ target score was calculated using 22 target gene
expressions as previously described [22]. Patients were classified as either
target score high or low using higher quantile cutoff (25% high and 75%
low). The prognostic differences were analyzed using Kaplan-Meier
methods with Log-rank test. All TCGA statistical analyses were performed
using R software (http:///www.r-project.org/) together with Bioconductor
(http://bioconductor.org/).

Statistical analysis
Statistical analysis was performed using GraphPad Prism software version
9.0. All data are representative of three independent experiments unless
otherwise specified. P-values were determined using two-tailed Student’s
t-tests (*p < 0.05, **p < 0.01, ***p < 0.001).

RESULTS
TAZ is highly expressed in TNBC and correlates with poor
outcome in TNBC patients
To determine the potential merit of TAZ expression in human
breast cancer, we compared TAZ expression among different breast
cancer subtypes using publicly available cohorts from the TCGA
database. We found that TAZ is highly expressed in TNBC patients
compared to other breast cancer subtypes (Fig. 1A). Consistently,
high expression of TAZ is found in the basal-like subtype based on
the PAM50 classification, which accounts for most of TNBC (Fig. 1B).
To determine the impact of TAZ expression on patient survival in
this TCGA dataset, we used the YAP/TAZ transcriptional target
signature of 22 genes [23] as a target score to determine clinical
outcome. There was no survival difference between high and low
TAZ target score in the whole breast cancer cohort (Fig. 1C).
Interestingly, when we stratified patients by subtype, high target
score patients showed worse disease-free survival in TNBC
(P= 0.003), whereas no differences were observed in hormone
receptor-positive (ER+ /PR+ ) or HER2-positive subtypes (Fig. 1C).
Our data demonstrate that TAZ expression and activation are

correlated with worse prognosis for TNBC patients. However,
whether TAZ expression contributes to TNBC tumorigenesis,
progression, or metastasis through alterations in the stromal content
of the TME are largely unknown. To determine the correlation of TAZ
activation and non-malignant constituents of the TME in TNBC, we
further analyzed TAZ target expression and immune cell signatures
utilizing the Estimation of STromal and Immune cells in MAlignant
Tumor tissues using Expression (ESTIMATE) data analysis method
[24]. We found high TAZ target expression was significantly
associated with high immune and stromal scores (Fig. 1D, E),
suggesting that TAZ expression influences the nature of the TME. To
study the potential implications of this dynamic interaction between

TAZ and the TME, we then developed mouse TNBC models
expressing or lacking TAZ expression.

TAZ deficiency reduces mammary tumor growth and lung
metastasis
To determine the impact of TAZ expression on mammary tumor
growth, we deleted TAZ in the TNBC cell lines 4T1 and EMT6 using
the CRISPR-Cas9 system (Fig. 2A, B). TAZ deficiency significantly
inhibited orthotopic mammary tumor growth in syngeneic
immunocompetent mice compared to sgControl (sgCon) 4T1 or
EMT6 cells (Fig. 2A, B). We did not observe overt effects of TAZ
deficiency on cell proliferation in vitro, as measured using colony
formation assays (Fig. S1A, B). We recently showed that TAZ
expression can be important for cell survival in some human breast
tumor cell lines, such MDA-MB-231 and MDA-MB-468, but not
others, such as MCF7 and T47D, using TAZ knockdown approaches
[11]. To extend this finding, we knocked down TAZ expression
using the CRISPR-Cas9 system in the murine C57BL/6-derived TNBC
model, E0771, as well as an unrelated C57BL/6-derived murine
bladder tumor cell line, MB49 using shRNA system and found that
TAZ knockdown in those cell line models had no adverse effects on
cell growth in vitro (Fig. S1C–F). These data further support the
notion that TAZ biology is complex and not necessarily mouse
strain- or tumor type-dependent. Furthermore, the effect on tumor
growth was lost in immune deficient (SCID) mice, which lack a
functional adaptive immune system (Fig. S2A, B).
To strengthen our findings of the relationship between TAZ

expression and tumor growth, we silenced TAZ in 4T1 cells using
two independent TAZ-shRNA constructs (Fig. 2C). The results
showed that knockdown of TAZ did not alter cell proliferation
in vitro (Fig. S2C) or tumor growth in vivo in SCID mice (Fig. S2D),
consistent with our prior results (Fig. S1). However, knocking down
TAZ significantly inhibited tumor growth in syngeneic immune
competent mice (Fig. 2C). Furthermore, we found that knocking
down TAZ significantly reduced tumor metastasis to the lung
(Figs. 2C & S2E). Altogether, these data revealed that a reduction in
TAZ expression in two independent TNBC models using two
different molecular approaches to alter TAZ expression inhibited
tumor growth in syngeneic immune competent mice but not
immune deficient mice. In these models, these data indicated an
important role for adaptive immunity in the regulation of TAZ-
mediated tumor growth and metastasis.

RNA-seq analyses revealed TAZ knockdown alters the TME
To determine the impact of TAZ expression on the tumor cells as
well as the immune TME landscape, we performed a RNA-seq
study in sgCon or sgTAZ 4T1 tumors and an over-representation
analysis (ORA) using pathway annotations and GO term datasets
[25]. We identified 871 significantly upregulated and 1043
downregulated genes (p-adj < 0.05; Fig. 3A; Table S1). sgCon
tumors were enriched for regulatory and growth processes,
including tumor marker, cell adhesion, and cellular growth factor
expression, as well as macrophages and NK cells. sgTAZ tumors
were depleted of CD4+ memory T-cells, naïve B cells, and
cytokines. Tumor cell-secreted chemokines have been indicated
to play critical roles in inflammation, immune surveillance, and
tumor progression [26]. Indeed, the NanoString immunology
panel and RT-qPCR analyses found significant reductions in the
expression of IL-33, TGF-β1, CCL5, IL-1α, and CX3 CL1 in sgTaz
tumors compared to sgCon tumors (Fig. 3C, D). Hence, our results
indicated that TAZ knockdown not only altered tumor growth
processes, but also the infiltration of various immune cell
components in the 4T1 tumor model.

Myeloid populations are reduced in the TME of TAZ-deficient
tumor-bearing hosts
High-dimensional mass cytometry (CyTOF) can be used to
simultaneously evaluate numerous immune cell markers, and
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has allowed for the detailed description and quantification of
tumor-infiltrating immune cells [27]. To further determine the
effects of TAZ expression on altering the immune contexture of
the TME, we developed a panel of 21 metal-labeled monoclonal
antibodies (mAbs) for the high-dimensional analysis of multiple
immune cell types using CyTOF technology, including CD3+CD4+

T cells, CD3+CD8+ T cells, B220+ B cells, MDSCs, macrophages,
neutrophils, monocytes, and dendritic cells (DCs) (Table S2). Using
this panel, we then performed a mass cytometry analysis in the
sgCon and sgTaz 4T1 tumors. To visualize the cellular hetero-
geneity of the immune cells, we utilized t-SNE analysis [28]. We
found similar numbers of CD45+ cells, as well as CD4+ and CD8+

T cells between sgCon and sgTaz 4T1 tumors (Fig. S3A, B).
Consistent with the RNA-seq analyses, we observed a significant

decrease in the B cells (B220+) in the sgTaz tumors compared to
the sgCon tumors (Fig. S3A, B).
MDSCs are a heterogeneous population of largely immature

myeloid cells that have potent immune suppressive activity
[29, 30]. Two major MDSC subsets have been described in mice:
monocytic (M-MDSCs) and polymorphonuclear (PMN-MDSCs) [31].
Both subsets express the myeloid lineage marker CD11b and the
granulocytic marker Gr-1 (which has two isoforms: Ly6C and
Ly6G). PMN-MDSCs are further defined as CD11b+Ly6CloLy6G+,
whereas M-MDSCs are further defined as CD11b+Ly6ChiLy6G−

[32]. Interestingly, we found significant reductions in both PMN-
MDSCs and M-MDSCs in sgTaz tumors compared to the sgCon
tumors (Fig. 4A). We also detected significant decreases in
macrophages (CD11b+F4/80+) and Tregs (CD4+CD25+CD39+) in
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Fig. 1 TAZ is highly expressed and correlated with poor outcome of TNBCs. A Comparison of TAZ mRNA expression between triple-
negative breast cancer (TNBC) and non-TNBC in TCGA breast cancer datasets. TNBC; n= 160, non-TNBC; n= 862. B TAZ mRNA expression
comparison by PAM50 classification in TCGA breast cancer datasets. Basal-like (Basal); n= 139, Her2; n= 67, Luminal A; n= 419, Luminal B;
n= 192, normal-like (normal); n= 23. C Breast cancer disease-free survival Kaplan-Meier curves were generated using a TAZ target score in the
whole cohort or each subtype of the TCGA breast cancer cohort. High TAZ target expression was significantly associated with high immune
scores (D) and high stromal scores (E).
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sgTaz tumors compared to the sgCon 4T1 tumors (Fig. 4B, C).
Although we did not observe significant changes in the absolute
number of CD8+ T cells, we found that the ratio of CD8+ T cells to
PMN-MDSCs or macrophages was significantly higher in sgTaz
tumors compared to the sgCon 4T1 tumors (Fig. 4D), suggesting a
more immune-activating TME in sgTAZ tumors. Overall, the mass
cytometry analysis revealed a significant reduction in the
accumulation of several immune suppressive cell types under
conditions of TAZ knockdown, including MDSCs, macrophages,
and Treg cells, which was accompanied by an increased ratio of
CD8+ T cells to PMN-MDSCs or macrophages. This is consistent
with a reduction in the immune suppressive nature of the TME.
These findings indicated that tumor-intrinsic TAZ expression
played an important role in the recruitment and accumulation
of immune suppressive cells within the TME.

MDSC depletion reduces tumor growth
The results of the RNA-seq and mass cytometry analyses
suggested that alterations in immune suppressive cells, such as

MDSCs and macrophages within the TME may be responsible in
part for the observed changes in tumor growth. To determine a
causal role of MDSCs in mediating the growth of sgCon or sgTaz
4T1 tumors, the corresponding tumor-bearing mice were treated
with anti-mouse-Gr-1 antibody or an isotype control (Fig. 5A) –
this is a strategy used to deplete both subsets of MDSCs [33]. The
anti-Gr-1 antibody treatment significantly reduced the growth of
the sgCon tumors but not of the sgTaz tumors during this time
course (Fig. 5B), suggesting that tumor-intrinsic TAZ expression
acted at least in part through MDSC dependent mechanisms.
Flow cytometry analysis was performed to analyze the effect of

anti-Gr-1 antibody on the immune populations within the TME.
Consistent with our mass cytometry analysis results, the flow
cytometry findings showed that knocking down TAZ had no
dramatic effects on the number of CD4+ and CD8+ T cells in the
TME of IgG isotype-treated mice; however anti-Gr-1 treatment did
mildly reduce the absolute number of CD8+ T cell in the TME of
sgCon tumors (Fig. 5C–E). In agreement with our previous mass
cytometry analyses, we found significant reductions in total
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CD11b+Gr-1+ MDSCs, as well as the PMN-MDSC subset, between
isotype-treated sgCon and sgTaz tumors; however there was no
effect on the M-MDSCs. Importantly, anti-Gr-1 treatment signifi-
cantly diminished total and PMN-MDSC populations within the
TME of sgCon tumors but had no significant effect on MDSC
abundance within sgTaz tumors, suggesting that the sgTaz TME
was MDSC depleted prior to anti-Gr-1 treatment due to Taz
knockdown. Indeed, there was no difference in total MDSCs or
PMN-MDSCs between anti-Gr-1-treated sgCon and either isotype-
or anti-Gr-1-treated sgTaz tumors, mirroring the relationships
observed in tumor growth (Fig. 5F–I). Interestingly, we observed
that macrophages were increased in sgTaz tumors in response to
anti-Gr-1 antibody treatment, suggesting that the loss of MDSCs
may also indirectly affect macrophage infiltration and/or their
functionality (Fig. 5J). These findings demonstrated that tumor-

intrinsic TAZ regulated mammary tumor growth at least in part via
blockade of MDSC accumulation within the TME.

DISCUSSION
TNBC, defined by the lack of estrogen and progesterone receptors
and HER2, accounts for 15–20% of all breast cancer subtypes and
typically display aggressive behavior, including early recurrence
and metastasis, despite intensive chemotherapy treatment [34].
Therefore, more effective therapies are urgently needed. Notably,
immunotherapy has prolonged survival in various solid tumor
types and represents a promising treatment strategy for TNBC.
However, while several lines of evidence support the use of
immunotherapy in TNBC, its efficacy has been modest and limited
to a subset of cases [35]. For example, the modest clinical efficacy

C

A B

D

sgTaz tumors versus sgCon tumors

-15 -10 -5 -1 0 1 5 10 15

25
5

0
20

10

10

15
30

-lo
g1

0 
(p

 v
al

ue
)

log2 Fold change

Down in sgTaz
(1043; padj<0.05) 

 Up in sgTaz 
(871; padj<0.05)

Tumor maker
Astrocytes_ENDOD_2

Hepatocytes_FANTOM_1
Macophages M1_FANTOM_2

HH
Cell Adhesion

Cellular Growth Factor
Melanocytes_FANTOM_2

Chondrocytes_FANTOM_1
Macophages_HPCA_3

NK cells_BLUEPRINT_2
CD4+ memory T-cells_FANTOM_1
Keratinocytes_HPCA_2
CD4+ Tcm-HPCA_1
Keratinocytes_FANTOM_2
Mesangla cells_ENCOD_3
Myocytes_FANTOM_2
naive B-cells_NOVERSHTERN_1

MPP_FANTOM_2
Cytokines

0

Normalized Enrichiment Score
0-0.5-1.0-1.5-2.0 0.5 1.0 1.5 2.0

-2 0 2

**
*********

*

R
el

at
iv

e 
ex

pr
es

si
on

Il3
3

ID C
dk

n1
a

H
if1

a
Ifi

h1
Il1

a
C

cl
5

C
d1

09
Tf

rc
Irf

8
Pt

pn
22

C
fh

M
r1

Ja
k2

Il1
3r

a1
Ah

r
N

t5
e

Ja
k3

Ifi
t2

Ifi
20

4
Ts

lp
C

d7
4

Il1
ra

p
Tc

f4
R

un
x1

Tl
r4

C
d9

7
N

fa
tc

3
Tg

fb
r1

C
as

p1
C

d1
64

C
d4

4
C

as
p3

M
ap

4k
1

Pl
au

C
hu

k
C

x3
xl

1
H

60
a

Po
lr2

a
M

ap
k1

1
H

fe
Ar

hg
di

b
C

xc
l3

C
is

h
M

x1

sgCon

sgTaz

Il33 TGF-�1 Ccl5 Il1a Cx3cl1

sgCon
sgTaz

Fig. 3 Knockdown of Taz alters the immune cell components in TME. A Volcano plot shows significant gene expression alterations between
sgTaz and sgCon 4T1 tumors. B Over-representation analysis (ORA) using pathway annotations. C Representative heatmap data of NanoString
immunology panel analyses in sgCon and sgTaz 4T1 cells. D qRT-PCR analyses of Il33, TGF-β1, Ccl5, Il1a, and Cx3cl1 expression in sgCon and
sgTaz 4T1 cells. Relative expression was normalized by GAPDH expression. Unpaired two-tailed student t-test: *p < 0.05; **p < 0.01;
***p < 0.001.

H. Shen et al.

1796

Cancer Gene Therapy (2022) 29:1791 – 1800



achieved in current clinical trials suggests that the immune
suppressive TME cannot be overcome by PD-1/PD-L1 blockade
alone [36]. Understanding the mechanisms that underlie these
additional immune suppressive processes may open new avenues
for the treatment and prevention of advanced or metastatic TNBC.
In this study, we found that reducing TAZ expression, which has

long been associated with regulating cell-intrinsic mechanisms of
tumorigenesis, also regulates the immunosuppressive TME, as
evidenced by tumor-cell specific TAZ knockdown diminishing
mammary tumor growth and metastasis in immune competent
mice, but not immune deficient mice. Using RNA-seq and mass
cytometry approaches, we observed several immune alterations

within the TME when TAZ was deleted in the tumor cells. This
reduction in tumor growth was accompanied by a reduction in
MDSCs and macrophages. We further observed downregulation of
the expression of certain cytokines/chemokines, such as Il33, TGF-
β, Ccl5, Il1a and Cx3cl1, in the TAZ knockdown 4T1 cells. The
reduction of chemokines may inhibit the recruitment of such
immune suppressive myeloid populations to the TME of the TAZ
knockdown tumors. Thus, future studies are warranted to explore
the role of these chemokines/cytokines in detail in the mechanism
of TAZ-mediated tumor progression.
It is generally accepted that PMN-MDSCs and M-MDSCs are

not only phenotypically and morphologically different, but also
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have unique (although partially overlapping) functional and
biochemical traits, which reflect their different roles under
various pathological conditions [32]. Although we did not
observe quantitative changes in CD8+ cytotoxic T cells in
response to TAZ knockdown, it is important to note that we did
observe significant increases in the ratio of these effectors to
MDSCs. These data are consistent with the interpretation of a
more immune activating or less pro-tumorigenic TME. Further-
more, using an anti-Gr-1 antibody treatment approach, we
showed that treatment significantly reduced 4T1 tumor growth
and PMN-MDSC accumulation within TME of control mice, but
not in TAZ knockdown mice.
Most studies in the field have focused on the pro-tumorigenic

roles of MDSCs on the T-cell response, which was also a focus of
this study. Indeed, it has been reported that MDSCs co-localize
with B-cells within the marginal zone of the spleen in tumor-
bearing mice [37]. Unlike the suppressive effects of MDSCs on
T cells, MDSCs may promote the proliferation and inhibit the
apoptosis of B cells [38]. Interestingly, we found that anti-Gr-1
antibody treatment had no effect on the macrophage popula-
tion in the control tumors, but it did increase macrophages in
the TAZ knockdown tumors, suggesting that the loss of MDSCs
may indirectly regulate macrophage infiltration and/or their
functionality. Given the complexity of the MDSC and macro-
phage responses across multiple components of adaptive
immunity, future studies are needed to dissect the relationship
among MDSCs, macrophages, and B cell infiltration within
the TME.
The recruitment of MDSCs to the TME has been demonstrated

to promote tumor growth through inhibition of innate and
adaptive antitumor immune functions, as well as contribute to
therapeutic resistance [39]. This aligns with studies reporting that
methods which reduce MDSC populations further improve the
efficacy of ICIs [40]. For example, recent studies showed that using
antibodies against cytotoxic-T-lymphocyte-associated protein 4
(CTLA-4) or programmed cell death 1/programmed cell death 1
ligand 1 (PD1/PD-L1) alone was insufficient to generate an
effective antitumor response, however a combination of ICI with
agents that inactivate MDSCs demonstrated superior efficacy
against de novo resistance to the ICI in metastatic castration-
resistant prostate cancer (mCRPC) [41].
There is emerging evidence that dysregulation of the Hippo-

YAP/TAZ signaling pathway plays a critical role in the TME [42].
Several studies have shown that YAP/TAZ transcriptionally
activates PD-L1 expression, thus suppressing T cell-mediated
killing of tumor cells in melanoma, lung, and breast cancer
[43–46]. YAP activation has been reported to drive macrophage
recruitment in liver cancer models [47]. Though YAP has been
found to induce MDSC recruitment in a mouse model of prostate
cancer [48] and pancreatic cancer [49], how TAZ regulates
immune suppressive cells in the TME of breast cancer remains
largely unknown. Interestingly, Moroishi et al. found that knocking
out LATS1/2, the upstream negative regulator of YAP/TAZ, inhibits
tumor formation and contributes to the generation of an immune
suppressive TME via secretion of nucleic-acid-rich extracellular
vesicles [50]. It will be interesting to test whether those
extracellular vesicles play a role in MDSC recruitment in our
experimental system.
In summary, the findings of this study suggest that tumor-

intrinsic TAZ expression plays a regulatory role in the accumula-
tion of MDSCs and macrophages in the TNBC TME. The
mechanisms and signaling axes involved could serve as novel
therapeutic targets. Having a better understanding of TAZ-driven
mammary tumor growth may support the development of
innovative treatment options and improve outcomes for patients
with TNBC, or other cancer types where the TAZ pathway is
relevant to neoplastic progression.

DATA AVAILABILITY
The RNAseq data from sgCon and sgTaz tumors has been deposited to Gene
Expression Omnibus (GEO) as GSE205160.
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