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Selecting Controls for Assessing Interaction in Nested Case-control Studies 

John Cologne,1 and Bryan Langholz.2

 Background: Two methods for selecting controls in nested case-control studies - matching on Xand 
counter matching on X - are compared when interest is in interaction between a risk factor X mea-
sured in the full cohort and another risk factor Z measured only in the case-control sample. This is 
important because matching provides efficiency gains relative to random sampling when X is uncom-
mon and the interaction is positive (greater than multiplicative), whereas counter matching is generally 
efficient compared to random sampling. 

 Methods: Matching and counter matching were compared to each other and to random sampling of 
controls for dichotomous X and Z Comparison was by simulation, using as an example a published 
study of radiation and other risk factors for breast cancer in the Japanese atomic-bomb survivors, and 
by asymptotic relative efficiency calculations for a wide range of parameters specifying the prevalence 
of X and Z as well as the levels of correlation and interaction between them. Focus was on analyses 
utilizing general models for the joint risk of X and Z. 

 Results: Counter-matching performed better than matching or random sampling in terms of efficiency 
for inference about interaction in the case of a rare risk factor X and uncorrelated risk factor Z. Further, 
more general, efficiency calculations demonstrated that counter-matching is generally efficient relative 
to matched case-control designs for studying interaction. 

 Conclusions: Because counter-matched designs may be analyzed using standard statistical methods 
and allow investigation of confounding of the effect of X, whereas matched designs require a non-stan-
dard approach when fitting general risk models and do not allow investigating the adjusted risk of X, it 
is concluded that counter-matching on X can be a superior alternative to matching on X in nested case-
control studies of interaction when X is known at the time of case-control sampling. 
J Epidemiol 2003;13:193-202. 
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 With epidemiologic cohort studies, it is important that 

researchers utilize the most efficient nested case-control designs 

to study interaction between two risk factors, one of which is 

known for the entire cohort but the other of which can only be 

feasibly ascertained in a sample. The situation may be illustrated 

by the following real-life example. In the study of long-term radi-

ation effects in the Japanese atomic-bomb Survivors - the so-

called Life Span Study1 - case-control studies must be per-

formed to investigate certain cancer risk factors because it may be 
impractical to obtain risk factor information for all 120,000 cohort 
members. Land et al.2 studied interaction between radiation and 
three other breast-cancer risk factors (age at first full-term preg-
nancy, number of births, and cumulative time of lactation) after 
matching on radiation dose in a case-control interview study. A 
major aim of the analysis was to investigate the scale of interac-
tion using general risk models that differ from the standard log-
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 linear model typically employed in case-control analyses.3.4 
   Matching on exposure can increase efficiency relative to ran-

 dom sampling of controls for the analysis of interaction when the 
 exposure is rare and there is a positive (super-multiplicative) 

 interaction,5 Thus, because radiation dose is available on all Life 
 Span Study members and large doses are rare, matching on radia-

 tion dose might be considered a reasonable strategy. However, 
 matching on radiation dose prevents studying the risk of radiation 

 after adjusting for other risk factors measured in the case-control 
 sample. Furthermore, when exploring interaction in general risk 

 models such as excess relative risk (ERR) models,6 the analysis of 
 matched data requires special methods. Such models typically 

 require a parameter for the exposure main effect; if the case-con-
 trol sample is matched on exposure, this parameter cannot be esti-

 mated from the case-control sample and must instead be substitut-
 ed with the cohort estimate,2 which is not adjusted for the effects 

 of the other factors. 
  Counter-matching is a method of control selection that can be 

thought of most simply as a way of reducing the frequency of 
 concordant matched pairs in a pair-matched case-control study 

when surrogate information on exposure exists prior to sampling.7 
Counter matching is not limited to matched-pair designs, though, 
and may be applied more generally to any number of controls and 
to unmatched case-control studies.8 It has been shown that, when 
exposure is known prior to sampling, counter-matching on expo-
sure can increase efficiency relative to random sampling of con-
trols for assessing interaction with, or confounding by, another 
factor to be measured in the case-control sample.' In contrast to 
matching, counter-matching does not preclude estimating the con-
founder-adjusted exposure parameter from the case-control sam-

ple. Thus, counter-matching would be preferred for studies of 
interaction when general risk models are to be used unless there is 
a marked loss of efficiency compared to matching. An important 
question is therefore whether matching or counter-matching leads 
to greater statistical efficiency in the interaction analyses when 
using general risk models. 

  We therefore investigated the efficiency of matching and 
counter-matching for studying interaction in the context of the 
case-control study of breast cancer mentioned above, where con-
trols are to be sampled from each risk set in such a way as to have 
similar age and birth year as the case. Although both matching 
and counter-matching are appropriate for this purpose and both 
can provide efficiency gains relative to random sampling, the effi-
ciency gains with counter matching are more general than those 
with matching, and counter-matching and matching have not been 
directly compared under the circumstances where matching can 
result in increased statistical efficiency relative to random sam-

pling. We therefore compared them to each other as well as to 
random (unmatched) control selection using a small simulation 

study and general large-sample efficiency calculations. Our 
results should provide guidance to researchers contemplating 

nested case-control designs in which interaction between two fac-
tors is an important study issue.

            METHODS 

   Let X represent exposure, which is known for all members of 

 the cohort (e.g., radiation exposure in the Life Span Study). Let Z 
 be any factor to be measured in the case-control sample, whose 

 ascertainment requires considerable effort (e.g., any breast-cancer 
risk factor that requires assessment by interview). 

Matching and counter-matching 
  Matching. Matching on X involves selecting the specified num-

ber of controls at random from among all at-risk subjects with the 
same exposure status as the case. With exposure-matched data 
there is, by design, no variation in exposure status between the 
cases and controls, so that parameters related to the main effect of 
exposure cannot be estimated. In a model in which the main 
effects for X and Z are multiplicative (such as in equations 1 and 2 
below), the variation in the relative risk associated with Z across 
the exposure-matched case-control sets provides sufficient infor-
mation to estimate the risk of Z and the interaction parameter 
without estimating the risk of exposure X. However, the expo-
sure-matched design precludes estimation of the exposure effect 
required in more general risk models (such as equations 3 and 4 
below), so Land et al.' proposed substituting the cohort estimate 
of the main effect of X. Because that estimate is not adjusted for 

possible confounding or effect modification by Z, they further 
proposed centering the factor Z at its mean in the case-control 
sample. However, if Z is a qualitative factor having a specific ref-
erence category, centering Z in the analysis leads to the estimation 
of parameters that do not directly represent the risks of the origi-
nal levels of Z. Furthermore, simply substituting the cohort esti-
mate ignores the effect of its uncertainty on the case-control 
analysis. 
  Counter-matching. Counter-matching is a relatively new 
method of sampling controls, which creates exposure diversity in 
the case-control data by exploiting information available on all 
members of the cohort. The design, analysis, and efficiency (rela-
tive to random sampling) of counter-matched studies are dis-
cussed elsewhere, so we refer the reader to those papers for a 
more detailed account.9-13 Briefly, controls are selected to increase 
the variation in X in the case-control set relative to random sam-

pling, the opposite of the goal of matching. 
  To form the counter-matched sample for a continuous exposure 

X, such as radiation dose in the Life Span Study cohort, we would 
construct strata by calculating the (m+l) quantiles of the distribu-
tion of X among all cases in the cohort , where m is the number of 
controls to be sampled from each risk set (corresponding to a sin-

gle case). For each risk set, one control would be sampled ran-
domly from each of the non-case strata. Other factors Z would 
then be ascertained on the counter-matched sample. Of course 
case-control sets formed in this way cannot be analyzed as if they 
were randomly sampled, but sampling weights can be calculated 

and used in the analysis that adjust for the biased , stratified sam-
pling. Each sampled subject has, as an associated weight, the
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number of qualified subjects in that exposure stratum in the 
cohort risk set. The case-control data therefore consist of a 
matched set identifier, the case-control status indicator, the (con-
tinuous) value of exposure X, the value(s) of the additional fac-
tor(s) Z measured only in the case-control sample, and the sam-

pling weight for each subject. The analysis is then performed as in 
a standard matched case-control study, but with the addition of 
the log weights as an offset (a covariate with parameter fixed at 
1).14 The continuous values of X are used in the analysis, rather 
than the categorical strata used for the counter matching. 

Models for the joint effect of radiation and other risk factors 
  For simplicity of illustration, in the present report we limit X to 

a dichotomous factor representing either significant radiation 
exposure (X=1 for dose > 1.0 Gray) or not (X=0) and Z to the 
dichotomous factor nulliparous (Z=1 for no full-term pregnancies) 
or not (Z=O). We use the term "interaction" to refer to statistical 
interaction in a model for the joint effect of two factors. This is 
what Rothman calls "effect-measure modification" to distinguish 
it from true biological interaction." The issue of statistical interac-
tion in the risk of disease is complicated by the choice of scale for 
the main effects. Standard logistic regression programs most com-
monly use, by default, a log-linear scale so that the interaction 
model of the risk for factors X and Z has the form 

           RL(x,z)=exp(xaL+Z L+xzrL), (1) 

where x, z are observed values of X, Z. Deviations from the main 
effects model, which assumes that the relative risk for the joint 
effect of x and z is the product exp {x a} X exp {z  } of the margin-
al relative risks, are captured by the interaction term (xzrL). This 
model is chosen mainly for reasons of convenience, because 
many statistical packages only support models of the log-linear 
form. However, depending on the specific study, other forms may 
be more appropriate, either to provide a more parsimonious 
description of the joint effect or to appropriately model hypothe-
sized biological processes. 16.17 

  Models for the joint effect of X and Z that are of particular 
interest in epidemiology and risk assessment include the multi-

plicative excess relative-risk (ERR) model 

   RM(x,z) = [1+Rx (x, aM)] X [1+Rz(z, M)] X SM(x,z,rM) (2) 

and the additive ERR model 

      RA(x,z)=1+Rx(x, a A)+Rz(z, A) + SA(x,z,r A). (3) 

In equations 2 and 3, Rx(x,a) and Rz(z, ) are excess relative-risk 
functions describing the marginal effects of X and Z based on 

parameters am,  M in the multiplicative model or aA,  A in the 
additive model. The functions SM(x,z,rM) and SA(x,z,rA) are inter-

action terms on multiplicative or additive scale with parameters 

 rM and rA. When an interaction term is in the model, Rx(x,a) or

Rz(z, ) defines the excess relative risk when the other variable is 

equal to its null value. 

 Equations 2 and 3 without interaction terms are special cases of 

more general mixture models that can be written in various 

forms.3 To facilitate substituting the cohort estimate of the main 

effect of X, Land and associates 2 used the form 

  RG(x,z)=[l+Rx(x,aG)] X {1+Rz(z, c)/[1+Rx(x,aG)]*}, (4) 

where  = 0 corresponds to the pure (no interaction) multiplica-

tive model and  = 1 corresponds to the pure additive model. 

Another way of writing the mixture model is 

RG(x,z)={[l+Rx(x,aG)] X [1+Rz(z, G)]}r{1+Rx(x,aG)+Rz(z, G)}1-r, (5) 

where  = 1 corresponds to the pure multiplicative model and   
=0 corresponds to the pure additive model. Equation 5 is more 

generally useful when the main effect of X can be estimated from 
the case-control data - e.g., when counter-matching is employed 
- and may be fit using the Epicure* software (Hirosoft 

International Corp., Seattle, WA). 

Comparison of methods 
  For the simulation comparisons, we generated a hypothetical 

cohort of women based on the Life Span Study and results of the 

previous case-control study of Land et al' Substantial radiation 
exposure (dose > 1.0 Gray) and dichotomized parity (nulliparous) 
were each assigned a relative risk of 2.0 and their combined effect 
was taken to be slightly super-multiplicative with joint relative 
risk 2 X 2 X (8/7) = 4.57 (see Appendix). We then simulated 100 
times the sampling and analysis of case-control sets from the 
cohort using each of the three sampling methods. A fixed number 
of controls (m= 1, 2, 3, 5, or 9) was sampled for each case with-
out replacement from the simulated cohort, either matched on 
dichotomous radiation exposure status, counter-matched on expo-
sure status, or sampled randomly without regard to exposure sta-
tus (unmatched). 

  In the counter-matched design, we chose configurations in 
which there was balance in exposure status in each case-control 

set. Thus, when one control was selected it was sampled from 
subjects with the opposite exposure status as the case. When 
three, five, or nine controls were selected, two, three, or five con-
trols were sampled from among the subjects with opposite expo-
sure status as the case and one, two, or four from among subjects 
with the same exposure status as the case. Two controls results in 
an odd-sized case-control set; which strata will have an extra sub-

ject must be determined without regard to the exposure status of 
the case. We evaluated both approaches: 1) sampling so that each 
case-control set had two subjects in the unexposed stratum - i.e., 
one control was sampled from among the subjects with opposite 
exposure status as the case and one additional control was sam-

pled from among the unexposed subjects - and 2) sampling so 
that each case-control set had two subjects in the exposed stratum
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 - i.e., one control was sampled from among the subjects with 
 opposite exposure status as the case and one additional control 

 was sampled from among the exposed subjects. In the matched 
 design, all controls were selected from the same exposure stratum 
 as the case. With matching or counter-matching on exposure, all 

 controls were sampled at random from within the appropriate 
 stratum. With unmatched sampling, controls were sampled com-

 pletely at random without regard to exposure stratum. 
   Comparison was in terms of inference about departure from 

 pure multiplicative (equation 2) or additive (equation 3) ERR 
 models. We studied 1) the power of the likelihood ratio test of 

 interaction on additive and multiplicative scales, and 2) the mean 
 and precision of estimates of the degree of interaction. Power was 

 taken to be the proportion of simulations where the likelihood 
 ratio test of no interaction was rejected at the 5% level. Because 

 analyses using general ERR models with the matched design 
 require inputting the cohort radiation ERR estimate but the other 

 designs allow estimation of the radiation ERR from the case-con-
 trol sample, it is not possible to directly compare interaction para-

 meters between the matched analysis on the one hand and the 
 counter-matched or unmatched analyses on the other. However, in 
 the special case of either multiplicative model (equation 1 or 2), it 
 is possible to test and estimate the degree of interaction between 

radiation and nulliparity in the exposure-matched design without 
 the need for an exposure main-effect parameter. Thus, we com-

pared the efficiencies of the various designs for estimating inter-
action on the multiplicative ERR scale (equation 2) with SM(x,z, 

 rM) = exp{xzrM}. The variances of the interaction parameter 
estimates from the samples were compared to the full cohort vari-
ance (0.046), so a value as high as 1.0 means the sample is as effi-
cient as the full cohort. All models were fit using the Epicure* 
software. 
  To further compare these designs, we computed asymptotic rel-
ative efficiencies by calculating the expected variances of the esti-
mated interaction term for each of the designs using analytic for-
mulas10 with the same parameter values as those used in the simu-
lations. These formulas are based on the log-linear model (equa-
tion 1), rather than the multiplicative ERR model (equation 2) 
used in the simulations, but the two models are equivalent 
because the interaction term in equation 1 is the logarithm of that 
in equation 2. 

  Because situations different from the breast-cancer study used 
here as an illustration may arise in practice, we further compared 
efficiencies of the three designs computed under more general 
scenarios (varying the prevalence of X and Z as well as the extent 
of interaction and association between them). The configurations 
studied were very similar to those used by Thomas and 
Greenland.5 Those configurations include all combinations of:1) 
rare (prevalence=0.15), moderate (prevalence=0 .5), or common 
(prevalence=0.85) X;2) rare (prevalence=0.1), semi-moderate 

(prevalence=0.25), or moderate (prevalence=0.5) Z; 3) negative 
(OR=0.2), positive (OR=5.0), or no (OR=1.0) correlation between 
X and Z; and 4) joint effect of X and Z that is sub-multiplicative

 (exp{y}=0.2), simple multiplicative (exp{r}=1.0), or super-mul-
 tiplicative (exp{r}=5.0). The main effects rate ratios for both X 

 and Z used in these calculations were exp{a} = exp{ } = 5.0. 
 The ratios of asymptotic relative efficiencies of counter matching 

 relative to either the matched or unmatched design were comput-
 ed; thus, a value larger than 1.0 means counter-matching has 

 greater efficiency. 

             RESULTS 

Tests of model scale 
  Because the variance of a binomial proportion is a maximum 

when the proportion is 0.5, all of the power results based on 100 
simulations have a theoretical standard error of 0.050 or less. Five 
sets of 100 simulations using the unmatched design with five con-
trols produced values having mean 0.460 and standard deviation 
0.0474, close to the theoretical standard error 0.0498. 

  For the rare exposure case studied by simulation, both the 
matched and counter-matched designs with three or more controls 
dramatically improved the power of the test for departure from 
the pure additive model compared with the unmatched design 

(Table 1). The counter-matched design was clearly superior; it 
achieved 94 percent power with three controls per case, whereas 
nine matched controls were required to achieve this level of 

power. None of the methods was able to detect the subtle depar-
ture from a pure multiplicative model, even with nine controls per 
case, and none of the methods displayed acceptable power against 
either the multiplicative or additive model with just one or two 
controls per case. With two controls, counter matching in this sit-
uation performed better when the extra control was unexposed 
rather than exposed. 

Multiplicative interaction parameter 
  The simulated relative efficiencies for the interaction parameter 

rM are given in Table 2. Estimates and confidence intervals are 
shown in Figure 1. As with the tests for interaction , both the 
exposure-matched and counter-matched designs improved effi-
ciency compared to random control selection . The matched and 
counter-matched designs produced narrower confidence intervals 
than the unmatched design. Counter-matching produced narrower 
confidence intervals than those with matching, substantially so in 
the case of two or three controls . Except for the 1:1 designs, the 
magnitude of case-control sampling variation in the interaction 

parameter estimates (standard deviation of simulated estimates) 
was approximately on the order of 1:2:3 for counter -matched , 
matched, and unmatched. As a result , counter-matching achieved 
a level of efficiency - average variance of the interaction esti-
mate - very close to that of the full cohort with five controls 

(relative efficiency 0.95) whereas matching required nine controls 
to achieve similar efficiency.
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Table 1. Power of the likelihood ratio tests* for interaction .

* Test size (probability of rejection given the null hypothesis of no interaction) was 0.05.

Table 2. Small sample (simulated) and asymptotic (calculated) relative efficiencies of the estimates of the 

       log-linear interaction parameter. *

* Relative efficiencies are given for the model with exp{a} = exp{ } = 2 and exp{r} = (8/7). 
r The small sample efficiency is the ratio SE2 (r) cohort/ SE2 (r) sample of squared standard errors of the 

 parameter estimates from the simulated data. 
 The asymptotic relative efficiency is the ratio SE2 (r) cohort / SE (r) sample of squared asymptotic standard 

  errors.
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Figure 1. Boxplots exhibiting 100 simulated estimates of the multiplicative interaction parameter y, (equation 2) 

       and 95% likelihood-based confidence bounds for the three sampling methods: matched (M) , counter-
       matched (C), and unmatched (U). 

Estimates of the parameter and its confidence bounds were obtained by exponentiation of those for yM. Results are 
for case-control ratios of 1:1, 1:2, 1:3, 1:5, and 1:9. Results for counter matching with two controls are from the 

design with the extra control unexposed. Narrower boxplots reflect smaller sampling variation in the interaction 

estimates or confidence bounds. More precise estimation of interaction is evidenced by median bounds closer to the 

interaction estimate. For comparison, the cohort interaction parameter (1.14) and confidence limits (0.74, 1.73) are 
shown as dotted lines.

Asymptotic relative efficiency 
  Results of calculated efficiency corresponding to the parameter 

values used in the simulations are also given in Table 2; they par-
allel those based on the simulation and are qualitatively concor-
dant with them. With one control, the matched and counter-
matched designs had similar efficiencies that were about 40 per-
cent that of the full cohort, as compared to 0.28 for unmatched. 
But with three controls, counter-matching was superior. The 
counter-matching efficiency was 0.85, whereas that for matching 
was 0.68. With two controls, counter matching was more efficient 
than matching when the extra control was unexposed (efficiency 
0.80), but when the extra control was exposed the efficiency 

(0.45) was little better than that of the 1:1 design (0.43). The cal-
culations indicate that, in order to obtain the same amount of effi-
ciency as with three counter-matched controls, about eight 
matched controls, or well over ten unmatched controls, would be 
required. 
 The results of the more general asymptotic relative efficiency 

calculations are shown in Figure 2 for positive (greater-than-mul-
tiplicative) interaction (exp{r}=5; upper panel) or negative (less-
than-multiplicative) interaction (exp{r}=0.2; lower panel). 
Results for no interaction - exp{r}=1 - were intermediate to

the other two and so are not shown. The result for counter match-

ing with 2 controls is averaged over the two allocation strategies . 
Efficiency of counter matching is shown relative to that of the 

other designs. Counter matching was generally more efficient 

than the other designs (ratio of relative efficiencies often much 

greater than 1.0) over all of the configurations studied with three 
or more controls. With rare (prevalence 0 .15) X and positive inter-
action, counter matching was the most efficient regardless of 

number of controls, followed by matching , with the unmatched 
design having the lowest efficiency . With two controls, the effi-
ciency of counter matching varied depending on whether the extra 

control was exposed or unexposed. The strategy with the extra 

control exposed generally performed better, but the strategy with 

the extra control unexposed had higher efficiency for the combi-

nation of rare X, rare Z, and small interaction (not shown) . Large 
sample relative efficiencies for one control per case were mixed , 
with counter-matching generally more efficient than the matched 

or unmatched designs over a wide range of situations , but less 
efficient than the unmatched design with a common (prevalence 

0.85) X. Efficiency of the matched design only exceeded that of 

the unmatched design with a rare (prevalence 0.15) X.
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Figure 2. Results of asymptotic relative efficiency (ARE) calculations versus three levels of prevalence of 

      exposure [Pr(X=1)].

Points are the ratio of ARE for counter matching to that for matching (   ) or random sampling (   ). 
Three levels of prevalence of the other factor, Z, are compared: Pr(Z=1) = 0.1 (  ), Pr(Z=1) = 0.25 (  ), and 
Pr(Z=1) = 0.5 (   ). Relative efficiencies were calculated for three levels of correlation between X and Z: odds 
ratio (OR) = 5.0, 1.0, or 0.2. Three values of the interaction between exposure X and other factor Z were examined: 
exp{r}=5.0 (upper panel), exp{r} 1=0.2 (lower panel), and exp{r}=1.0 (not shown; results were intermediate to 
the other two). Results are for case-control ratios of 1:1, 1:2, 1:3, 1:5, and 1:9. With two controls, the AREs of 
counter matching for the two allocation strategies were averaged.
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            DISCUSSION 

   It has been demonstrated here and elsewhere that counter 
 matching on a known exposure in nested case-control studies can 

 improve the efficiency of statistical inference about interaction. It 
 is not difficult to intuit why that should be so. If controls are 

 selected randomly with respect to exposure, the resulting sample 
 might be sparse with respect to information about the joint distrib-
 ution of exposure and the other risk factor , particularly if the 

 exposure is rare. It has further been shown here that counter 
 matching is equal or superior to matching in terms of efficiency. 

 The following three points should therefore be considered by 
 investigators planning nested case-control studies of statistical 

 interaction between two risk factors when one factor is measured 
 in the full cohort: 

 • Matching complicates exploration of scales of interaction other 

     than those in which the joint effects are multiplicative 
     because the marginal effect of exposure does not factor out 

     of the risk equation and cannot be estimated in an exposure-
     matched design. Additional assumptions and non-standard 

     methods are therefore needed to fit general risk models in 
     matched designs. Two important issues are 1) possible bias 

     from use of the unadjusted cohort exposure risk estimate , 
     and 2) failure to account for uncertainty in this estimate . 
     Counter matching does not impose any restrictions on the 

     types of general relative risk models that can be explored 
     and standard methods and software may be used. 

 • Even with standard, multiplicative models, the only situation 
    where matching on a known risk factor might be beneficial 

     for studying interaction in a case-control study is when the 
     matching factor is rare. We have shown that counter match-

    ing can be substantially more efficient than matching for 
    estimating the magnitude of interaction in this situation 

    when multiple controls are selected per case. We have also 
    shown that counter-matching is generally more efficient 

    than matched or unmatched designs for studying interaction. 
 • Implementing counter-matching is no more difficult than 

    matching; in fact, matching can be complicated if done 
    thoughtfully.18 In both situations one must create exposure 

    strata and randomly sample appropriate numbers of controls 
    from them. Thus, there seems to be little justification for 

    matching on a known exposure in case-control studies 
    aimed at studying interaction. On the other hand, counter-

    matching appears to be a generally efficient design for case-
    control studies of interaction9.10.12; it has already been 
    demonstrated to improve efficiency in case-control studies 

    aimed at estimating the main effect of exposure after con-
    trolling for Z as a confounder.9 

  There is a substantial literature on matching in case-control 
studies.5.19-21 Matching has been shown to improve efficiency for 
assessing interaction in situations similar to the breast-cancer

 case-control study described here, when there is a relatively rat 
 exposure associated with disease and a super-multiplicative inter- 

 action.5.19 Intuitively, matching potentially increases efficiency,at 
 least in the multiplicative models, because there are fewer part 

 meters to estimate than in unmatched data and the variation in X
 is avoided. This advantage would seem to dissipate with the use 

 of general risk models and the concomitant need to incorporate, 
 as if it were a known parameter, a possibly biased and inherently 

 random estimate of the main effect of X.2 Another design - ran 

 domized recruitment22 - is based on frequency matching and can 
 increase efficiency for studying interaction, but it does not allow 

 the researcher to specify the exact number of controls. 
  To simplify our simulation and analytic study, a dichotomous 

 exposure indicator was used rather than continuous X and we 
 selected controls so that half of the case-control set was in each 

 stratum. With an odd case-control set size (even number of con- 
trols), whether the exposed or unexposed stratum should have the 

greater number of subjects might depend on whether the exposure 
is rare or not, but must be decided independently of the case 
exposure status. We found that, with the hypothetical data and 
rare exposure used in our simulation study, placing the extra con- 
trol in the unexposed stratum resulted in greater efficiency than 

placing the extra control in the exposed stratum, but the differ-
ence virtually disappeared with greater numbers of controls (4, 6, 
and so on; results not shown). Thus, the problem of allocating the 
extra control seems to be limited to studies in which at most two 
controls can be sampled. On the other hand, placing the extra con-
trol in the exposed stratum resulted in greater efficiency in most 
of the situations studied by asymptotic relative efficiency calcula-
tions. There is no intuitive way of guessing the efficiency for test-
ing interaction parameters, so studies require consideration of the 
design on a case-by-case basis. 

  In actual application, counter-matched sampling would be 
based on dose strata as described earlier in the text, so with two 
controls there would be three strata and no problem of allocating 
an extra control with odd case-control set sizes . Furthermore, 
matching would be based on actual doses (thereby producing 
closer matches), and analyses would use continuous dose. This 
should increase the efficiency of both exposure-based sampling 
designs relative to random sampling. With counter matching, the 
more controls per case, the greater the number of exposure strata 
used, thus bringing more exposure distribution information to the 
case-control study. 

  We have assumed for calculating counter matching weights 
that each risk set contains only one case. There are two options to 
handle ties (risk sets having more than one case with the same 
onset age and date). First, the ties can be randomly broken into 
separate risk sets for each case and controls counter -matched 
from the resulting sets; the analysis then proceeds as for individu-
ally counter-matched sets. The second is to retain the k>1 cases in 
the risk set and select controls so that there are k subjects in each 
sampling stratum (including the cases) . Analysis of this strategy 
would require the conditional logistic methods described in
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Langholz and Goldstein.8 Because it is computationally simpler , 
we recommend the first strategy unless there are large numbers of 

ties. 

 Interest here has focused on the X Z interaction, but in prac-

tice investigators may want to study the effect of Z in its own 

right. Thus, there may be conflicting priorities between the need 

to achieve efficiency in the interaction analysis and efficiency in 

the analysis of the factor Z measured in the case-control sample. 

If the sole purpose of the case-control study were to evaluate Z, 

there would be no point in matching or counter-matching on X if 

X and Z were not confounded. If there were confounding, then 

matching on X might be a useful approach to studying the main 

effect of Z. However, one should check for evidence of interac-

tion, and counter-matching allows this while still accommodating 

control of confounding in the analysis. 
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            APPENDIX 

  A hypothetical cohort of 30,000 woman was generated with 

random binary variables assuming the following proportions: 5 

percent with significant radiation exposure (dose > 1 Gray), 25 

percent never having been pregnant (nulliparous), and no correla-
tion between radiation dose and pregnancy status. Given the ran-

dom values of these two factors, breast cancer case status was 

assigned randomly, also as a binary variable, using a background 

(unexposed, parous) proportion of 3 percent, relative risks for 
radiation exposure and nulliparity of 2.0, and a slight positive 

interaction between radiation and nulliparity on the multiplicative 

scale (joint relative risk 2  2  8/7 = 4.57). The resulting propor-

tions in the simulated cohort were:4.99 percent exposed, 25.46 

percent never pregnant, 2.95 percent breast cancer cases in back-

ground, relative risk for exposure (among parous women) 1.94, 
relative risk for nulliparity (among unexposed women) 2.10, and 

joint relative risk (exposed and nulliparous) 4.64. The multiplica-
tive interaction was therefore 4.64/(1.94  2.10) = 1.14. All cases 

(total number 1,436) were used in the simulations. This hypotheti-
cal cohort represents a close approximation to that from which the 

actual case-control study was sampled (in reality, though, the par-
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ity status is not known for the entire cohort). 

  Controls in a nested case-control study would typically be 

selected from among the risk set for each case, which comprise all 

members of the cohort at risk at the time of the case diagnosis. 

Some controls might appear in multiple sampled risk sets or a 

case might appear as a control at an earlier time. To simplify the 

simulations, however, we generated independent risk sets. We 

sampled from these using random sorting followed by selection of 

the first me(4) exposed or mu(*) unexposed controls within each set, 

where me(*) + mu(*)= m are the numbers of exposed and unexposed

controls called for in the design, given the exposure status of the 
case i. For the unmatched design, m controls were sampled ran-
domly without regard to exposure status. The recurrence of some 
subjects in multiple sampled risk sets further contributes to effi-
ciency in nested case-control studies and the resulting lack of 
independence among risk sets is accommodated by the condition-
al likelihood,10 but given the large size of the Life Span Study 
cohort it is unlikely that subjects would be sampled repeatedly in 
a case-control study of the size described here.


