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Genome-wide association and multi-trait
analyses characterize the common genetic
architecture of heart failure

A list of authors and their affiliations appears at the end of the paper

Heart failure is a leading cause of cardiovascular morbidity and mortality.
However, the contribution of common genetic variation to heart failure risk
has not been fully elucidated, particularly in comparison to other common
cardiometabolic traits. We report a multi-ancestry genome-wide association
study meta-analysis of all-cause heart failure including up to 115,150 cases and
1,550,331 controls of diverse genetic ancestry, identifying 47 risk loci. We also
perform multivariate genome-wide association studies that integrate heart
failure with related cardiac magnetic resonance imaging endophenotypes,
identifying 61 risk loci. Gene-prioritization analyses including colocalization
and transcriptome-wide association studies identify known and previously
unreported candidate cardiomyopathy genes and cellular processes, whichwe
validate in gene-expression profiling of failing and healthy human hearts.
Colocalization, gene expression profiling, and Mendelian randomization pro-
vide convergent evidence for the roles of BCKDHA and circulating branch-
chain amino acids in heart failure and cardiac structure. Finally, proteome-
wide Mendelian randomization identifies 9 circulating proteins associated
with heart failure or quantitative imaging traits. These analyses highlight
similarities and differences among heart failure and associated cardiovascular
imaging endophenotypes, implicate common genetic variation in the patho-
genesis of heart failure, and identify circulating proteins that may represent
cardiomyopathy treatment targets.

Heart failure (HF) is a commoncardiovascular syndromecharacterized
by symptoms including shortness of breath, volume-overload, and
functional limitation that result from structural or functional impair-
ment of ventricular filling or ejection of blood1–4. HF affects >38million
individuals globally, with rapidly growing prevalence, and is a major
cause of cardiovascular morbidity, mortality, hospitalization, and
healthcare costs5. Despite the prevalence of HF, the role of common
genetic variation in HF risk remains poorly understood. In comparison
to other common cardiometabolic traits like coronary artery disease
(CAD), myocardial infarction, diabetes, blood pressure, and obesity,
where hundreds of genetic loci have been associated with disease risk,
discovery of common genetic sequence variants associated with HF

has been modest, with only 11 genomic loci identified in the largest
genome-wide association study (GWAS) of HF to date6.

Several strategies have been described to improve power for
GWAS locus discovery. One approach, particularly useful for improv-
ing the generalizability of GWAS findings, is to improve the genetic
diversity of participants included in the study. Simulation and empiric
studies have identified power gains of multi-ancestry GWAS7, recently
demonstrated with applications to CAD and blood lipids8,9. Refining
clinical phenotypes is another effective approach to improve detec-
tion of common variant associations. This approach may be particu-
larly relevant, as HF is a heterogeneous clinical syndrome10. For
example, in prior work parsing dilated cardiomyopathy from all-cause
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HF using diagnosis and procedure codes facilitated the identification
of common-genetic variation in genes associated with Mendelian
forms of cardiomyopathy11. More recently, statistical methods that
jointly consider relatedphenotypes havebeendeveloped. Thesemulti-
trait GWAS methods leverage the shared genetic relationships
between related traits, and have been shown to improve power for
genetic discovery across a range of diseases12–14. For example, a recent
multi-trait analysis jointly considered hypertrophic cardiomyopathy,
dilated cardiomyopathy, and cardiac imaging traits, successfully
identifying novel common genetic variants associated with these
traits15. Because structural cardiac abnormalities and dysfunction of
the left ventricle are key contributors to the development of clinical
HF, and these traits share genetic architecture, we hypothesized that
jointly considering HF and related continuous quantitative cardiac
imaging phenotypes within a multi-trait GWAS framework may simi-
larly improve power for genetic discovery.

In this study, we report a multi-ancestry meta-analysis of HF
genome-wide association studies to estimate the effect of common
genetic sequence variants on all-cause HF risk. We integrate GWAS of
cardiac imaging endophenotypes and HF using multivariate GWAS
methods to further improve power for locus discovery. Finally, we
evaluate thegenetic evidence for theseassociationsusingcolocalization,
transcriptome-wide association, gene-expression profiling, and Mende-
lian randomization. In summary, this study identifies previously unre-
ported HF risk variants and putative effector genes, prioritizes relevant
tissues, highlights roles for common genetic sequence variation in the
pathogenesis of HF and related traits, and identifies circulating proteins
associated with HF and cardiovascular imaging phenotypes.

Results
Multi-ancestry HF meta-analysis identifies 47 risk loci
The overall study design is presented in Fig. 1. We conducted a multi-
ancestry GWAS meta-analysis of all-cause HF, including 115,150 HF
cases and 1,550,331 controls of diverse genetic ancestry, assembled
from large consortia and medical biobanks (HERMES, Penn Medicine
Biobank, eMERGE,Mount Sinai BioMe, Geisinger DiscovEHR, FinnGen,
and the Global Biobank Meta-analysis Initiative)6,16–19 (Supplementary

Data 1 and Supplemental Fig. 1). In the discovery phase, we identified
939 variants at 47 loci wheregenetic associations reached the genome-
wide significance (GWS) threshold (p < 5 × 10−8) (Fig. 2A and Supple-
mentary Data 2). Of the 12 independent variants previously reported
from the HERMES consortium GWAS of all-cause HF6, 10 remained
genome-wide significant in the current analysis (p < 5 × 10−8), and the
remaining two were significant at a Bonferroni-adjusted threshold
(p < 0.05/12). Of the 47 loci we identified, 34 were located >500 kb
from the lead variants reported by the largest published GWAS of all-
cause HF6. Consistent with prior reports6, the strongest association
with HF was found at the PITX2 locus (Fig. 2B). There was nominal
evidence of heterogeneity at PITX2, LPA, CDKN2B, and RP11-116D17.1
loci by genetic ancestry, but these effects were not significant after
accounting for multiple testing (0.05/47 < I2 p value <0.05) (Supple-
mentary Data 2).

We sought replication in data from the VA Million Veteran Pro-
gram (43,344 HF cases, and 258,943 controls of European Ancestry)20

and Mass General Brigham Biobank (5,542 HF cases and 20,242 con-
trols of European Ancestry). Of 47 genome-wide significant risk loci in
our analysis, 44 were available for replication (Supplementary Data 3).
Of these 44 loci, 41 (93%) had concordant direction of effect (exact
binomial p = 8.1 × 10−10), and 27 were associated with HF at a
Bonferroni-adjusted significance threshold (p <0.05/44 =0.001). In all,
37/44 loci were associated with HF at a nominal significance threshold
(p < 0.05) with concordant direction of effect. In a combined dis-
covery + replication meta-analysis, 39/44 loci reached the genome-
wide significance threshold (p < 5 × 10−8).

Pleiotropy scan reveals shared associations with
cardiometabolic traits
To determine associations between the HF loci and other traits, we
queried summary-level results from 34,513 GWAS collected by the
MRC-IEU OpenGWAS Project (https://gwas.mrcieu.ac.uk/). The lead
variants at the novel HF loci shared pleiotropic associations with a
wide variety of traits (Supplementary Data 4), including known
and common HF risk factors. Of 47 genome-wide significant loci,
32 were associated with at least 1 common cardiometabolic trait

Multi-Ancestry GWAS Meta Analysis
115,150 HF cases and 1,550,331 controls

Multi-Trait GWAS
HF + cardiac MRI traits

Genetic Correlation
Cardiac MRI traits

Pleiotropy Scan
HF risk factors, cardiac MRI traits, OpenGWAS 

Project

Gene Prioritization
Nearest gene, multi-trait colocalization, 

transcriptome-wide association, 
cardiac gene expression profiling

Tissue and Cell-type Enrichment
Stratified LD-score regression

Cardiac MRI GWAS 
(Pirruccello, et. al.)

Causal Proteins and Metabolites
Mendelian Randomization

Replication
39 genome-wide significant loci in combined 

discovery + replication

Fig. 1 | Study overview.Overview ofmajor study analyses to identify HF-associated genetic variants, shared risk lociwith other traits/diseases, prioritize genes/tissues/cell
types, and identify potential treatment targets. GWAS genome-wide association study, HF heart failure, LD linkage disequilibrium.
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(Atrial Fibrillation, BodyMass Index, CoronaryArteryDisease, Diastolic
Blood Pressure, HDL Cholesterol, LDL Cholesterol, Smoking Initiation,
Systolic Blood Pressure, Total Cholesterol, or Type 2 Diabetes) at
genomewide significance (Fig. 3 and SupplementaryData 5). Themost
common shared associations occurred with diastolic blood pressure
(12 loci), atrial fibrillation (11 loci), body mass index (11 loci), systolic
bloodpressure (8 loci), and coronaryarterydisease (5 loci). Several loci
shared associations with multiple cardiometabolic traits, including
rs10774624 near SH2B3 (7 cardiometabolic traits) and rs11066188 near
HECTD4 (7 traits). Although the HF-increasing alleles at these loci are
associated with favorablemarkers of metabolic health including lower
body mass index, total-, and LDL-cholesterol, these loci are also asso-
ciated with increased blood pressure and coronary artery disease,
which may explain the association with increased HF-risk.

HF and cardiac structure/function phenotypes are genetically
correlated
Clinically, HF is diagnosed in the setting of typical symptomsoccurring
in the presence of abnormalities of cardiac structure/function4. Cross-
trait linkage disequilibrium score regression (LDSC)21,22 was performed
to estimate the genetic correlation of HF with previously-reported
cardiac imaging-derived measures of cardiac structure and function
including: cardiac MRI-derived measures of left-ventricular end-dia-
stolic volume (LVEDVMRI), left-ventricular end-systolic volume
(LVESVMRI), volumes indexed for body surface area (LVEDViMRI and
LVESViMRI), and left-ventricular ejection fraction (LVEFMRI) obtained
from a GWAS of cardiac MRI traits among 36,041 healthy UK Biobank
participants23. HF was significantly correlated with all imaging endo-
phenotypes except LVEDViMRI, with the strongest correlation between
HF and LVESVMRI (rg = 0.36; p = 3.73 × 10−16; Fig. 4A and Supplemen-
tary Data 6).

Five common (MAF>0.01) HF lead risk variants were associated
with a cardiac MRI parameter at a genome-wide level of significance,
and 10 additional loci were associated with MRI measures at a more
liberal FDR q <0.05 (Fig. 4B). While most HF-associated variants were
associated with reduced ejection fraction and larger left ventricular
volumes, rs10774624 near SH2B3 and rs11066188 near HECTD4 were
associated with smaller left ventricular volumes, potentially indicative
of a HF with preserved ejection fraction phenotype.

Multivariate genome-wide analysis of HF endophenotypes
identifies novel loci
Having established significant genetic correlations and shared risk
variants between HF and cardiac imaging phenotypes suggestive of
common genetic etiology, we applied multi-trait GWAS methods (N-
GWAMA, multi-trait analysis of genome-wide association summary
statistics (MTAG), and a common factor model specified within the
Genomic Structural Equation Modeling framework) to improve the
power to discover additional associated genetic variants12–14. These
methods make different assumptions about the shared relationships
and heritability among the input traits, but are robust to scenarios
where SNP-trait associations are derived from overlapping samples,
and have been previously been demonstrated to improve power for
genetic discovery12–14. This analysis utilized the results of the multi-
ancestryHFmeta-analysis performed above, alongwith thepreviously-
published cardiacMRIGWAS23. Given the stronger genetic correlations
and larger number of shared risk loci between HF and cardiac MRI
measures that were not indexed for body surface area, we focused our
primary analysis onHF, LVEF, LVEDVMRI, and LVESVMRI.We additionally
consideredMRImeasures indexed for body surface area in a sensitivity
analysis.

Across the three multi-trait methods, we identified 61 indepen-
dent loci (Fig. 5A and Supplementary Data 7). Of the 61 lead variants at
these loci, 14 did not reach genome-wide significance in any of the
parent studies. Overall, lead variants at 9 of the 61 GWS loci were
located nearest to known cardiomyopathy genes (ACTN2, ALPK3,
BAG3, FLNC, PLN, TTN), representing significant enrichment (hyper-
geometric p = 6.01 × 10−11). In a sensitivity analysis considering HF,
LVEF, LVEDV and LVESV indexed for body surface area, or in a com-
bined analysis including both indexed and unindexed ventricular
volumes, we similarly identified significant enrichment of loci located
near known cardiomyopathy genes (BSA-indexed: ACTN2, ALPK3,
BAG3, FLNC, TTN, hypergeometric p = 6.82 × 10−4; combined: ACTN2,
ALPK3, BAG3, FLNC, PLN, TTN, hypergeometric p = 1.28 × 10−6).
Genome-wide significant variants from these analyses are reported in
Supplementary Data 8, and Manhattan plots are reported in Supple-
mental Figs. 4–6.

To further corroborate the relevance of these loci across HF and
imaging traits, we performed multi-trait colocalization24. This method
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Fig. 2 | Genome-wide associations for heart failure. Results of the multi-ancestry
GWAS meta-analysis of all-cause heart failure, performed using a fixed-effect
inverse variance weighted model. A Manhattan plot of genome-wide significant
(p < 5 × 10−8) associations. Each point represents a genetic variant. Variants in red
are located +/−500kb of a genome-wide significant locus. The x-axis represents the
genomic position, and the y-axis represents the strength of association as repre-
sented by −log10(p value). B Candidate genes were assigned to each genome-wide

significant variant (p < 5 × 10−8) in the multi-ancestry and ancestry-specific analyses
(based on proximity to the nearest transcription start site). Candidate genes are
grouped by chromosome. Previously unreported candidate genes (>500 kb from a
previously reported locus) are denoted by stars. The size of eachpoint corresponds
to the strength of association as represented by −log10(p value). Where multiple
independent variants mapped to the same gene, only the strongest association
is shown.
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Fig. 3 | Associations of heart failure risk variants with common cardiometa-
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a white circle. Variants are grouped by chromosome. FDR false discovery rate.

Article https://doi.org/10.1038/s41467-022-34216-6

Nature Communications |         (2022) 13:6914 4



simultaneously evaluates the probability of a shared causal variant at a
locus across multiple traits. We found evidence for colocalization
across two or more HF/imaging traits at 58 of the 61 loci, suggesting
themultivariate GWAMA results represent discovery of shared genetic
etiologies among the input traits (Fig. 5B and Supplementary Data 9).

Among the 14 novel loci prioritized in themulti-trait analyseswere
several which have been previously linked to other cardiovascular
traits/diseases inGWASor functional studies. Among these loci include
rs846111 encoding a missense variant in the RNF207 gene, which
encodes a heart-specific ring-finger protein linked to cardiac energy
homeostasis25. This variant has been previously associated with
increased QT interval26. We identified a strong novel association at
rs4328478, an intronic variant located within the PRKCA gene on
chromosome17. Functional studies of rs9912468, a cis-eQTL forPRKCA
in near-perfect linkage disequilibriumwith rs4328478 (EUR r2 = 0.996),
previously identified an association in this region with expression of
PRKCA in the human left ventricle, with zebrafish and in vitro reporter
assays suggestive of cardiac-specific enhancer activity at this locus27. In
humans, the PRKCA locus has previously been associated with elec-
trocardiographic measures of left ventricular mass at genome-wide
significance27, and nominally associated with echocardiographic traits
and dilated cardiomyopathy27, now reaching genome-wide sig-
nificance for HF. We detected another association at rs6915002, an
intronic variant nearMLIP that encodes theMuscular LMNA Interacting
Protein. This highly-conserved gene has been established as a key
cardiac sensitizer to stress, regulating morphologic adaptation
(hypertrophy and dilation) in a series of murine overexpression and
deletion experiments28,29. Another strong novel association was
rs3820888, an intronic variant located near the SPATS2L gene, which
has previously been implicated in atrial fibrillation and QT-interval30.
Manyof the novel loci in themultivariate analysis have been previously
associated with known HF risk factors including measures of blood
pressure and diabetes (hemoglobin A1c), markers of arrhythmias (e.g.,
atrial fibrillation, QT-interval, pulse rate), blood cell traits, as well as
anthropometric traits such as height and body fat/mass-related traits
(Supplementary Data 10).

Additional loci uniquely prioritized when considering MRI mea-
sures indexed for body surface area included intronic variants located
nearMITF, FAF1, andTCF7L2, amongothers (SupplementaryData 8 and
Supplemental Figs. 4–6). MITF (rs1430608) is expressed in the heart,
and has previously been linked to beta-adrenergic-induced cardiac
hypertrophy in mice and congenital heart disease in humans31,32. FAF1
(rs12096443) encodes a member of the Fas death-induced signaling
complex, and contributes to stress-induced apoptosis of
cardiomyocytes33. While TCF7L2 is an important risk locus for
diabetes34, the specific variant we identified (rs34943800) has not
been previously linked to diabetes. In human, rat, and murine HF,
TCF7L2 has been identified as a binding partner of β-catenin, acting to
mediate Wnt signaling leading to cardiac hypertrophy35.

Tissue and cell-type enrichment
To determine whether genetic associations for HF were enriched for
specific tissues or cell-types we applied LDSC-SEG, a form of stratified
of LD score regression which partitions heritability among sets of
specifically expressed genes36. We detected significant associations
(p < 0.05) with gene expression (GTEx) and chromatin marks (ROAD-
MAP and ENTEX) in several tissues. The strongest association with
gene expression was in the left ventricle (p = 8.5 × 10−4), and the
strongest association with chromatin marks was with H3K36me3 in
psoas muscle (Supplemental Fig. 7 and Supplementary Data 11). We
leveraged single nucleus RNA sequencing (snRNA-seq) data from
MAGNet to identify associations with cardiac-specific cell types, find-
ing enrichment with cardiomyocytes (Supplemental Fig. 7)37. Many
cardiometabolic traits are known to influence risk of HF, and we
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detected nominal enrichment of signals within adipose, blood, and
endocrine tissues.

Colocalization, transcriptome-wide association, and
gene-expression profiling analyses prioritize HF effector genes
To prioritize putative candidate genes associated with HF risk, we
sought several lines of evidence. As GWAS loci are frequently not
locatedwithin protein-coding locations of the genome,mapping these
GWAS variants to genes and pathways is important for functional
interpretation. In addition tomapping variants to the nearest gene, we

applied colocalization, transcriptome-wide association, gene expres-
sion profiling, andMendelian randomization. Results of these analyses
are described below, and a summary of genes prioritized across mul-
tiple methods is presented in Supplemental Fig. 9.

Multi-trait colocalization. Colocalization is a method which can be
used to integrate gene expression data with GWAS results to enable
mapping of GWAS variants to genes38. We performed multi-trait
colocalization to identify shared genetic signals associated with gene
expression in the heart, HF, and MRI traits, as studying related traits
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GWAS and multi-trait colocalization were performed to identify genetic loci asso-
ciated with HF and cardiac structure/function traits. A Results of multivariate
GWAS. The x-axis denotes the multivariate GWAS method, and the y-axis denotes
the independent lead variants at each locus. The size of each point denotes the
absolute z-score for each trait. The shading of each point denotes whether the
associationmet an FDRadjustment formultiple testing. Associations exceeding the
conventional genome-wide significance threshold are denoted with a white circle.

Variants are grouped by chromosome.BResults ofmulti-trait colocalization. The x-
axis denotes heart failure and cardiac imaging traits. The y-axis represents the lead
variant at each independent locus identified in the multivariate GWAS. Lines con-
nect groups of traits with evidence of colocalization at a given locus. The size of
each point represents the posterior probability for colocalization. Evidence for
colocalization was determined based on the default variant specific regional and
alignment priors ðP*

R =P
*
A =0:5Þ, with colocalization identified when PRPA ≥0:25.

FDR false discovery rate.
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simultaneously increases power to detect putative causal variants24.
We utilized an expression quantitative trait loci (eQTL) dataset from
the Myocardial Applied Genomics Network (MAGNet), derived from
313 human hearts (177 failing hearts, 136 donor nonfailing control
hearts)39. In total, genetic loci linked to expression of 32 genes colo-
calized with GWAS signals for HF and/or cardiac imaging traits (Sup-
plementary Data 12).

The genes with strongest evidence for colocalization included
DNAJC18,MTSS1, SQLE, BCKDHA,ABO, ALPK3, and PROM1. These genes
have been previously linked to HF and other cardiovascular traits: For
example, epigenetic marks at DNAJC18 have been linked to dilated
cardiomyopathy40;MTSS1 has been linked in candidate-variant studies
with HF traits, with knockout in mice associated with changes in
echocardiographic measures of HF41; epigenetic marks at SQLE have
been previously linked to HF with preserved ejection fraction42;
BCKDHA (which encodes branched chain keto acid dehydrogenase
E1 subunit alpha, a key enzyme responsible for branch chain amino
acid (BCAA) degradation) has been implicated in adverse cardiac
remodeling and HF43–45; ABO has been linked to myocardial
infarction;46 ALPK3 is an established cardiomyopathy gene associated
with both dilated and hypertrophic cardiomyopathies47,48; and PROM1
is a marker of fibroblast progenitor cells that has been previously
linked to cardiac fibrosis49.

We found strong evidence for colocalization between BCKDHA
expression in healthy hearts, failing hearts, LVEDVMRI and LVESVMRI

(posterior probability 0.98). The heart is a major source of BCAA
catabolism50, and BCAA have been linked to HF phenotypes in several
model systems43–45. BCKDHA expression was also increased in failing
compared to healthy hearts (EUR fold change = 1.25, p = 0.005; AFR
fold change = 1.24, p = 0.043). Given the colocalization evidence for a
shared genetic signal influencing BCKDHA expression and LVEDVMRI

and LVESVMRI, we performed Mendelian randomization to determine
whether circulating branch-chain amino acid (isoleucine, leucine,
valine) levels may be causally associated with LVEDVMRI and LVESVMRI.
Using genetic instruments derived from a GWAS of circulating meta-
bolites among up to 24,925 participants of ten European studies51,
Increased circulating levels of isoleucine and leucine were significantly
associated with decreased LVEDVMRI (leucine β = −0.137, 95% CI −0.25
to −0.022, p = 0.02; isoleucine β = −0.276, 95% CI −0.38 to −0.17,
p = 3 × 10−7) and LVSEVMRI (leucine β = −0.131, 95% CI −0.24 to −0.026,
p =0.01; isoleucine β = −0.217, 95% CI −0.33 to −0.11, p = 1 × 10−4), with
no significant associations identified for valine (Supplemental Fig. 8).
We did not detect evidence of reverse-causality (e.g., increased
LVEDVMRI or LVESVMRI leading to increased BCAA levels), and the
findings remained robust when using the weighted-median MR
method, which makes different assumptions about the presence of
pleiotropy (Supplemental Fig. 8).

Transcriptome-wide association study (TWAS). Next, we performed
TWASs integrating gene expression and splicing data from the
Genotype-Tissue Expression (GTEx) project with the results of our HF
GWAS52–55. We performed TWAS using models from cardiometabolic
tissues (left ventricle, atrial appendage, visceral adipose, subcutaneous
adipose, liver, kidney, and blood), to identify genes where tissue-
specific expression levels (eQTL) or transcript splicing events (sQTL)
maybe relevant toHF. Across all tissues,we identified36distinct genes
representing 73 gene-tissue pairs where gene expression was sig-
nificantly associated with HF after Bonferroni adjustment for multiple
testing (79,965 gene–tissue pairs) (Fig. 6A and Supplementary
Data 13). We also identified 111 splicing events across 28 genes that
were significantly associated with HF after Bonferroni adjustment for
multiple testing (187,456 splicing event-tissue pairs) (Fig. 6B and
Supplementary Data 14). The set of genes identified by the eQTL and
sQTL TWASwas enriched forMendelian cardiomyopathy genes (BAG3,
ACTN2) (hypergeometric p =0.049).

Among the most highly prioritized TWAS associations was
CLCNKA gene expression in kidney (p = 1.51 × 10−19 in eQTL and
p = 6.53 × 10−9 in sQTL analyses). CLCNKA encodes the Ka renal chloride
channel (ClC-Ka), with a prior candidate-variant study identifying a
suggestive association between the common coding variant
rs10927887 and HF56. Further functional characterization of this var-
iant revealed loss-of-function in the ClC-Ka chloride channel, impli-
cating a Bartter syndrome-like cardio-renal axis inHF56. Althoughother
genes in this region including HSPB757 and ZBTB1758 have been impli-
cated in HF, our results provide support for a role of CLCNKA. Other
highly prioritized genes included CDKN1A (p = 7.56 × 10−17 in the atrial
appendage), an important cell-cycle regulator of cardiomyocyte pro-
liferation during terminal differentiation;59,60 SYNPO2L (p = 9.15 × 10−13

in the atrial appendage and p = 9.64 × 10−12 in the left ventricle), a Z-disc
protein previously linked to atrial fibrillation61,62.

Gene expression profiling. To validate the TWAS findings we com-
pared expression levels of genes prioritized by the TWAS analyses
(Bonferroni p < 0.05) among 166 healthy (122 EUR, 44 AFR) and 166
failing (89 EUR, 77 AFR) hearts from MAGNet. Of 49 genes with avail-
able expression data, we identified 34 genes where expression sig-
nificantly differed between healthy and failing hearts after Bonferroni
adjustment for multiple testing (p < 0.05 adjusting for 49 genes)
(Fig. 6C and Supplementary Data 15).

Gene ontology. We performed an exploratory gene ontology
analysis63 among the TWAS-prioritized genes. Cellular Component
analysis was notable for enrichment of several sarcomere components
including the Z-disc, I-band, sarcomere overall, and myofibrils. (Sup-
plementary Data 16). Enriched biological processes included choles-
terol metabolism (ABCG5, ABCG8, NPC1), and muscle cell
development/assembly/organization (ACTN2, SYNPO2L, MYOZ1) (Sup-
plementary Data 17).

Proteome-wideMendelian randomization prioritizes circulating
proteins associated with adverse HF phenotypes
Finally, we performed an unbiased proteome-wide Mendelian
randomization analysis using high-confidence genetic instruments
for 725 circulating proteins to identify their contribution to each
of the HF endophenotypes. We identified 17 significant (FDR <
0.05) protein–trait associations, across 9 distinct circulating
proteins (Fig. 7A and Supplementary Data 18). Among these sig-
nificant protein-trait pairs was lipoprotein(a) (LPA), with increas-
ing levels associated with increased risk of HF (OR 1.04 per 1−SD
increase in lipoprotein(a), 95% CI 1.03 to 1.05, p = 1.6 × 10−16).
Lipoprotein(a) is a known risk factor for coronary artery disease
that has been previously associated in observational studies with
incident HF and associated hospitalization64,65. To further evaluate
this association, we considered an additional genetic instrument
previously reported to explain >40% of the variation in circulating
Lp(a) levels across multiple cohorts66. Using this genetic instru-
ment, each 10mg/dL increase in Lp(a) was associated with a small
but significant increased risk of HF (OR 1.014, 95% CI 1.01 to 1.02,
p = 5.7 × 10−22). This association was no longer significant in multi-
variable MR accounting for the association of these genetic var-
iants with coronary artery disease (OR 1.01, 95% CI 0.99 to 1.02,
p = 0.53), indicating CAD may mediate the effects of lipoprotein(a)
in the pathogenesis of HF. These findings are consistent with prior
identification of LPA as a HF GWAS locus6, and with observational
findings which suggest the effects of Lp(a) on incident HF are likely
attributable to coronary artery disease67.

We additionally identified four circulating proteins that were
associated with multiple traits (Fig. 7B). NMB was associated with
increased LVEF, decreased ventricular volumes, and decreased risk of
HF. Other proteins associated with multiple traits included SPON1,
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FKBP7, and B3GNT8. (Fig. 7A). Circulating SPON1 and FKBP7 have both
been previously linked to atrial fibrillation, a known HF risk factor68,
and SPON1 has been identified as a potential biomarker for HF
hospitalization69.

Discussion
In this study, we performed multi-ancestry and multi-trait genome-
wide meta-analyses of HF and related cardiac imaging traits. We ana-
lyzed the genetic relationships among these traits (1) demonstrating
improved power for novel locus discovery for this collection of traits,
(2) implicating both known and previously unreported variants in HF

pathogenesis, and (3) prioritizing genes, pathways, and circulating
proteins for future study in the pathogenesis of HF.

First, these findings highlight the value of multi-ancestry and
multi-trait genome wide analyses to improve genetic discovery.
Although GWAS of HF have been performed largely in populations of
European ancestry, HF is a global disease associated with high mor-
bidity and mortality. Consistent with GWAS of other cardiovascular
traits like CAD8, we found thatmulti-ancestry analysis improved power
for discovery, identifying 47 HF loci (compared with 11 in the largest
previously-published analysis). Similarly, incorporating HF endophe-
notypes in multi-trait analyses further improved power for discovery.
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Fig. 6 | TWAS results. TWAS identified 36 distinct genes (representing 73
gene–tissue pairs) where expression was associated with adverse HF/structure/
function traits, and 28 distinct genes (across 111 splicing–tissue pairs) where spli-
cing was associated with adverse HF/structure/function traits. A Dotplot depicting
the gene–tissue pairs where gene expression was significantly associated with HF.
B Dotplot depicting the gene–tissue pairs where transcript splicing was sig-
nificantly associated with HF. In A, B, the bubble size corresponds to absolute z-

score, with bubbles colored to the direction of effect, while white dots denote
associations that were significant after Bonferroni adjustment for multiple testing
(p <0.05/17703 genes). Only the most significant gene–tissue pair is shown when
multiple splicing events in a given gene were identified. C Left ventricular gene
expression profiling from MAGNet for genes prioritized by TWAS. Red dots
represent candidate geneswith significant differential expression among failing vs.
healthy hearts, after Bonferroni adjustment for multiple testing.
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Across both analyses, we identified many variants which had pre-
viously been associated with cardiometabolic and anthropometric
traits, which are themselves HF risk factors. With the growth of insti-
tutional biobanks that link rich electronic health records, laboratory,
and imaging findings with genetic data, more refined phenotyping
efforts (including studies focused on variationwithin the normal range
among otherwise healthy individuals) may further enable genetic dis-
covery within this multi-trait paradigm.

Importantly, our findings highlight the value of integrating large-
scale GWAS of common, complex traits with smaller, more focused
studies of specific quantitative endophenotypes. GWAS of many car-
diovascular endophenotypes havebeenpreviously reported, including
among largely healthy populations. A common finding across these
studies has been the observation that the genes and pathways identi-
fied by studying variation in cardiovascular traits among largely
disease-free populations recapitulate known disease-associated genes
and pathways. For example, recent GWAS of thoracic aorta diameters
among healthy individuals implicate known Mendelian aortopathy
genes like FBN170,71, GWAS of electrocardiographic traits find long-QT
syndrome-associated genes like SCN5A are associated with variation in
manyother subclinical electrocardiographic traits72, andGWASof both
left- and right-heart structure/function among healthy individuals
identify Mendelian cardiomyopathy genes23,73,74. We demonstrate an
example of linking GWAS of a common, complex trait like HF, with
GWAS of detailed cardiac structure/function endophenotypes, and
recapitulate known Mendelian cardiomyopathy genes and sarcomere
components. Incorporating detailed phenotyping of biomarkers and
imaging traits among smaller, healthy cohorts, particularly of diverse
genetic ancestry, may be an important opportunity for further
improve genetic discovery.

Second, our findings implicate known and previously unreported
HF effector genes and pathways. We found convergent evidence for
the influence of common variants across several secondary analyses,
summarized in Supplemental Fig. 9. For example, the gene supported
across themost lines of evidencewas STRN. This gene encodes striatin,
a calmodulin binding proteinwhich has been linked to the intercalated
disc of cardiac myocytes, colocalizes with desmosomal proteins, and
associates with spontaneous arrhythmogenic cardiomyopathy in
canines75. Other highly prioritized genes across multiple lines of

evidence include Mendelian cardiomyopathy genes (BAG3, ACTN2,
ALPK3). We also detected significant enrichment of genes associated
with cellular contractile machinery and cardiomyocyte development
and structure. Overall, these findings highlight the utility of integrative
analyses that draw on genetic association, gene expression, chromatin
modification, and tissue/cell-type-specific datasets to prioritize
disease-associated genes. These findings suggest that while HF has
pleiotropic contributors, similar genes, tissues, and cellular compo-
nents associated with Mendelian forms of HF may be important for
common manifestations as well.

Although our findings implicate some genes and pathways with
putative links to cardiomyocyte structure/function, other loci appear
to have pleiotropic effects, and are linked to HF risk factors like atrial
fibrillation or bloodpressure. HF is a heterogeneous disease, varying in
etiology, severity, and ageof onset, amongother factors. Aswe studied
a broad “all-cause” definition of HF, these findings are not surprising.
Future studies of more homogeneous HF definitions may help clarify
the relevance of specific pathways to HF subtypes, help resolve
pleiotropy, and clarify whether some variants may be associated with
diseases that phenocopy HF-like chronic lung diseases and obesity.
Prior studies have also broadly suggested that polygenic risk may
modify the impact of rare but more severely damaging variants15,76.
Future work investigating the interactions between common and rare
HF variants, as well as genetic determinants of commonHF risk factors
may be useful in clarifying the pathways that determine the hetero-
geneous clinical presentations.

Finally, we observed potentially causal links between circulating
metabolites and proteins with HF and related imaging traits. Elevated
circulating levels of branch chain amino acids have been previously
implicated as a risk factor for incident HF and adverse cardiac remo-
deling in amurinemodel ofmyocardial infarction45,77. Our colocalization
andMR analyses identified strong evidence of a shared genetic etiology
and potentially causal relationship between circulating leucine and iso-
leucine levels and left ventricular volumes, although the pathologic
relevance to human HF specifically requires further investigation.

Limitations
This study has several possible limitations. First, although we per-
formed the largest multi-ancestry GWAS of HF to-date, these analyses
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included a large number of participants of Europeanancestry.Wewere
able to replicate the majority of our genetic associations, but replica-
tion was limited to cohorts of European ancestry. As the global burden
of HF is increasing, future GWAS of HF and related traits (particularly
quantitative imaging traits) in other diverse populations is warranted.
Future multi-ancestry analyses will hopefully further improve our
understanding of the true breadth of the common genetic basis of
these traits. In downstream colocalization, TWAS, and gene expression
profiling analyses we included multi-ancestry cohorts (GTEx v8,
MAGNet), which should overall improve generalizability of our find-
ings. Second, the definition of HF in many cohorts was based on
diagnosis codes, which may have resulted in phenotype mis-
classification. We included highly correlated imaging traits with bio-
logically plausible connections to HF to maximize interpretability of
our multi-trait analysis and enhance identification of cardiac-specific
loci. Including other cardiovascular and HF endophenotypes (e.g.,
circulating biomarkers like natriuretic peptides) may further improve
discovery. Efforts to develop specificHFphenotyping definitions11, and
statistical methods to account for misclassification78 may also be
helpful in ensuring GWAS of HF identify bona fide risk loci, rather than
variants that may be primarily associated with phenocopies like obe-
sity and chronic lung disease. Third, these results represent the find-
ings of a selection of multi-trait GWAS methods which make different
assumptions about disease heritability and genetic relatedness. No
gold-standard multi-trait GWAS method exists, and whether locus
discovery or biologic relevance may be further improved with other
methods requires further study. Similarly, no gold-standard gene
prioritization framework exits. We applied several methods which
provided biologically plausible candidate genes supported by prior
literature; however, other bioinformatic or functional approachesmay
prioritize different candidate genes. Functional assessment of HF-
associated risk variants, genes, and pathways in model systems will be
important to validate their role in HF. Finally, although incidence of HF
is similar among men and women, epidemiologic differences have
been noted, and sex-specific subsets of HF exist (e.g., peripartum
cardiomyopathy)79. Here,wedidnot performsex-stratified analyses, or
analyses focused specifically on identifying associations on the sex
chromosomes. Whether sex-specific genetic associations exist will be
an important area of future study.

In summary, these analyses highlight similarities and differences
among HF and associated cardiovascular imaging endophenotypes,
implicate common genetic variation in the pathogenesis of HF, and
identify circulating proteins and metabolites that may represent car-
diomyopathy treatment targets.

Methods
Genome wide association study meta-analysis
In the discovery phase, GWAS summary statistics for HFwere obtained
from non-overlapping analyses of six separate cohorts/consortia
(HERMES, Penn Medicine Biobank, eMERGE, Mount Sinai BioMe, Gei-
singer DiscovEHR, FinnGen, and the Global Biobank Meta-analysis
Initiative)6,16–19. All-cause HF was defined using cohort-specific defini-
tions (pheCodes80 or ICD9/10 codes documentedwithin the electronic
health record for all studies except HERMES, which additionally
included expert adjudication among some cohorts) (Supplemental
Methods). Details of study-specific genotyping and quality control are
available in the Supplemental Methods, and included standard local
controls for missingness, sex discordance, variant-level factors
including missingness, Hardy–Weinberg equilibrium, and imputation
accuracy. Analyses were performed separately by cohort and ancestry,
adjusted for age, sex, and population structure. Prior tometa-analysis,
GWASinspector81 wasused to performstudy-level quality control using
default settings to evaluate for test statistic inflation, skewness, kur-
tosis, allele frequency mismatches, and perform allele harmonization.
Fixed-effects meta-analysis was performed using METAL82 using the

inverse-variance weighted (standard error) method within and across
ancestries to generate ancestry-specific and multi-ancestry meta-ana-
lysis summary statistics. Fine-grained ancestry estimation from sum-
mary statistics was performed using bigsnpr83,84. Independent
significant genomic risk loci were defined using the “–clump” com-
mand in PLINK85 and the 1000 Genomes Phase 3 reference panel
(p < 5 × 10−8; window 500 kb; linkage disequilibrium r2 = 0.6, r22 = 0.1).
Lead variants (or proxies identified using LDlinkR86) at each indepen-
dent risk locus were carried forward for replication. For replication,
fixed effects meta-analysis was performed to combine data from the
VA Million Veteran Program and Mass General Brigham Biobank
(Supplemental Methods). Discovery + replication phase data for each
independent risk locus was combined in a final fixed effects meta-
analysis. All genomic positions are reported using coordinates from
the GRCh37 build of the human genome.

Genetic correlation of HF and cardiac imaging traits
Cross-trait linkage-disequilibrium score regression (LDSC) was per-
formed to estimate genetic correlation (rg) between HF, and cardiac
MRI traits (LVEF, LVEDV, LVESV, LVEDVi, LVESVi; UKB http://kp4cd.
org/datasets/mi)21,22. LDSC is a computationally efficientmethodwhich
utilizes GWAS summary statistics to estimate heritability and genetic
correlation between polygenic traits while accounting for sample
overlap.

Multivariate GWAS
Genome-wide association study summary statistics were obtained for
HF and cardiac MRI (LVEF, LVEDV, LVESV, LVEDVi, LVESVi) traits. The
primary analysis included HF and LVEF, LVEDV, LVESV, while MRI
measures indexed for body surface area were included in a sensitivity
analysis. Variants were filtered to include common (MAF>0.01) var-
iants present in the 1000 Genomes Phase 3 reference panel. Genomic
Structural Equation Modeling (SEM) is a framework which uses GWAS
summary statistics to model the genetic covariance structure of
complex traits. Genomic-SEM leverages a multivariate extension of
cross-trait linkage-disequilibrium score regression (LDSC) to estimate
genetic correlation (rg), quantify heritability, estimate dependence
between traits, and account for up to complete sample overlap13,21,22.
This approach is flexible, allowing the user to use systems of equations
to model proposed relationships between the observed traits and
latent variables. To estimate SNP-level effects, the genetic covariance
and sampling covariance matrices (estimated using LD score regres-
sion) are expanded to include SNPs, which are then individually
regressed on parameters specified by each structural model. We spe-
cified a common factor model, as well as models corresponding to
MTAG andN-weightedmultivariate GWAMA frameworks12–14. Details of
model specifications are available in the Supplemental Methods. All
multi-trait analyses were implemented using theGenomicSEM package
in R using the diagonally-weighted least squares estimator13.

Cardiomyopathy gene enrichment
We utilized a previously published list of Mendelian cardiomyopathy-
associated genes23 aggregated from commercially-available gene
panels to test for enrichment of genome-wide significant loci/genes. In
sum, thesepanels contained 108 autosomal genes. To test enrichment,
we applied the hypergeometric test in R to evaluate whether the set of
candidate genes is over-represented in the set of established
cardiomyopathy genes.

Multi-trait colocalization
Statistical colocalization is a method to assess shared genetic etiology
between traits. We used HyPrColoc24, a recently developed Bayesian
algorithm designed to simultaneously and efficiently evaluate for
colocalization across multiple traits using summary statistics. We
assessed for colocalization across HF, MRI, and heart gene expression
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traits in the 500 kb region centered on the lead variants identified in
the multivariate GWAS analyses. Gene expression data was derived
from an expression quantitative trait loci (eQTL) dataset from the
Myocardial Applied Genomics Network (MAGNet), derived from 313
human hearts (177 failing hearts, 136 donor nonfailing control hearts)
obtained at time of organ procurement (control hearts) or heart
transplant (failing hearts)39. Evidence for colocalization was deter-
mined based on the default variant specific regional and alignment
priors ðP*

R =P
*
A =0:5Þ, with colocalization identified when PRPA ≥0:25.

Tissue and cell-type enrichment
We implemented LDSC-SEG36 to test for enrichment of disease herit-
ability by integrating our GWAMA summary statistics with gene
expression87,88, chromatin89,90, and cardiac-specific cell-type37 datasets.
We applied false discovery rate correction separately across each
dataset (gene expression, chromatin, and cardiac cell-type) to account
for multiple testing, with FDR<0.05 considered significant.

Branched chain amino acid Mendelian randomization
Genetic variants associated with branch chain amino acids (leucine,
isoleucine, and valine) at genome wide significance (p < 5 × 10−8) were
identified fromapreviously reportedGWASmeta-analysis including up
to 24,925 participants of ten European studies51 Participants underwent
genotyping and NMR profiling of circulating metabolites, and GWAS
was performed to understand the contribution of common genetic
variation to circulating metabolite levels. Genetic instruments were
constructed from independent (EUR r2 < 0.3, distance = 10,000 kb)
variants associated with each BCAA at genome-wide significance. The
corresponding SNP effects were identified in GWAS summary statistics
for LVEDVMRI and LVSEVMRI, harmonized to consistent effect alleles,
and two-sample inverse variance weighted Mendelian randomization
with random effects was performed using the TwoSampleMR package
in R91. Sensitivity analysis was performed using the weighted median
method, which remains robust when up to 50% of the weight of the
genetic instrument is invalid92.

Transcriptome-wide association study
S-PrediXcan was used to integrate gene expression and splicing data
from GTEx version 8 and GWAS summary statistics from the HF GWAS
to identify genes associated with all-cause HF52–55. Pretrained gene
expression and transcript splicing models from cardiometabolic tis-
sues (left ventricle [n = 386 genotyped GTEx v8 samples], atrial
appendage, [n = 372] visceral adipose [n = 469], subcutaneous adipose
[n = 581], liver [n = 208], and kidney [n = 73]) were obtained from
http://predictdb.org/. Bonferroni adjustment was performed to
account formultiple testing (79,965 gene–tissue pairs for eQTL TWAS;
187,456 splicing event–tissue pairs for sQTL TWAS), with adjusted
p <0.05 considered significant. We tested for enrichment of TWAS-
prioritized genes amongMendelian cardiomyopathy-associated genes
using the hypergeometric distribution to yield a one-tailed p value.

Cardiac gene expression profiling
The Myocardial Applied Genetics Consortium (MAGnet) is a multi-
center, institutional review board-approved consortium designed to
explore the genetic underpinnings of cardiac gene expression39,93.
Briefly, human cardiac samples were obtained from failing hearts
collected at time of heart transplantation, and from healthy donor
hearts that were suitable for transplant but logistically did not reach
recipients. RNA gene expression profiling on cardiac tissue samples
obtained from the left ventricle was performed as previously
described39. Gene expression profiling was performed using Affyme-
trix expression arrays, log-transformed, normalized to reference
probes, batch normalized, and adjusted for gender, age, and collection
site. Gene expression data was queried to determine whether sig-
nificant expression differences existed between healthy and failing

hearts for genes prioritized by TWAS, with significant fold-changes
differences determined by Bonferroni-adjusted p <0.05 to account for
multiple testing.

Biological pathway and cellular component analysis
Biological pathway and cellular component analysis was performed
using ShinyGO, an online platform for gene enrichment analysis63.
Based on a set of input genes, the application tests for enrichment
among prespecified gene sets based on the hypergeometric distribu-
tion followed by false discovery rate correction for multiple testing.
Pathways or components with FDR q < 0.05 were considered
significant.

Proteome-wide Mendelian randomization
Proteome-wide Mendelian randomization was performed as pre-
viously described (http://www.epigraphdb.org/pqtl/)94. Briefly, we
identified high-confidence (tier 1) cis-acting genetic instruments for
725 circulating proteins, which passed previously defined consistency
and pleiotropy tests and had available corresponding SNP effects from
our HF meta-analysis and/or the cardiac MRI GWAS. When multiple
SNPs were available for an exposure–outcome pair, inverse-variance
weighted MR was performed as the primary analysis, with Wald-ratio
MR performed when only one SNP was available for the exposure-
outcome pair. FDR correction was applied to account for multiple
testing, with q <0.05 considered significant. For the Mendelian Ran-
domization analysis of lipoprotein(a), a secondary genetic instrument
was constructed using genetic variants previously reported to explain
>40% of the variation in circulating Lp(a) levels. Of 43 previously
reported genetic variants, 27 were available in our HF GWAS. Inverse-
varianceweightedMRwas performed as the primary analysis, withMR-
Egger andweightedmedianmethods applied as sensitivity analyses, as
these make different assumptions about the presence of invalid
instruments and pleiotropy95. Multivariable MR was performed to
evaluate whether the effects of Lp(a) onwere attenuated by the effects
of Lp(a) on coronary artery disease. Summary data on coronary artery
disease was obtained from ref. 96. All Mendelian randomization ana-
lyses were performed using the TwoSampleMR package in R91.

All statistical analyses were performed using R version 4.0.3 (R
Foundation for Statistical Computing, Vienna, Austria).

Ethical approval
The UK Biobank obtained IRB approval from the North West Multi-
centre Research Ethics Committee (approval number: 11/NW/0382),
and participants provided informed consent. The BioBank Japan Pro-
ject was approved by the research ethics committees at the Institute of
Medical Science, the University of Tokyo, the RIKEN Yokohama Insti-
tute, and cooperating hospitals; participants gave written informed
consent. FinnGen participants provided informed consent for biobank
research, and the Coordinating Ethics Committee of the Hospital
District of Helsinki and Uusimaa (HUS) approved the FinnGen Study
protocol No. HUS/990/2017. The Penn Medicine BioBank is approved
by the University of Pennsylvania, and participants gave written
informed consent.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets generated as part of this study are available from the
corresponding author upon reasonable request. The GWAS summary
statistics for heart failure (HERMES: http://kp4cd.org/datasets/mi;
GBMI: https://www.globalbiobankmeta.org/; FinnGen: https://r5.
finngen.fi/pheno/I9_HEARTFAIL_ALLCAUSE), and cardiac MRI (http://
kp4cd.org/datasets/mi) traits are publicly available. Cardiac eQTL and
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RNA expression/sequencing data were provided by the Myocardial
Applied Genomics Network (MAGNet; https://www.med.upenn.edu/
magnet/). The summary statistics for the GWAS of all-cause heart
failure generated in this study have been deposited in the GWAS Cat-
alog database under accession code GCST90162626. The summary
statistics for the GWAS of all-cause heart failure and the multi-trait
GWAS have also been deposited at Zenodo at https://doi.org/10.5281/
zenodo.7181277.

Code availability
Publicly available software was used to perform the analyses. Code is
available from the corresponding author upon reasonable request.
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