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SUMMARY

A central tenet of systems biology is that biological systems are greater than the
sum of their component parts. Spaceflight is associatedwith hazards including ra-
diation exposure and microgravity which impact different echelons of biological
organizations spanning molecular, cellular, organ, and organismal levels. These
insults lead to physical damage, including muscle and bone loss, neurological
damage, and impaired immunity. Mitochondrial dysfunction and biological alter-
ations occurring during spaceflight have been reported. The health challenges
presented by long-term space travelmust be addressed and appropriate counter-
measures developed to protect astronauts. Increasing quantity of multiomics
data are being generated from cells and model organisms flown in space, with
physiological data from astronauts. Systems biology approaches leveraging
mathematical reasoning and computational modeling are required to charac-
terize these components in a holistic fashion. In this review,we provide an historic
perspective on multiscale biological systems modeling, followed by a discussion
on its utility for spaceflight biology research.

INTRODUCTION

Systems biology uses mathematical reasoning, high-throughput techniques, and computational mod-

eling1 to characterize biological entities or systems in a holistic fashion by studying their constituent pro-

cesses at various spatiotemporal scales.2–4 A central tenet of systems biology is that biological systems are

more than the sum of their parts,5 thus the holistic behavior cannot be understood by studying 1 element of

these interconnected systems in isolation. The scales at which these elements exist are diverse. Spatially,

they range from 10�10 m at themolecular scale to meters at the organismal scale and beyond for ecological

interactions. Temporally, they range from nanoseconds to years,2 with a positive correlation between an

increased spatial level and an increased temporal level, i.e., lower-spatial-scale processes occur at a faster

speed than those at a higher scale.6 To analyze such disparate scales, systems biology investigates the flow

of information from subcellular components and their encoding genes and proteins and their related bio-

logical pathways that regulate organism-level functions within organs, tissues, and cells (Figure 1).7

Experimental-data-based computational and mathematical models have been utilized to understand and

predict the behavior of these systems,5 making systems biology an inherently interdisciplinary field.

Although biological modeling is not a novel idea, simple modeling techniques like differential equations

or Boolean networks are unable to model these complex systems, and multiscale modeling is required.4 As

such, the popularity of systems biology is a postgenomic phenomenon with genomic era advancements

facilitating systems biology modeling, for example, (1) development and availability of high-throughput

omics techniques8; (2) widespread omics data availability through online repositories; (3) increasing popu-

larity of interdisciplinary science leading to new approaches in computational biology, network analysis,

programming, and ontologies9,10; and (4) advances in internet and computational infrastructure allowing

easier data dissemination.3

Spaceflight is associated with hazards such as radiation, microgravity, and isolation which impact astro-

nauts at multiple levels of biological organization from genome to proteome.11,12 These impacts precipi-

tate numerous ill-health outcomes including physical damage, such as muscle and bone loss, neurological

damage, and impaired immune function,11,13 and psychological stress leading to depression, feelings of
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Figure 1. Spatial and temporal scales in biology

Temporal scales range from short such as enzyme catalysis (10-6) to long such as development or aging (109 s). Spatial

scale ranges from macromolecules, organelles, and cells to organisms and populations.
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loneliness, and psychosomatic disorders.14 Research to ameliorate these impacts has already found use on

Earth, with USSR cosmonaut training vibration platforms being used to treat old-age muscular atrophy.

However, given the rise in private spaceflight and the involvement of the private sector in government

spaceflight, it is imperative that this research remains as open as possible and that the multiomics data

generated on these missions be freely available for the advancement of both terrestrial and spaceflight

research,15,16 including the development of multiscale biological models based on these data. In this re-

view, we provide an historic perspective on multiscale biological systems modeling, followed by a discus-

sion on its utility in spaceflight biology research.
Multiomics integration is essential to systems-level analysis

Biological systems operate at multiple spatiotemporal scales.2 Models incorporating multiple scales are

significantly more complex than single-scale models because links between the different scales must be

defined and quantified. Furthermore, as more components, parameters, and relationships are incorpo-

rated into a model, it becomes more difficult to balance accuracy and computational feasibility. Since

behavior at the smaller scales of a system can influence the behavior at larger scales, it is necessary for a

link between these scale levels to be incorporated into the multiscale model. Simultaneously, the scales

that define the modeled levels are dependent on the process under investigation. It can sometimes be

appropriate to combine 2 levels/scales (for example, cellular andmulticellular) or to split a level into distinct

sublevels to create a more comprehensive or accurate model.6 In other words, the creation of the model

should be tailored to the process in question to optimize simulation and predictive power.

Different biological scales can be represented by different omics outputs, for example, genetic scale inter-

actions using genomics and epigenomics, expression-level interactions by transcriptomics, followed by

proteomics and metabolomics for protein scale interactions and their products.17–21 This highlights that

to represent biological entities in a holistic fashion in keeping with systems biology, multiomics techniques

must be utilized.2,10,22 Utilization of multiomics data bolsters single-omics methods, helping to put results

into context. For example, the network-assisted genomic analysis (NAGA) approach builds on the availabil-

ity of genome-wide association studies (GWAS), which associate single-nucleotide polymorphisms (SNPs)

with the disease using appropriate measures of statistical significance. NAGA places these results in the

context of protein interaction networks, giving greater weight or importance to SNPs appearing on the
2 iScience 25, 105421, November 18, 2022
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same network. This technique allows disease-associated genes that would not otherwise meet the prohib-

itively stringent p value cutoff required by GWAS to be considered.23

Multiomics datasets can be integrated in various ways, and some of them are discussed in the following list:

1. Postanalysis integration
Omics datasets are analyzed separately; features of interest are isolated and subsequently used to

form nodes connecting datasets in an overall network. This approach has been exploited in a diverse

set of studies, including for the assessment of biological wastewater treatment systems,24 the

exploration of microbial resistance of marine sediments following an oil spill,25 and studying the

permafrost microbial ecosystem.26

2. Integrated data analysis

Different omics datasets are integrated using tools, such as multiple-block orthogonal projections

to latent structures prior to the analysis. The advantage of this approach is that key similarities be-

tween omics datasets are uncovered using mathematical rather than interpretational approaches,

thereby reducing operator bias. This approach was successfully exploited in a study of 22 asthmatics

and healthy controls. A joint data structure in 6 data blocks was interrogated:transcriptomics; me-

tabolomics; targeted sphingolipids, oxylipins, and fatty acids assays; and a clinical block encom-

passing lung function, immune cell differentials, and cytokines. Themodel uncovered 7 components

of which components 1 and 2 were the most useful, identifying differences between healthy controls

and asthmatics and a disease-sex interaction, respectively.27

3. Systems modeling techniques

These facilitate data analysis and prediction of system behavior. Extensions from single-cell to multi-

cellular systems and multiorgan systems commenced in 2013 with the development of Recon 2,

community-based global reconstruction of human metabolism.28 This model incorporates cell-

and tissue-specific metabolomics data, proteomic data, and gene expression data for the human

body and its many cell types. The main limitation is that the modeling often requires a deep under-

standing of the modeled system, so new experimental findings can be properly compared to model

predictions.29

Due to the predictive abilities of systems modeling approaches,5 from this point, we will focus on systems

modeling approaches.
Systems modeling basics

Biological systems exist on multiple levels of a mutually interacting organization; therefore, to accurately

represent these systems, models must be multilevel with both upward (i.e., how the components affect

the overall system) and downward (i.e., how the overall system behavior affects each component) relation-

ships. Such models will likely be hybrid and integrate multiple models.5

On a gross scale, 3 methods can be exploited to model a biological system:

1) Top-down
This method helps to analyze the overall system behavior to generate hypotheses about and explore

system components. Although this approach is easier than others, its variables can become de-

tached from biological reality, and it lacks the flexible and robust nature of bottom-up approaches.2

2) Bottom-up

This method helps to study individual system components and their interactions, explaining system

behavior as an emergent property. This allows new information to be added easily, making bottom-

up models very robust; however, they often have prohibitively high computing power require-

ments.2

3) Middle-out

Finally, middle-out approaches first model an intermediate scale such as individual cells. They are

then expanded, analyzing smaller and larger scales.2,4
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The development of a complex model inevitably involves making assumptions, which are necessary to

simplify the model. In doing this, it is important to keep in mind that the solutions produced are approx-

imations and that more valid assumptions produce more accurate results. The overall goal of multiscale

modeling is to obtain the highest possible level of accuracy and predictive power despite introducing con-

straints required to facilitate working with the data and minimize the time required to produce results.

Given the complexity and magnitude of multiscale modeling, it is often dependent on computational

methods to obtain solutions.30
Historical approaches to multiscale modeling

Several multiscale modeling approaches have been developed to date to model biological systems. The

choice of method depends upon the range of spatial and temporal scales being investigated. When

creating a model for multiple scales, the individual scale models could be combined explicitly, or alterna-

tively, the output from one model could be used as an input for another. In the latter case, chemicals in a

reaction could be assumed to be in equilibrium if the timescale is very fast, or boundary/initial conditions in

terms of a smaller scale model could be used in a model of a larger scale.30 The quasicontinuum method is

used at the atomic spatial scale and involves coarse graining, a method which greatly reduces computa-

tional cost. Coarse graining involves selecting a subset of the total number of atoms (known as the "repre-

sentative atoms") to model as individual atoms, while the assumption of continuum mechanics is used to

model the rest of the atoms. In doing this, the degrees of freedom and the computational demand are

lowered.4

A molecular-level-modeling method is a hybrid of quantum mechanics-molecular mechanics (QM/MM),

which uses quantum mechanical calculations for areas involved in chemical reactions and molecular me-

chanics for all other areas. An example of the use of this model would be modeling an enzyme, where a

quantummechanical model would be used for the catalytic site on the enzymewhile amolecular mechanics

model would be used to describe the interaction of the enzyme with its surrounding environment.4

The equation-free multiscale method allows a model at the microscopic level to influence modeling at the

macroscopic level. It does not require the derivation of macroscopic evolution equations, as the name sug-

gests, and there are several techniques involved: coarse projective integration, gap-tooth scheme, and

patch dynamics.4,31 Coarse projective integration involves the calculation of time derivatives for coarse var-

iables of microscopic solutions, which are then used to estimate the coarse variable over a bigger time

step.4 The gap-tooth scheme approximates a time derivative of a macroscopic equation that is unavailable

in a macroscopic domain. It does this by using simulations of the microscopic model that are available, in

several small boxes that only span part of the domain.31 Meanwhile, patch dynamics is a combination of

coarse projective integration and the gap-tooth scheme. It approximates the behaviors at the macroscale

by computing the microscale dynamics and confining them to a subset of patches. Here, a patch is defined

as a small region over a short time period.4,32 The heterogeneous multiscale model (HMM) starts off with a

macroscale solver and, taking the provided information about the macroscale process into account, uses a

microsolver to fill in the gaps in the macroscale data. HMM is dependent on a coherent link between the

macroscopic and microscopic models.4

Themultigridmethod is a way to solve a variety of integral and partial differential equations (PDEs) rapidly and

efficiently. It is also capable of considering separate natures of models at various scales.4 Themultiscale agent-

based-modeling (MS-ABM)method is the onlymethoddescribed here that uses amiddle-out approach, and it

can be used at any intermediary level betweenmolecular and population levels. It is particularly good at simu-

lating the behavior of a system using rules and interactions within the individual components. However, this

method does require a lot of computational power because there could be a large number of individual com-

ponents within the system being modeled (for example, individual cells in an organ).4

‘‘ProbRules’’ is a newer method introduced in 2019 to model a dynamic system that has multiple different

scales.33 It does this by combining probabilities and logical rules through graph theory: Edge probabilities

are initially defined, which are used to derive rules and activities for interactions, and the active rules are

then applied. This process is repeated iteratively, with the edge probabilities adjusted each time. The

active rules in this model describe the link between levels within the model effectively, as they are indepen-

dent of the scales involved. It has been demonstrated that ProbRules is effective in simulating the Wnt

signaling pathway.33
4 iScience 25, 105421, November 18, 2022
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A major area of research in systems biology is tumor development in cancer. If tumor development is

considered as a biological system, multiscale modeling can be used to predict outcomes of microscale

or macroscale processes and ultimately lead to improved treatment. A more extensive knowledge of the

behavior of tumor growth would make precision medicine possible, as specific treatments could be

tailored to patients for varying behaviors in tumor growth and development.

Multiscale cancer modeling, a case study

In their 2009 study, Macklin et al. demonstrated how a multiscale model can represent solid tumor devel-

opment, revealing how the vascular network is remodeled and how a tumor progresses within each stage of

development.34 The model considered the varied spatial and temporal scales. For example, the tumor in-

vasion model addresses nutrient transport, tumor cell velocity, and interaction with the microenvironment.

Levels within the multiscale model were coupled through their shared variables. As an example, angiogen-

esis and tumor invasion models were linked through the nutrients released from the vascular network and

via the tumor angiogenic factors released from tumor cells. Their results were in accordance with clinical

observations, validating the accuracy of the model. This multiscale model also found that when the extra-

cellular matrix is broken down by tumor cells, it dramatically affects the vascular network development and

the tumor’s growth response. Additionally, after significant degradation of the extracellular matrix, vessels

in the vascular network do not penetrate the tumor, but surround it, meaning nutrient delivery is less effec-

tive. These results show that multiscale modeling provides descriptions of the process of tumor develop-

ment, especially during angiogenesis and vascular growth. Moreover, a potential vulnerability of the tumor

is outlined in its lower efficiency of nutrient delivery. This could potentially be further investigated as a

target for cancer treatment.

In the same year, a multiscale model for malignant brain tumors was developed by Zhang et al.35 In this

case, the agent-based modeling (ABM) method was used with a top-down approach: from macroscopic

(tumor cells) to molecular (gene expression). The authors discovered information about genes that had

elevated expression levels in different tumor cell types. During the analysis, the model was limited because

the behavior at the molecular level did not affect the phenotype of the tumor cell at the macroscopic level.

To combat this, the authors developed a novel computational model that determined the cancer cell’s

phenotype. This was based on experimental data suggesting that a cell either migrates or multiplies but

cannot do both at the same time.35 The development of a computational model that decides the macro-

scopic phenotype indicates that multiscale models can still be used when there are gaps in the information

of the system. It is possible to predict information at one level given information available from another.

This approach has the potential to be very effective in models for systems that are lacking experimental

data and were previously unable to be fully modeled. With further development, this type of modeling

could contribute to predictive abilities in clinical settings and medicine in general.

Given that the aforementioned studies were published over a decade ago, it should be noted that the field

of multiscale modeling has since progressed to focus on optimizing the computation of these models. To

this end, a multiscale modeling language was proposed in 2012,36 with the aim of making it easier for sci-

entists from various backgrounds to understand the process of developing a multiscale model. There have

been numerous software packages developed for computing multiscale models. A systems-biology-spe-

cific example is the Enteric Immunity Simulator Multiscale Modeling (ENISIMSM),37 which is Java based

and was developed for modeling immunological processes. This software can integrate models that use

different techniques (such as agent-based, ordinary differential equation [ODE]-based, or PDE-based).38

Using this software greatly reduces the time to create a model and would reduce the likelihood of errors

during the integration of several models. The wider availability of this software will also make multiscale

modeling more accessible and appealing to researchers.

Human space exploration

The 20th century saw the very beginning of space missions and the pioneering of human space travel. Orig-

inally manifesting because of political competition and lacking true purpose,39 it soon evolved into an in-

ternational cooperation for scientific research.40 By 2011, there were 60 active space missions, fueled by

both economic and scientific purposes.41 The value of human contribution to space travel is paramount

due to our skills in rapid sample acquisition, data assimilation and analysis, and pattern recognition.42

The planned missions to the Moon and Mars will enable research advances in astronomy, astrobiology,

fundamental physics, life sciences, and human physiology and medicine.43 Orbital solar power stations
iScience 25, 105421, November 18, 2022 5



Figure 2. Spatial distance and temporal travel scales from earth

Travel time to the International Space Station is approximately 16 h. Travel time to Mars is approximately 9 months. The

distance to Mars from Earth varies considerably depending on their orbits around the sun. The closest recorded distance

to Mars from Earth was in August 2003 when both were 34.8 million miles (56 million km) apart.
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and the development of fusion power in space could provide huge amounts of energy to Earth.44 Private

equity investments in space travel will undoubtedly promote vast economic growth,45 and astrotourism is

already an emerging industry.46 Pragmatically, there are many difficulties with space exploration, given the

spatial and temporal travel scales from Earth (Figure 2) andmany barriers to human space travel which must

be overcome for continued advancements in space travel.

Developing novel strategies to maximize the efficient use of resources such as food, nutrition, and water

will be pivotal in long-duration space travel,47,48 along with the development of technologies to combat

other detriments to human health such as aging, exposure to microgravity and radiation, as well as psycho-

logical stress.

Cardiovascular system

Commercial spaceflight has evolved rapidly with older persons destined to be exposed to space conditions

in the near future. Understanding cardiovascular risk factors and preventive cardiology will be a key compo-

nent of safe long-term space travel.49,50 Targeted preventive measures, or countermeasures in aerospace

medicine, and identifying vascular risks early will be essential in maintaining cardiovascular performance

and health during future space missions. The cardiovascular system undergoes major changes in cardiac

parameters, from orthostatic intolerance, arrhythmias, and aerobic capacity to cardiac atrophy.51 Humans

experience a loss in total body fluid mass, and without gravity assisting downward blood flow, there is an

anterior shift in body fluid.52 Venous blood pooling occurs in the splanchnic, cephalic, and pelvic regions of

the body, but it has not yet been determined if this can cause harmful effects to the brain, eye, and

splanchnic and pelvic organ morphology or physiology.53 Cardiovascular unloading leads to cardiopulmo-

nary deconditioning and, potentially, cardiac atrophy. In addition to diminishing physical activity, this can

lead to poorer orthostatic tolerance after return to Earth.50 The space environment may directly impact

vascular health; however, the clinical relevance of these findings in terms of morbidity and mortality is un-

clear at this point in time. Van loon and colleagues developed an open-source lumped mathematical

model of the cardiopulmonary system that can simulate the short-term adaptations of crucial hemody-

namic parameters to an active stand test after being exposed to microgravity.54 The model simulates

key cardiovascular hemodynamic changes—over a short time frame—during a stand test after prolonged

spaceflight under different gravitational and fluid-loading conditions.
6 iScience 25, 105421, November 18, 2022
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Musculoskeletal system

The musculoskeletal system is highly intricate and shows an acute sensitivity to changes in the biomechan-

ical environment. Microgravity removes gravitational compressive loads in the spine, resulting in swelling

of the lumbar intervertebral discs which causes chronic back pain.55 It increases bone resorption and re-

duces bone formation, resulting in the loss of calcium and other bone minerals56 causing osteoporosis.57

Microgravity also causes rapid skeletal muscle wastage in humans, which is hypothesized to be caused

through direct impact on the muscle fibers due to disuse58 or indirectly through changes in the levels of

factors such as anabolic steroids and growth hormone.59 Additional factors such as inflammation, height-

ened oxidative stress, and calcium dysregulation can also contribute to microgravity-induced muscle loss

and weakness.60–62 Microgravity can induce changes in muscle fiber type and composition, which can also

alter its function. A study of the effects of prolonged space flight (�180 days) on the structure and function

of slow and fast fibers in human skeletal muscle revealed that prolonged weightlessness caused substantial

loss of fiber mass, force, and power with the gradation of the effects being soleus type I > soleus type

II > gastrocnemius type I > gastrocnemius type II.63 A comparative analysis of the transcriptomes of soleus

and extensor digitorum longus (EDL) in mice that underwent 37 days of spaceflight revealed shared stress

responses and an altered circadian rhythm. EDL showed more robust growth signals and Pde2a downre-

gulation, possibly underlying its resistance to atrophy versus soleus.13

Sodium-retaining endocrine systems

Sodium-retaining endocrine systems are more active in microgravity, resulting in a huge extravascular stor-

age of sodium64 and causing degeneration of renal tubular cells.65,66 Changes in the levels of minerals in

saliva and urine of astronauts suggest downregulation of parathyroid gland activity.67 Research has sug-

gested that long-term exposure to microgravity results in the inhibition of secondary metabolism, but

themechanism needs to be researched further to be fully understood.68 At the very least, this would require

supplementation of secondary metabolites such as antibiotics. Microgravity also reduces stem and cancer

cell proliferation and differentiation, impacting both cancer metastasis and musculoskeletal tissue

repair.69–73

Space radiation

Space radiation is one of the major hazards in human space exploration and poses a serious threat to the

integrity of DNA in astronauts.74 Galactic cosmic rays contain high (H) atomic number (Z) and energy (E)

(HZE) particles that induce extensive DNA damage,75,76 leading to apoptosis, and microgravity has the

combined effect of inhibiting DNA repair,77,78 compounding the effects of radiation-induced genomic

instability. HZE particle exposure results in altered cognitive function, impairedmotor function, and chronic

neurological diseases. Ionizing radiation causes oxidizing events within cells, which alter the atomic struc-

ture. This can result in defects in mitochondrial physiology, leading to numerous pathological conditions

including accelerated aging.11,12,79 The primary concern of exposure to ionizing radiation is the risk of

developing tumors and/or cancer, and the linear no-threshold hypothesis model is implemented to calcu-

late radiation protection.75

As noted previously, microgravity impacts themusculoskeletal system. However, ionizing radiation also im-

pacts musculoskeletal responses to microgravity. Deep space travel exposes astronauts to prolonged cy-

cles of ionizing radiation and mechanical unloading, both of which can induce muscle and bone loss. To

explore the interactions between skeletal muscle and bone under these conditions, Krause et al. evaluated

alterations in the bone and muscle of rodents exposed to hindlimb suspension (HLS) unloading alone or in

combination with exposure to proton radiation and radiation of high atomic number (Z) and energy (E)

(16O). Their results indicate that combined simulated space radiation and HLS leads to additional bone

loss that may not be experienced by muscles.80 A limitation of many HLS ground-based models of space-

flight is that the concurrent effects of radiation exposure are not considered, or if they are, the radiation

exposure is at a high-dose rate over a very short period. Yu et al. investigated skeletal effects of low-

dose-rate gamma irradiation when administered simultaneously to tease out effects solely from disuse

caused by HLS.81 This revealed that mechanical unloading exhibits greater effects on the bone loss that

occurs during spaceflight than low-dose-rate radiation.81

Solar particle events, such as coronal mass ejections and solar flares, are characterized by the release of

large amounts of high-energy protons by stars in a relatively short period of time. They are temporally un-

predictable and can deposit massive doses of radiation in astronauts over a period of as little as a few
iScience 25, 105421, November 18, 2022 7
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hours.82–85 Most solar particle events carry enough energy to induce nuclear reactions in the materials they

penetrate.86 Furthermore, irradiated cells can also transmit radiation-induced effects to neighboring cells

through the bystander effect.87 These high radiation doses have made solar particle events the predicted

primary source of radiation sickness in astronauts on a longer mission outside of Earth’s magnetosphere,84

emphasizing their role as a key source of damaging radiation in space.

Spaceflight injury can be explored using integrated multiomics datasets

To aid the characterization of spaceflight impacts, NASA’s GeneLab database was established. The goal of

this repository is to store, curate, and facilitate access to genomic, transcriptomic, proteomic, and metab-

olomic data from biospecimens flown in space or exposed to simulated space stressors. With multiomics

datasets profiling space-flown organisms, this provides researchers with, often preanalyzed, integrable

multiomic datasets from humans and model organisms such as Drosophila melanogaster and Caenorhab-

ditis elegans.88 This allows the development of new hypotheses surrounding the impacts of space on hu-

man physiology and facilitates new discoveries.89

Numerous studies have proven the effectiveness of using integrated multiomics datasets to investigate com-

plex health conditions such as cancer on Earth. Kong et al. analyzed a combined dataset covering genomics,

epigenomics, and transcriptomics to conclude that methylation status may have an important role in pan-

creatic cancer, and they found several potential biomarkers for treatment of pancreatic cancer90 Elsewhere,

Cao et al. investigated genomic instability through multiomics analysis to find distinct characteristics of risk

subgroups for lower-grade glioma, for potential use in prognostic prediction.91 Therefore, multiomics

modeling provides new insights into cancer biology, which has historically been limited by simpler modeling

techniques that can lose accuracy as complexity decreases. In 2016, Liu et al. utilized postanalysis integration of

genomic, transcriptomic, andmethylomics data to explore mechanisms of DNA repair dysregulation in breast

cancer.92 This technique could be applied to explore the mechanisms behind DNA repair dysregulation seen

under microgravity conditions.93 Furthermore, multiomics cancer models integrating genomics, genome

conformation, transcriptomics, and epigenomics have been used to predict the phenotypic effects ofmutation

in cancer,94 which could be applied to predict how mutation from spaceflight radiation and cytoskeletal re-

modeling/DNA modification aberrations due to microgravity affect astronauts.95

These techniques can be applied to spaceflight, for example, spaceflight impacts immunity, causing reduced

lymphocyte, macrophage, and granulocyte populations,96 leading to lowered adaptive immunity, increased

aspects of innate immunity, and viral reactivation.97 In 2020, Gertz et al. integrated transcriptomic and prote-

omic data to study how spaceflight affects innate immunity.97 They independently analyzed proteomic and

transcriptomic data from the NASA Twin’s study, carrying out a pathway interaction analysis on the proteomic

data. These findings were validated and further explored using single-cell transcriptomics to enumerate im-

mune cell subtypes and explore the development of monocyte precursors upon return to Earth. They found

that the immune impacts of spaceflight may be caused by muscle remodeling which occurs in microgravity

and upon return to Earth.98,99 An advantage of this approach is that both RNA and protein data were analyzed,

representing 2 heavily interacting omics levels, core to the central dogma of biology.98,100 Furthermore, a

separate dataset analysis meant specialist/custom multiomics tools were not needed. Instead, widely

available, open-source single-omics tools and R packages, such as Seurat, were used, increasing repro-

ducibility.29,98,101–103 Similarly, the proteomic analysis simply repeated an earlier NASA study, allowing the re-

sults to be easily double-checked and validated.98,104 A disadvantage of this approach was that the dataset

integration relied on human inferences, and thus was subject to observer bias.29 Furthermore, this technique

does not computationally predict the effects of spaceflight. To predict these impacts, a systems modeling

strategy, such as the one described by Shi et al. in 2015, is preferable.106

Mathematical models of terrestrial innate immunity have been developed

Shi et al. developed a system dynamics mathematical model including 18 equations to explain both innate

and adaptive immunity.106 It encompassed pathogen load, phagocyte activation, and cytokine levels. The

advantage of this model is that it considered phagocyte populations and cytokine proteins,105,106 both of

which are impacted during spaceflight.98 The model is also flexible, allowing for various initial patient con-

ditions106 and environmental features of spaceflight to be factored in. This model, however, does not

consider important stochastic processes or local interactions such as macrophage movement.106 There-

fore, it could benefit from being extended to incorporate a deterministic-stochastic cellular automata

model that can simulate stochasticity and local cell movements.107 Furthermore, Shi et al. only utilized
8 iScience 25, 105421, November 18, 2022
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one omics type, proteomics, thus limiting the model’s utility in a systems biology setting.106 This model

should be expanded to include, at least, transcriptomics because proteomic-transcriptomic studies have

provided useful insight into the etiology of spaceflight-associated innate immunity damage.12
Chronic inflammation

Inflammation is a complex process involving many chemical-receptor interactions and cell states that influ-

ence and are influenced by their environment.108 Damage from chronic inflammation (CI) occurs at

numerous scales from DNA to tissue, causing disease progression.109,110 Therefore, predicting CI impacts

requires simultaneous modeling across multiple scales. ABM has been used to study CI, inflammatory pro-

cesses during sepsis, individual organ infections, and CI diseases.111 Cockrell et al. modeled colon inflam-

mation by simulating cell-cell interactions, leveraging signal transduction networks to calculate intercell

communication.112 Furthermore, transcriptomic data have been utilized in agent-based inflammation

modeling, exploring asynchronous granuloma development and the spread of chemokines from infected

to uninfected cells.113 The ability of MS-ABM models, for example, PhysiCell and PhysiBoSS, to simulate

diverse inflammation types and model environmental stress111,114,115 makes them suitable for predicting

the effect of space-associated inflammation as the space environment is an essential component of this

inflammation.116 High-resolution ABMs are computationally intensive; however, ABMs’ performance can

be enhanced. To improve performance at smaller scales, a hybrid MS-ABM simulates smaller spatiotem-

poral events, such as ligand-receptor interactions, using ODEs and PDEs. The results of these ODEs/

PDEs are then passed to the agents (cells), which use the results to decide cell behavior117 (Figure 3).

Furthermore, coarse graining procedures can reduce computational load.118
Cell cycle and circadian rhythm perturbations

Circadian rhythm disturbances during spaceflight are an important factor in sleep disorders commonly

seen in astronauts. These sleep disorders can lead to a plethora of issues including social friction between

astronauts, reduced energy levels and motivation, and impaired cognition, affecting memory, alertness,

and cognitive performance. It is easy to see the sizable impact that such cognitive and social impairment

would have in the complex, confined environments on spacecrafts.12,119 Two multiomics studies have un-

covered circadian rhythm disturbances in spaceflight. Both articles investigated the transcriptome and pro-

teome, using postanalysis integration via gene ontology terms and gene set enrichment analysis (GSEA) to

produce interaction networks.12,120 Furthermore, multiple studies spanning metabolomics, transcriptom-

ics, and proteomics have uncovered cell cycle perturbations during spaceflight.12,120,121 One study carried

out preanalysis integration using MetaboAnalyst, integrating transcriptomic and metabolomic data from

NASA GeneLab. The advantage of such preanalysis integration is its avoidance of observer bias as connec-

tions between omics datasets are statistically derived instead of being manually inferred.12,29,120,121

Although preanalysis and postanalysis integration techniques allow system perturbations to be studied,

they do not predict them computationally.29 However, protein interaction networks produced during these

analyses can facilitate perturbation effect prediction. This process is popular in cancer medicine, for

example, patient protein interaction network changes have facilitated prognostic predictions in breast can-

cer.122,123 Such techniques should, in the future, be applied to space medicine especially given the wealth

of information available on multiomics network changes during and after spaceflight.12,120,121

Mathematical and computational circadian rhythm and cell cycle modeling are both very well established,

with models of both processes first appearing in the 1990s.124 In 2003, Leloup and Goldbeter produced an

early mammalian circadian rhythm model using ODEs which included key circadian rhythm genes and

proteins with variable levels of phosphorylation.125 This model predicted the effects of day-night cycling

in disease. However, it was complex, and entraining it to diseased states proved challenging.125,126 Consid-

ered as a classic circadian rhythm model, the model of Leloup and Goldbeter has been expanded to

include mathematical parameters representing important circadian-rhythm-associated miRNAs, such as

miRNA-219. Although this addition improved the model’s biological representativeness, it increased its

complexity.127

Increasing complexity makes models more computationally demanding5,128; therefore, improvements like

those presented by Liu and Wang127 should be approached cautiously to prevent the model becoming

prohibitively computationally expensive. However, to apply these models to spaceflight data, further
iScience 25, 105421, November 18, 2022 9



Figure 3. Side-by-side view of an in vitro cell environment and a simulation of the same using hybrid multiscale

agent-based modeling systems models encompassing ordinary differential equation or partial differential

equations (O/PDEs) and agent-based modeling (ABM)

Differential equations are used to model chemical interactions at the smallest scale, the results of which are then used in a

rule-based agent system to decide the behavior on a cellular scale.
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parameters should be included, for example, the effect of mitochondrial dysregulation on circadian

rhythms.12
Impaired olfactory functions

Spaceflight affects olfactory functions through unknown etiologies. Suggestions include high CO2 concen-

trations, microgravity, and transcriptomic responses to spaceflight.129,130 Single-omics and multiomics

systems biology studies have explored the molecular origins of this olfactory effect.12,129 da Silveira

et al. studied proteomic and transcriptomic data via postanalysis integration and found upregulation of

olfactory pathways, which also affected circadian rhythm pathways.12 However, no studies that included

systems models of the olfactory impacts of spaceflight could be found at this time.

Predictive terrestrial olfactory system models have thus far focused on neurons and ligand-receptor interac-

tions.131–133 Although these could be useful in predicting spaceflight effects, they do not consider known tran-

scriptomic changes affecting spaceflight olfaction.12 A potential solution for this is intermixing a QM/MM

model of olfactory receptor-ligand interactions, as described by Sekharan and colleagues,132 with a model

of neuronal activation from receptors to the olfactory bulb which considers the transcriptomic status.134

Furthermore, a connectome model representing olfactory brain regions (the olfactory bulb), similar to models

described byGuntupalli and colleagues, should be included as thismodel can simulate healthy and perturbed

multilayered neuronal structures like the olfactory bulb.135,136 This approachwould simulate sensation and ner-

vous transmission to the olfactory bulb while factoring in transcriptomic changes, fully equipping themodel to

simulate olfaction in spaceflight while reducing computational load using QM/MM.137 However, combining 3

models representing a range of scales frommolecular to organ region may become extremely complex, lead-

ing to extreme computational cost.128 However, complexity-reduction techniques could be employed so only

those processes involved in spaceflight olfactory damage are modeled.5
10 iScience 25, 105421, November 18, 2022
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Multiomics systems biology is useful but has limitations

Multiomics systems biology modeling is a powerful technique for understanding and predicting the

behavior of a system.4,5 However, multiomics models often require hybridizing existing models to link

organizational scales, a challenging task requiring much planning, consideration, and model re-evaluation

irrespective of component model’s quality.5 The complexity of these models also requires a lot of compu-

tational power, and oftentimes high-performance computing (HPC) infrastructure is essential. Moreover,

HPC can take some time to produce solutions.2 Furthermore, although predictions can sometimes help

test hypotheses, the predictive power of any model is not absolute, as George E.P. Box noted, ‘‘all models

are wrong, but some are useful’’.138,139

Beyondmodeling, multiomics integration is also challenging and requires planning, for example, how data

are analyzed before integration affects future analyses. Directly comparing datasets at gene/protein level

can return confusing results if different samples/datasets are handled or analyzed differently. It is often bet-

ter to look at more abstracted metrics, for example, running GSEA and comparing enriched terms.12,140

Although more common with the advent of NGS, multiomics integration remains challenging. This is

because many analytic techniques designed for single-omics analysis are not suitable for other omics,

for example, storagemethods used in genomics are not suitable for proteomics. Additionally, if multiomics

data are integrated, eventually researchers must carefully separate them back into single-omics datasets

before submission to public repositories.29

Future perspectives

Metabolomics has been suggested as a method to overcome the difficulties associated with omics integra-

tion. Many metabolomics techniques and analytical tools are compatible with transcriptomics, genomics,

and proteomics, and metabolomics is closely associated with organismal phenotype. These factors com-

bined make metabolomics a common denominator across the omics universe; therefore, further metabo-

lomic focus could improve omics integration across systems biology.29

Coupling microscales and macroscales is a useful technique but challenging.4 Although it has been

achieved on the cell-tissue141 and pathogen/cell-population scales142 for terrestrial environments, no

models could be found at this time for spaceflight environments. As shown here, there are terrestrial

models that could be used to model spaceflight injuries; however, space is a very extreme environment,11

so the efficacy of terrestrial models for spaceflight simulation is dubious. Terrestrial models should be

tested for spaceflight simulation efficacy as repurposing existing models would be faster and less

resource-intensive than creating new space-specific models.143 Such model-scale-coupling, and indeed

wider systems modeling, could be facilitated by further development of multiscale modeling software pro-

grams, like ENISIMSM, tailored to each type of biological process, or perhaps a more generic software

capable of working with various types of systems. However, given that there is not yet a generic mathemat-

ical model for systems biology, this will take some time to develop and implement.2

Recent multiomics studies have found mitochondria to be a hub of many spaceflight impacts. Therefore,

modeling of the mitochondria in space, based on pathways and networks uncovered by da Silveira et al.,12

could provide a starting point in predicting adverse spaceflight effects. Although this would be a limitedmodel

as it only encompasses 1 organelle, it could serve as the basis for future spaceflight-specific systems biology

models. Although significant advances have occurred in space biology over the past decade, additional

research is needed to facilitate safer human space exploration. Applied research and the development of

countermeasures with a real-time robust biomarker and vitals monitoring is essential to ensure the health of

astronauts. Multiomics longitudinal approaches provide key insights into the combined effects of exposures

to various space hazards and provide valuable data on interactions between multiple biological features

and organ systems.11,12,89,104,120 Each individual aspect of spaceflight biology provides limited insights. Sys-

tems analyses encompassing multiple models coupled with human studies will enable a more detailed under-

standing of physiological and human health-related impacts of the space environment.

Conclusions

Systems biology techniques integrate multiple biological scales to provide a holistic view of biology.5 Mul-

tiomics integration is key here as it represents multiple levels of organization2 and includes vital contextual

information. For example, exposome studies of psychosis with no genomic background would struggle to
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elucidate why the same exposures lead to disease in some but not in others.144,145 Given the inherent

complexity of biological systems, the use of multiscale modeling is essential for accurate and robust sim-

ulations. However, there are still no generalized models for multiscale systems, but the wide range of avail-

able methods allows for personalized models to be created to best suit the system under investigation.

Although challenging, a well-plannedmultiomics study can yield a holistic view of a system, facilitating pre-

diction of system perturbation responses.2,4,5,146,147 Such studies have already been used to produce pre-

dictive models of biological responses to terrestrial environmental stressors, such as pathogen invasion,148

and tumor progression in cancer, which could translate to advancements in the clinical setting, such as opti-

mized tumor imaging.149 Extension of these predictive efforts to spaceflight damage is increasingly in-de-

mand as longer, more hazardous missions are planned.11,150 The studies producing these systems models

could lead to future breakthroughs in our knowledge of how these systems work. Ultimately, using multi-

scale modeling of systems biology to simulate the progression of a disease more accurately—for example,

solid tumor progression—can aid in optimizing treatments and studying their effects, leading to better

health care and potentially precision medicine. Studying spaceflight medicine can help reveal targets

and strategies for aging on earth as spaceflight can be considered a rapid aging model. In conclusion,

multiscale modeling approaches applied to spaceflight studies will provide new insights and allow devel-

opment of countermeasures to mitigate against the harsh space environment. Finally, they will guide pre-

cision medicine approaches to ensure the health of astronauts during long-term space travel.
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